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Abstract: The SM2 public key cryptographic algorithm is widely utilized for secure communica-
tion and data protection due to its strong security and compact key size. However, the intensive
large integer operations it requires pose significant computational challenges, which can limit the
performance of Internet of Things (IoT) terminal devices. This paper introduces an optimized imple-
mentation of the SM2 algorithm specifically designed for IoT contexts. By segmenting large integers
as polynomials within a modified Montgomery modular multiplication algorithm, the proposed
method enables parallel modular multiplication and reduction, thus addressing storage constraints
and reducing computational redundancy. For scalar multiplication, a Co-Z Montgomery ladder
algorithm is employed alongside Single Instruction Multiple Data (SIMD) instructions to enhance
parallelism, significantly improving efficiency. Experimental results demonstrate that the proposed
scheme reduces the computation time for the SM2 algorithm’s digital signature by approximately
20% and enhances data encryption and decryption efficiency by about 15% over existing methods,
marking a substantial performance gain for IoT applications.

Keywords: Montgomery modular multiplication; SIMD; Montgomery ladder; parallel processing;
elliptic curve cryptography; modular arithmetic optimization; efficiency improvement

1. Introduction

Elliptic curve cryptography (ECC), compared with the RSA cryptographic algorithm,
offers better computational efficiency and requires less key storage space. Consequently,
ECC has become a crucial alternative to RSA. Major countries worldwide have established
ECC standards and are promoting their use to safeguard information security.

ECC is applied in various scenarios. For instance, the U.S. government uses ECC
as a fundamental cryptographic component to ensure data security in the Tor project [1].
In the foundational technology of Bitcoin [2] blockchain, Nakamoto employs ECC as the
authentication mechanism. However, international ECC standards are not completely
secure. Internal memos leaked by former NSA employee Edward Joseph Snowden [3]
reveal that the NSA left a backdoor in the NIST’s ECC technical standards, where the
pseudo-random number generator Dual_EC_DRBG [4] can have its output predicted under
certain conditions. Therefore, it is crucial to adopt cryptographic algorithms independently
developed by our country for critical information systems.

In 2010, the National Cryptography Administration of China introduced the SM2
public key cryptography algorithm based on ECC, aimed at replacing the RSA algorithm.
As a national cryptographic algorithm, SM2 has been applied in various commercial
cryptographic products, such as electronic certification systems and key management
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systems. Additionally, due to its high security and short key length, the SM2 algorithm
is widely used for key agreement and data encryption transmission among IoT devices.
IoT devices have brought significant convenience to our production and daily life, from
simple smart home controls to complex industrial automation equipment. However, these
devices face numerous limitations in computational capacity and storage space, placing
higher demands on the performance of the SM2 algorithm. Specifically, because it relies
on operations over elliptic curve groups, the computational load is high, its structure is
complex, and it suffers from low operational efficiency and high resource consumption on
resource-limited IoT terminals.

Recently, researchers have proposed various solutions for the SM2 algorithm tailored to
different application scenarios, primarily focusing on applications [5–9], with less emphasis
on optimization implementation. Since the SM2 algorithm has not been available for long, it
does not adapt well to some existing ECC computational algorithms, hindering its broader
adoption. Discussing the integration of these algorithms with the SM2 computational
algorithm is crucial for enhancing the computational efficiency of the SM2 algorithm.

The main contributions of this paper are as follows:

1. Efficient elliptic curve group computation: we utilize an improved Montgomery
algorithm based on polynomial expansion, where large integers are expanded into
polynomials to interleave modular multiplication and modular reduction operations.
This approach achieves efficient and stable modular multiplication. Additionally,
the Montgomery ladder algorithm based on Co-Z operations reduces redundant
calculations in elliptic curve scalar multiplication, further enhancing the efficiency of
point addition and doubling.

2. Effective use of parallel computing: we introduce SIMD instruction set optimiza-
tion to enable parallel processing of multiple data. In particular, the combination
of SIMD technology with Montgomery point multiplication significantly improves
performance.

3. Comprehensive implementation of the SM2 national cryptographic algorithm: we fully
implement the SM2 public key encryption algorithm and digital signature algorithm,
ensuring wide applicability in practical applications. Our design is compared with
other public algorithms such as the SM2 signature algorithm based on OpenSSL
1.1.1, the SM2 encryption and decryption algorithm, ECDSA (secp256k1), and ECIES
(secp256k1). Metrics such as runtime and throughput are used as evaluation criteria.

2. Related Work

Numerous scholars worldwide have extensively researched the ECC algorithm. The
optimization of field operations primarily targets computationally intensive modular multipli-
cation. In 1985, mathematician Montgomery proposed Montgomery multiplication [10], sig-
nificantly speeding up large integer modular multiplication. Building on this, Koc et al. [11]
integrated the steps of the Montgomery reduction algorithm, proposing five optimized
versions that further improved efficiency. In 1987, Montgomery introduced a point mul-
tiplication algorithm over binary extension fields [12], which only requires processing
the X coordinate during point multiplication, thus reducing space requirements. In 1999,
literature [13] extended the Montgomery point multiplication algorithm to LD coordinate
representation, reducing the need for inversion operations in binary fields. In 2010, Ref. [14]
used a bottom-up approach to optimize the ECC point multiplication algorithm, employing
Jacobi coordinates, extended Twisted Edwards coordinates, and the Galbraith–LinScott
(GLS) method, achieving about a 30% improvement in computational speed.

Since Intel introduced the SIMD instruction set in 1996, many researchers have used
this instruction set to optimize various symmetric cryptographic algorithms. Parallel
implementation schemes for the SM4 algorithm [15] and the ZUC algorithm [16] have sub-
sequently been proposed. The key steps of elliptic curve-based public key cryptographic
algorithms are large integer operations and elliptic curve operations. Hisil et al. [4], based
on the Montgomery ladder point multiplication algorithm [12], designed a four-way vec-
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torized Montgomery point multiplication algorithm for Montgomery form elliptic curves,
utilizing AVX2 and AVX512 instruction sets. Nath et al. [17] further proposed optimized
algorithms for variable base point and fixed-base point scalar multiplication, reducing the
number of multiplications in point operations. They implemented a four-way vectorized
Montgomery point multiplication algorithm for Curve25519 and Curve448 curves using
assembly language and the AVX2 instruction set, significantly reducing the runtime. Cheng
et al. [18] further improved the throughput of scalar multiplication on the Curve25519
curve based on the AVX2 instruction set. Huang et al. [19] extended this approach to the
SM2 elliptic curve, implementing a two-way parallel large integer operation and scalar
multiplication algorithm using the AVX2 instruction set, which reduced the latency of
constant-time scalar multiplication on SM2. Gueron et al. [20] developed a highly opti-
mized cryptographic library for the NIST P-256 curve on the x86_64 platform, optimizing
the fixed-base scalar multiplication computation process using SIMD instructions, which
can be directly extended to OpenSSL. Bernstein et al. [21] proposed techniques for acceler-
ating fixed-base scalar multiplication on the Ed25519 curve, increasing the running speed
of the EdDSA scheme. Faz-Hernández et al. [22] designed a precomputation table for the
Ed25519 curve using SIMD instructions, further optimizing the performance of fixed-base
scalar multiplication.

Additionally, various other optimization efforts have been made. F. Chen et al. [23]
proposed a low-cost, high-speed parallel modular multiplication implementation for SM2,
executing the two steps of multiplication and reduction in parallel. They improved the
classic Karatsuba algorithm, executing it in eight parts, combined with subsequent parallel
reduction computations. Wang et al. [24] proposed a modular squaring unit using a fast
partial Montgomery reduction algorithm, significantly reducing area. Modular squaring
operations can be completed in only four clock cycles, and modular multiplication and
squaring can be computed in parallel for high speed. Xingran Li et al. [25] proposed a new
parallel efficient algorithm to accelerate scalar multiplication, introducing a new regular
halving and addition method, effective with projective coordinates. They compared various
algorithms for double addition and halving addition, finally combining the best methods
to obtain a new faster parallel algorithm. Mai et al. [26] developed a new SM2 algorithm
implementation called Yog-SM2, leveraging the parallel computing capabilities of modern
processors, such as the AVX2 instruction set, significantly enhancing execution speed while
maintaining security. Hu et al. [27] proposed a high-performance ECC architecture based
on a half-word multiplier, where PM operations consist of point addition (PA) and point
doubling (PD) operations. They introduced a novel schedule for PA and PD to reduce MM
operations and enhance the parallelism of multiplication and fast reduction operations.

3. Preliminaries
3.1. SM2 Public Key Cryptographic Algorithm

The SM2 algorithm is a type of ECC algorithm. It provides higher security strength
than 2048-bit RSA and operates faster than RSA. The National Cryptography Administra-
tion of China has decided to use the SM2 algorithm to replace RSA after thorough research.
The SM2 elliptic curve public key cryptography algorithm was developed and formulated
by China, incorporating existing research from both domestic and international sources,
and it possesses independent intellectual property rights.

An elliptic curve system over a prime field typically consists of the following parameters:

(1) The field size p, where p is a prime number greater than 3;
(2) The elliptic curve equation y2 = x3 + ax + b, with coefficients a and b;
(3) The base point G(Gx, Gy) on the elliptic curve;
(4) The order n of the base point;
(5) The cofactor h of the base point.

SM2 digital signature algorithm: the SM2 elliptic curve cryptography algorithm
includes digital signature generation and verification, as well as encryption and decryption.
Given a message, M, to be signed, the signature, (r, s), the public key, P, and the private key,
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d, the elliptic curve equation over the finite prime field, p, is defined as y2 = x3 + ax + b
with the base point G. The signing process is as follows. Let ZA be the hash value of the
user A, M be the message to be signed, and dA be the private key of user A:

(1) Concatenate ZA and M, denoted as M′, i.e., M′ = ZA ∥ M;
(2) Compute the hash value of M′, denoted as e, i.e., e = Hv(M′);
(3) Generate a random number k ∈ [1, n − 1];
(4) Compute the elliptic curve point (x1, y1) = [k]G;
(5) Compute r = (e + x1) mod n. If r = 0 or r + k = n, return to step 3;
(6) Compute s = [(1 + dA)

−1 · (k − r · dA)] mod n. If s = 0, return to step 3;
(7) Output the digital signature (r, s) for the message M.

SM2 encryption algorithm: given the message M to be sent as a bit string of length
klen, the SM2 encryption algorithm operates as follows:

(1) Generate a random number k ∈ [1, n − 1];
(2) Compute the elliptic curve point C1 = (x1, y1) = [k]G;
(3) Compute the elliptic curve point S = [h]PB. If S = O, report an error and exit;
(4) Compute the elliptic curve point (x2, y2) = [k]PB;
(5) Compute t = KDF(x2 ∥ y2, klen). If t is an all-zero bit string, return to step 1;
(6) Compute C2 = M ⊕ t;
(7) Compute C3 = Hv(x2 ∥ M ∥ y2);
(8) Output the ciphertext C = C1 ∥ C2 ∥ C3.

3.2. Montgomery Modular Multiplication

The classic Montgomery modular multiplication algorithm leverages the properties
of residue systems to transform standard modular operations into shift and addition
operations. The algorithm computes S = A × B × R−1 mod M. Select large integers
A and B such that 0 ≤ A, B < M and GCD(M, R) = 1, and choose a base, R, where
R > M. Parameters R−1 and M′ are selected to satisfy 0 < R−1 < M, 0 < M′ < R, and
R × R−1 − M′ × M = 1, ensuring the following conditions hold:

R × R−1 ≡ 1 (mod M)

M′ ≡ −M−1 (mod R)
(1)

The classic Montgomery algorithm consists of four main steps:

1. Multiply the large integers A and B to obtain the product T: T = A × B;
2. Take the lower n bits of T, multiply by M′, and again take the lower n bits to obtain

the quotient q: q = (T mod R)× M′ mod R;
3. Multiply q by the modulus M, add T, and take the higher n bits to obtain S: S = T+q×M

R ;
4. If S > M, return S − M; otherwise, return S.

By analyzing the classic Montgomery algorithm and combining it with Equation (1),
we obtain:

q × M ≡ −T (mod R) (2)

and
S × R ≡ T (mod R), which implies S ≡ T × R−1 (mod M) (3)

Since 0 ≤ T + q × M < 2 × M × R, an additional step, as shown in step 4, is necessary
to obtain the final result. The classic Montgomery algorithm involves two n-bit large integer
multiplications and two 2n-bit large integer additions, making the logic operations more
complex and time-consuming with wider bit-widths.

3.3. Montgomery Ladder Algorithm

The Montgomery ladder algorithm is designed for computing non-fixed-point scalar
multiplication on Montgomery curves. This algorithm focuses only on the X coordinate,
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eliminating many Y coordinate operations. In the main loop, each iteration performs a
point addition and a point doubling operation, with a time complexity of only 5M + 4S,
making it significantly more efficient than other elliptic curve algorithms. The algorithm’s
implementation involves conditional swaps to resist side-channel attacks, making it highly
suitable for ECDH protocols requiring efficient non-fixed-point scalar multiplication.

As shown in Algorithm 1, the Montgomery point multiplication algorithm is presented.
It starts by computing the initial values R0 = G and R1 = 2G based on the base point G.
It then performs point addition and doubling operations on R0 and R1 according to the
binary encoding of the integer k. The loop computes the final point multiplication result
based on the binary digits of k.

Algorithm 1 Montgomery Point Multiplication

1: Input: k = (kn−1, . . . , k0), point G
2: Output: Q = kG
3: Initialize R0 = G, R1 = 2G, i = n − 2
4: while i ≥ 0 do
5: if ki == 0 then
6: R1 = R0 + R1, R0 = 2R0
7: else
8: R0 = R0 + R1, R1 = 2R1
9: end if

10: i = i − 1
11: end while
12: Q = R0

4. Methods
4.1. Polynomial Expansion Cross Montgomery Modular Multiplication Algorithm

This paper presents an improved version of the classical Montgomery modular mul-
tiplication algorithm, resulting in a polynomial expansion cross Montgomery modular
multiplication algorithm. This algorithm consists of two main loops, referred to as Loop 1
and Loop 2. Loop 1 calculates the intermediate parameter, qi, used in modular reduction,
and Loop 2 performs multiple iterations to complete both the modular multiplication and
reduction operations, with Loop 3 embedded within it to handle individual iterations of
these operations.

In this algorithm, the input parameters—the modulus, multiplicand, and multi-
plier—are represented as polynomials:

M =
k2−1

∑
j=0

mj × (rA)
j, A =

k2−1

∑
j=0

mj × (dA)
j, y = rA = 2y, k2 =

n
y

(4)

A =
k2−1

∑
j=0

aj × (rA)
j =

k2−1

∑
j=0

aj × (dA)
j, y = rA = 2y, 0 ≤ A ≤ 2M, k2 =

n
y

(5)

B =
k1−1

∑
i=0

bi × (rB)
j =

k1−1

∑
i=0

bi × (dB)
j, x = rB = 2x, 0 ≤ B ≤ 2M, 4M < 2k1x (6)

The input parameter is M′
0, which represents the lower x bits of the modular multi-

plicative inverse of M (denoted M′), S0 = 0. The output parameter is S.
The algorithm proceeds as follows:
Step 1: Sequentially take the low x bits of B (denoted bi) and multiply by the low x

bits of A (denoted A[0]). Add the low x bits of the intermediate result Si (denoted Si[0]).
After the multiply–accumulate operation, retain the low x bits and multiply by M′

0. Finally,
take the low x bits to obtain the parameter qi. As shown in Algorithm 2, the iterative
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calculation of the intermediate parameter qi is performed to ensure computational accuracy
and efficiency.

Algorithm 2 Iterative Calculation of Intermediate Parameter qi

1: for i = 0 to k1 − 1 do ▷ Loop 1
2: if i == 0 then ▷ Initialize
3: Si = 0
4: qi = (((Si[0] + A[0]× bi) mod x)× M′

0) mod x
5: end if
6: end for

Step 2: Utilize a nested loop structure, consisting of Loop 2 and Loop 3. In each
iteration of the inner loop (Loop 3), sequentially take the y bits of A (denoted aj) and
multiply them by the x bits of B (denoted bi, where i ranges from 0 to 30). Accumulate
the result with the y bits of the previous iteration Si (denoted Si,j) and the carry C_ABi+1,j.
This yields the modular multiplication result. Subsequently, multiply qi by the y bits of
the modulus M (denoted mj) and add the carry C_qmi+1,j and the accumulated result
S_ABi+1,j+1 to complete the modular reduction operation, as shown in Algorithm 3.

Algorithm 3 Nested Modular Multiplication and Reduction Algorithm

1: for i = 0 to k1 − 1 do ▷ Loop 2
2: if i == 0 then ▷ Initialize
3: Si = 0
4: end if
5: for j = 0 to k2 − 1 do ▷ Loop 3
6: if j == 0 then ▷ Initialize
7: C_ABi+1,j = 0
8: end if
9: (C_ABi+1,j+1, S_ABi+1,j+1) = bi × aj + Si,j + C_ABi+1,j

10: (C_qmi+1,j+1, S_qmi+1,j+1) = qi × mj + S_ABi+1,j+1 + C_qmi+1,j
11: end for
12: Si+1 =

S_qmi+1
x

13: end for

Step 3: The algorithm expands the range of input data, thereby eliminating the need
for the subtraction operation used in the classical Montgomery modular multiplication
algorithm. The computation concludes with the output result S.

4.1.1. Polynomial Expansion

Assuming the n-bit large integer B is represented with base rB, B = (bk1−1, bk1−2, . . . , b1, b0)rB,
with rB = 2x. Each part is represented by bi, where bi ranges from 0 to x, and is calculated
according to Equation (4). Here, i ranges from 0 to k1 − 1, and the integers x and k1 satisfy
4M < 2(k1x), resulting in the k1-bit large integer B (Equation (5)):

bi = (B ≫ (x × i)) mod rB (7)

B =
k1−1

∑
i=0

bi × (rB)
i (8)

Additionally, the k1-bit large integer B can also be expanded as a polynomial of degree
k1 − 1, as shown in Equation (6), where dB = rB:

B(dB) =
k1−1

∑
i=0

bi × (dB)
i (9)
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Similarly, assuming the n-bit large integer A is represented with base rA,
A = (ak2−1, ak2−2, . . . , a1, a0)rA, with rA = 2y. Each part is represented by aj, where aj
ranges from 0 to y, and is calculated according to Equation (7). Here, j ranges from 0 to
k2 − 1, and k2 =

⌈
n
y

⌉
, resulting in A:

aj = (A ≫ (dA × j)) mod rA (10)

A =
k2−1

∑
j=0

aj × (rA)
j (11)

Moreover, the k2-bit large integer A can also be expanded as a polynomial of degree
k2 − 1, as shown in Equation (9), where dA = rA:

A(dA) =
k2−1

∑
j=0

aj × (dA)
j (12)

T = A × B = A(dA)× B(dB) =
k1−1

∑
i=0

{
bi × (dB)

i ×
(

k2−1

∑
j=0

(aj × (dA)
j)

)}
(13)

If the input data are the n-bit multiplicand A and the multiplier B, the computation
process will produce an intermediate result of up to 2n bits. By expanding the input data
as polynomials and performing multi-precision calculations, each operation only involves
parts of A and B (i.e., aj and bi), reducing the intermediate result to (x+ y) bits. In hardware
implementation, this multiplier can be reused, and its size will affect the circuit’s area,
making this operation beneficial for saving area costs.

4.1.2. Cross Execution of Modular Multiplication and Modular Reduction

This paper illustrates the use of the polynomial expansion modular multiplication
algorithm, which involves multiplication and modular reduction operations, by combining
it with Step 2 of the polynomial expansion cross Montgomery modular multiplication
algorithm. Step 2 primarily consists of Loop 2 and Loop 3, with Loop 3 nested within
Loop 2. Loop 3 executes the operations described in Equations (11) and (12), achieving
modular multiplication and modular reduction, respectively. The computation within
Loop 2 is as shown in Equation (13):

S_ABi+1 = bi ×
(

k2−1

∑
j=0

aj × (dA)
j

)
= bi × A (14)

S_qmi+1 = qi ×
(

k2−1

∑
j=0

mj × (dB)
j

)
+ S_ABi+1 = qi × M + S_ABi+1 (15)

S_qm =

(
k1−1

∑
i=0

qi × (dA)
i

)
× M +

(
k1−1

∑
i=0

bi × (dA)
i

)
× A = q × M + B × A (16)

This paper introduces a method for the cross execution of modular multiplication
and modular reduction operations using polynomial expansion. Unlike the classical Mont-
gomery modular multiplication algorithm, the proposed algorithm performs modular
multiplication with a smaller bit-width before initiating the modular reduction operation,
thereby reducing the start time for modular reduction. These enhancements make the mod-
ular multiplication algorithm more suitable for hardware implementation involving large
integer modular multiplication. By alternating the execution of modular multiplication and
modular reduction using smaller bit-widths, computational efficiency is increased. The
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new algorithm conserves hardware resources by minimizing the multiplier area, resulting
in efficient modular multiplication with low resource consumption.

4.2. Parallel Montgomery Ladder Algorithm Based on Co-Z Operations

The Montgomery ladder algorithm based on Co-Z operations improves the efficiency
of scalar multiplication by eliminating the need for Z coordinate calculations in the main
loop. In the Montgomery point multiplication algorithm, irrespective of the value of ki,
each iteration of the loop involves computing both point addition and point doubling,
which are independent operations that can be executed in parallel. To optimize these
operations, Co-Z operations are introduced. When the Z coordinates of two different
points are equal in Jacobian projective coordinates, the addition operation can omit certain
calculations involving the Z coordinate, thus enhancing the efficiency of the addition
operation. The ladder step in the main loop of the traditional Montgomery ladder algorithm
is replaced with the following.

First, perform one Co-Z conjugate addition operation, then perform one Co-Z addition
operation. The algorithm proceeds as follows:

1. a = (ki + ki+1) mod 2
2. XYCZ_addC(R1−a, Ra);
3. XYCZ_add(Ra, R1−a);

This method restores the Z coordinate at the final stage of the Montgomery ladder
algorithm with minimal additional cost. The optimized point multiplication operation
reduces the time complexity by the equivalent of 6 modular multiplications.

To fully leverage the parallelism of the SIMD instruction set, we carefully analyzed the
execution flow of Co-Z Jacobian operations. We found that most prime field operations lack
data dependencies and can be executed in parallel. Algorithms 4 and 5 provide parallel
optimized implementations of Co-Z addition and Co-Z conjugate addition, respectively,
involving only the (X, Y) coordinates. These algorithms implement elliptic curve point
operations using parallel prime field operations with AVX2. In these algorithms, each line
represents the simultaneous execution of the same operation on two sets of data. However,
during the parallelization of Co-Z operations, some operations in Algorithm 4 cannot
be paired; these are relatively simple addition and subtraction operations. Conversely,
Algorithm 5 ensures that all operations can be paired by precomputing A′ and T′.

Algorithm 4 PCZ-ADD: Parallel Co-Z Addition Operation

Input: P = (XP, YP), Q = (XQ, YQ)
Output: (R, R′) = (P + Q, P′)

# Operation Comment

1 T1 = XP − XQ T2 = YQ − YP {mod sub}
2 A = T2

1 D = T2
2 {mod square}

3 B = XP A C = XQ A {mod mul}
4 T1 = B + C {mod add}
5 XR = D − T1 T3 = C − B {mod sub}
6 T1 = B − XR {mod sub}
7 T1 = T1T2 E = YPT3 {mod mul}
8 YR = T1 − E {mod sub}
9 return ((XR, YR), (B, E))

Compared with the sequential implementation of Co-Z addition, the time complexity
of parallel Co-Z addition is nearly halved, reducing from 4M + 2S + 7A to 2M̈ + 1S̈ + 5Ä,
where M̈, S̈, and Ä represent bidirectional parallel modular multiplication, modular squar-
ing, and modular addition/subtraction operations, respectively. The counts of modular
multiplication and modular squaring are thus reduced by 50%. Additionally, the bidirec-
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tional parallel scheduling of the Co-Z conjugate addition lowers the time complexity from
5M + 3S + 11A to 3M̈ + 1S̈ + 6Ä.

Algorithm 5 PCZ-ADDC: Parallel Co-Z Conjugate Addition Operation

Input: P = (XP, YP), Q = (XQ, YQ), A′ = (XQ − XP)
2, T′ = (XQ − XP)A′ = C′ − B′

Output: (R, R′) = (P + Q, P − Q)

# Operation Comment

1 C = XQ A′ E = YPT′ {mod mul}
2 B = C − T′ T1 = YQ − YP {mod sub}
3 T2 = B + C T3 = YP + YQ {mod add}
4 D = T2

1 F = T2
3 {mod square}

5 XR = D − T2 X′
R = F − T2 {mod sub}

6 T2 = B − XR T4 = X′
R − B {mod sub}

7 T2 = T2T1 T3 = T3T4 {mod mul}
8 YR = T2 − E Y′

R = T3 − E {mod sub}
9 return ((XR, YR), (X′

R, Y′
R))

Analyzing the computational processes in Co-Z addition and Co-Z conjugate addition
reveals a total time complexity of 9M + 5S + 18A. Rivain [28] proposed an optimization
scheme that replaces one multiplication with one squaring and four additions, reducing
the Co-Z ladder algorithm’s time complexity to 8M + 6S + 22A. Since these operations are
even-numbered in prime fields, theoretically, the lowest time complexity for a bidirectional
parallel Co-Z ladder algorithm is 4M̈ + 3S̈ + 11Ä. However, the total time complexity for
sequential execution of Algorithms 4 and 5 is 5M̈ + 2S̈ + 11Ä, which does not reach the
theoretical minimum. Therefore, we merged Co-Z conjugate addition and Co-Z addition
to achieve the lowest theoretical time complexity. Before entering the main loop, we pre-
compute two large integers, A′ = (XQ − XP)

2 and T′ = (XQ − XP)A′, and repeatedly
update them during the main loop. This significantly reorders the operations in the Co-Z
ladder algorithm to reduce the parallelized algorithm’s time complexity to 4M̈ + 3S̈ + 13Ä,
very close to the theoretical minimum, requiring only two additional modular addition
operations. Detailed steps are in Algorithm 6. Except for the last two operations, all can be
processed in parallel, making Algorithm 6 highly suitable for bidirectional parallel imple-
mentation. Compared with the sequential combined implementation of Co-Z conjugate
addition and Co-Z addition with a time complexity of 5M̈ + 2S̈ + 11Ä, our optimization
reduces the Co-Z ladder algorithm’s time complexity to the minimum. Our scheme re-
places 1M̈ with 1S̈ + 2Ä. By comparing the clock cycles of bidirectional parallel modular
multiplication and squaring operations, our scheme effectively enhances the efficiency of
the Co-Z ladder algorithm. The overall time complexity optimization effect of the improved
algorithm is compared, as shown in Table 1.

Table 1. Improved time complexity of the parallel Co-Z algorithm.

Algorithm Sequential Execution Parallel Execution

Co-Z Addition 4M + 2S + 7A 2M̈ + 1S̈ + 5Ä

Co-Z Combined
Addition 5M + 3S + 11A 3M̈ + 1S̈ + 6Ä

Sequential Execution 9M + 5S + 18A 5M̈ + 2S̈ + 11Ä

Precomputation A′, T′ 8M + 6S + 22A 4M̈ + 3S̈ + 13Ä

Algorithm 7 demonstrates the complete process of the Montgomery ladder algorithm
based on parallel Co-Z operations. This algorithm initializes two elliptic curve points
(R1, R0) = (2P, P) using the INIT algorithm, making their Z coordinates equal, allowing
them to use Co-Z operations.
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Algorithm 6 PCZ-LADDER: Parallel Co-Z Ladder Algorithm

Input: P = (XP,YP) = Ra, Q = (XQ,YQ) = R1−a, A′ = (XQ − XP)
2, T′ = (XQ − XP)A′ = C′ − B′,

a ∈ {0, 1}, Ra, R1−a are two Co-Z coordinates points updated in the Montgomery
ladder algorithm.
Output: (Ra, R1−a) = (2Ra, Ra + R1−a) with updated A′ = (XRa − XR1−a )

2 and
T′ = (XR1−a − XRa )A′

# Operation Comment

1 C′ = XQ A′ E′ = YPT′ {mod mul}
2 B′ = C′ − T′ T1 = YQ − YP {mod sub}
3 T2 = B′ + C′ T3 = YP + YQ {mod add}
4 D′ = T2

2 F′ = T2
3 {mod square}

5 XR = D′ − T2 X′
R = F′ − T2 {mod sub}

6 T2 = B′ − XR T4 = X′
R − B′ {mod sub}

7 T2 = T2T1 T4 = T3T4 {mod mul}
8 YR = T2 − E′ Y′

R = T4 − E′ {mod sub}
9 T1 = X′

R − XR T2 = Y′
R − YR {mod sub}

10 A = T2
1 D = T2

2 {mod square}
11 XP = B = XR A C = X′

R A {mod mul}
12 T3 = T2 + B T4 = B + C {mod add}
13 XQ = D − T4 T1 = C − B {mod sub}
14 T4 = XQ − XP T3 = T3 − XQ {mod sub}
15 A′ = T2

4 T3 = T2
3 {mod square}

16 T′ = T4 A′ XP = E = YRT1 {mod mul}
17 T1 = D + A′ T2 = E + E {mod add}
18 T3 = T3 − T1 {mod sub}
19 YQ = 1

2 (T3 − T2) {mod sub}
20 return ((XQ, YQ), (XP, YP))

Algorithm 7 Montgomery Ladder Algorithm Based on Co-Z Operation
Input: Elliptic curve point P ̸= ∞, a scalar k ∈ Fp, and kn−1 = 1.
Output: The result of the scalar multiplication k · P.

1: (R1, R0) = INIT(P)
2: A′ = (X0 − X1)

2, T′ = (X0 − X1)A′

3: for i from n − 2 by 1 down to 0 do
4: a = (ki + ki+1) mod 2
5: (Ra, R1−a, A′, T′) = PCZ − LADDER(Ra, R1−a, A′, T′)
6: end for
7: a = (k0 + k1) mod 2
8: (Ra, R1−a) = PCZ − ADDC(Ra, R1−a, A′, T′)
9: λ

Z = Final_Inv_Z(R1−a, Ra, P, a)
10: (R0, R1) = PCZ − ADD(R0, R1)
11: return (( λ

Z )
2X0, ( λ

Z )
3Y0)

After initializing the elliptic curve points R1 and R0, we precompute the items
A′ = (XQ − XP)

2 and T′ = (XQ − XP)A′ mentioned in the Co-Z ladder algorithm to
adjust the calculation order in the main loop and reduce the time complexity. Entering
the main loop of the Montgomery ladder algorithm, we replace the traditional trapezoidal
algorithm P1 = 2P1; P2 = P1 + P2 with the following equations:

(R1−a, Ra) = (Ra + R1−a, Ra − R1−a)

Ra = R1−a + Ra

where a = (⌈ki + ki+1⌉ mod 2). As shown in Algorithm 7, the Montgomery ladder algo-
rithm based on parallel Co-Z operations executes one parallel Co-Z ladder algorithm per
iteration, thus having a regular execution flow and fixed execution time. The precomputed
items A′ and T′ are updated once in each iteration of the Co-Z ladder algorithm. After the
main loop ends, we need to convert the elliptic curve points from Co-Z Jacobian projective
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coordinates back to affine coordinates. This process is achieved through the Final_Inv_Z
algorithm, which computes Z = XPYRa(XR0 − XR1) and λ = yPXRa , and outputs λ

Z . The
algorithm’s time complexity is 1I + 3M + 1A, requiring one inversion operation in the
prime field.

5. Evaluation

This section presents performance data of our optimized implementation of the SM2
cryptographic algorithm. We evaluate execution time and throughput as key performance
metrics, and compare our approach with other available schemes (e.g., the SM2 signature
algorithm and ECDSA (secp256k1) based on OpenSSL 1.1.1). We selected OpenSSL 1.1.1
(LTS) as it is a widely used version that supports server security in many industrial applica-
tions, making our evaluation more representative. The test environment is shown below, as
presented in Table 2.

Table 2. Comparison of experimental hardware configurations.

Processor Frequency Memory Operating System SIMD Support

quad-core ARM
Cortex-A7 900 MHz 1 GB Raspbian OS NEON

4th gen Intel Core
i5-4402EC 2.5 GHz 8 GB Ubuntu 18.04 LTS AVX2

We conducted tests on both processors using the standard SM2 algorithm, the opti-
mized SM2 algorithm, and ECDSA for encryption, decryption, signing, and verification
operations. Each operation was performed 3000 times, and the average time was recorded.
The time statistics do not include hashing time, and the data length for encrypted messages
was set to 1 KB. The experimental results are shown in Table 3.

Table 3. Performance comparison between SM2 and our SM2 on different processors.

Operation Processor SM2 (ms) Our SM2 (ms) Improvement (%)

Signing ARM Cortex-A7 2045.8 1634.3 20.1%

Intel Core i5 1010.3 701.2 30.6%

Verification ARM Cortex-A7 2189.2 1780.6 18.7%

Intel Core i5 1078.3 850.1 21.2%

Encryption ARM Cortex-A7 4285.3 3352.4 21.8%

Intel Core i5 1997.5 1348.1 32.5%

Decryption ARM Cortex-A7 2324.7 1867.2 19.7%

Intel Core i5 1140.8 854.2 25.1%

As shown in the data, the optimization scheme brings significant performance im-
provements on both Intel Core i5 and low-power ARM Cortex-A7 processors. The im-
provement is especially notable on the Intel Core i5 processor, which supports more
advanced SIMD instruction sets (AVX2). On the ARM processor, despite limited SIMD
support, the optimization still achieves approximately 20% performance gains in resource-
constrained environments.

For the comparison with other schemes, we primarily used the Intel Core i5 processor
for testing. This choice is based on the following considerations:

• Intel Core i5 processor supports a wider range of SIMD instructions, which better
demonstrate the performance advantage of the optimization scheme.

• The computational capability of this processor is commonly found in edge devices for
IoT, providing a certain level of representativeness.
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Therefore, in the following comparative analysis, we mainly base our discussion on
the test results of the Intel processor.

Utilizing precomputation techniques is an effective way to enhance the performance of
SM2 algorithm implementation. Precomputation significantly improves program efficiency.
Many protocols in the SM2 public key cryptosystem require repeated point multiplications
of the base point “G”. In our implementation, we precompute these multiples of the base
point G and store them in the code, allowing for quick lookup and retrieval during runtime,
as summarized in Table 4.

Table 4. SM2 base point calculation table.

i j Storage Point i j Storage Point

0 1 1G 2 1 216G
0 2 2G 2 2 216 × 2G
... ... ... ... ... ...
0 255 255G 2 255 216 × 255G
1 1 28G ... ... ...
1 2 28 × 2G 31 1 231G
... ... ... ... ... ...
1 255 28 × 255G 31 255 231 × 255G

In the SM2 signature algorithm, it is necessary to calculate s =
(
(1+ dA)

−1 · (k − r · dA)
)

mod n, where (1 + dA)
−1 requires a modular inverse operation. To enhance efficiency

when signing large numbers of data with a given key, the value of (1 + dA)
−1 can be

precomputed and subsequently utilized in each signing process.
Table 5 compares the number of operations required for point addition and point

doubling in various coordinate systems. Here, I, M, and S denote modular inversion,
modular multiplication, and modular squaring, respectively. It is evident that Jacobian
coordinates offer superior performance compared with other methods. For point addition,
the computation requires 12 modular multiplications and four modular squarings; simi-
larly, for point doubling, the computation also requires 12 modular multiplications and
four modular squarings.

Table 5. Comparison of point addition and doubling operations in different coordinate systems.

Affine Coordinates Standard Projective Coordinates Jacobian Coordinates

Point Addition I + 2M + S 13M + 2S 12M + 4S
Doubling I + 2M + 2S 8M + 5S 4M + 6S

I: Modular inversion. Computationally expensive operation, especially in large field
arithmetic.

M: Modular multiplication. Requires significant computational resources but fewer
than modular inversion.

S: Modular squaring. Special case of modular multiplication, generally faster but still
computationally significant.

Compared with the commonly used affine coordinates and standard projective coordi-
nates, Jacobian coordinates eliminate the need for modular inversion operations. In affine
coordinates, point addition requires one modular inversion, which is typically computa-
tionally intensive. However, Jacobian coordinates enable point addition and point doubling
without any inversion operations, significantly improving computational efficiency. More-
over, Jacobian coordinates exhibit higher efficiency in point doubling operations due to
fewer required multiplications and squarings. While standard projective coordinates also
avoid modular inversion and allow for simpler mathematical representation, they generally
incur higher arithmetic overhead. Additionally, Jacobian coordinates are highly compatible
with Montgomery point multiplication, further enhancing computational efficiency.
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5.1. Montgomery Modular Multiplication

For Montgomery modular multiplication, we optimized the classical Montgomery
modular multiplication algorithm to better suit hardware implementations for large integer
modular multiplication. This improved algorithm alternates between modular multipli-
cation and modular reduction with a small bit-width, thereby enhancing computational
efficiency. By reducing the multiplier’s size, the new algorithm minimizes hardware re-
source usage, achieving efficient modular multiplication with low resource consumption.
We performed comparative evaluations between the fast modular multiplication scheme
based on the improved Montgomery algorithm and several other public algorithms. Given
that modular multiplication accounts for approximately 70% of the computational over-
head in the entire SM2 algorithm, we tested the runtime of the entire SM2 protocol using
randomly generated public–private key pairs. The results are presented in Table 6.

Table 6. Performance test results of SM2 algorithm under different modular multiplication algorithms.

Modular
Multiplication
Algorithm

SM2 Signature
Time (s)

SM2 Verification
Time (s)

SM2 Encryption
Time (s)

SM2 Decryption
Time (s)

Montgomery
Mult [10] 0.6528 1.2938 1.2763 0.6490

SOS [11] 0.2581 0.4988 0.5039 0.2182
FIOS [11] 0.3696 0.7224 0.7221 0.3671
Literature [29] 0.4129 0.8105 0.8070 0.4103
Literature [30] 0.2199 0.4220 0.4292 0.2182
This Work 0.2065 0.3951 0.4024 0.2045

5.2. Parallel Montgomery Ladder Algorithm

Table 7 presents the execution times for the sequential and parallel implementations
of Co-Z addition, Co-Z conjugate addition, Co-Z ladder algorithm, and the Montgomery
ladder algorithm based on Co-Z operations. Our parallel implementations significantly
outperform the corresponding sequential implementations, with speedup ratios ranging
from 1.26 to 1.60. Specifically, the bidirectional parallel implementation of the Montgomery
ladder algorithm based on Co-Z operations achieves an execution time of 274,908 clock
cycles, making it 1.31 times faster than its sequential counterpart.

Table 7. Comparison of clock cycles for sequential and parallel implementation of Co-Z operations
and Montgomery ladder based on Co-Z operations.

Implementation Method Co-Z
Addition

Co-Z Diagonal
Addition

Co-Z Ladder
Algorithm

Montgomery
Ladder
Algorithm

Sequential
Implementation 555 786 1,334 359,868

Parallel Implementation 439 489 1,001 274,908
Speedup Ratio 1.26 1.60 1.33 1.31

Table 8 compares the time complexity and clock cycles of the Montgomery ladder
algorithm based on Co-Z operations on the SM2, Curve25519, and NIST P-256 curves.
Since SM2 and Curve25519 utilize Co-Z coordinates, modular inversion is not required in
scalar multiplication, significantly reducing computational complexity. Curve25519, as an
efficient Montgomery curve, further optimizes performance by supporting operations with
only the X coordinate. Additionally, the mathematical properties and precomputation re-
quirements of each curve influence performance. SM2, based on the short Weierstrass form,
requires additional coefficient calculations and affine transformations, while Curve25519,
adopting the Montgomery form, simplifies computational complexity. Overall, Curve25519
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demonstrates the best performance, while SM2 on this processor also performs within
the expected range; in contrast, NIST P-256, without Co-Z optimization, shows higher
clock cycle requirements. (In this context, “C“ represents a single multiplication by a curve
constant, which is typically much faster than a standard modular multiplication.)

Table 8. Comparison of time complexity and clock cycles for AVX2 implementation of Montgomery
ladder based on Co-Z operations and other fixed-point multiplication algorithms.

Implementation
Method Time Complexity per Bit Additional Time

Complexity Clock Cycles

SM2 (This Work) 4M̈ + 3S̈ + 13Ä I + 8M + 7S + 12A 274,908 (CL)
Curve25519 3M̈ + 2S̈ + 1C̈ + 4Ä I + 1M 156,500 (H)
NIST P-256 n/a n/a 312,000 (H)

5.3. Performance of Digital Signature Algorithm Implementations

In this section, we conduct comparative testing on the SM2 signature algorithm based
on OpenSSL 1.1.1, ECDSA (secp256k1), work [30], work [31], and our implemented SM2
signature algorithm to evaluate the overall performance of the optimized SM2 crypto-
graphic algorithm designed in this study. The time consumed by the hashing process in
these signature algorithms is excluded from the time statistics. To minimize statistical
errors, we performed 10 rounds of tests for each algorithm, with each round comprising
3000 signatures and verifications. In the final statistics, the maximum and minimum values
from each round were discarded, and the average was calculated to obtain the final test
results for 3000 signatures and verifications, as shown in Table 9.

In signature and verification operations, the time consumed by the hashing algorithm
increases as the data size grows. As the number of data to be tested increases, the proportion
of time spent on the hashing process in the overall signature and verification operations
also gradually increases. Consequently, in cases with large data sizes, the total time for
signature and verification is dominated by the hashing time. To eliminate the impact of
SM3 and SHA256 on the test duration, we excluded the hashing process in this section’s
tests. The essence of a digital signature is to use a public-key cryptographic scheme to
encrypt the hash value to obtain a data digest. Therefore, by excluding the hashing process,
the tests effectively measure the encryption of the data digest directly. Furthermore, since
both SM3 and SHA256 produce a fixed output length of 256 bits, the length of the data
digest remains constant, indicating that the test results in this section are independent of
the length of the data to be signed.

Table 9. Time consumption for 3000 signatures without hashing.

Time Consumption (ms) SM2 Our SM2 ECDSA Work [30] Work [31]

Signature 1012.0 705.7 1087.2 802.5 827.9
Verification 1079.2 870.4 1207.3 902.3 944.8

The data from Table 9 allow us to derive a performance comparison chart for signature
and verification, depicted in Figure 1. The horizontal axis indicates the time consumed for
3000 signatures or verifications by each algorithm, measured in milliseconds.

The data in Table 9 and Figure 1 show that our optimized SM2 implementation demon-
strates superior performance in both signing and verification operations compared with
other algorithms and implementations. For 3000 signature operations, our SM2 implementa-
tion requires 705.7 milliseconds, significantly less than the 1012.0 milliseconds for the standard
SM2 and 1087.2 milliseconds for ECDSA, highlighting its higher signing efficiency. Similarly,
for verification, our SM2 implementation achieves a time of 870.4 milliseconds, which is faster
than both the standard SM2 at 1079.2 milliseconds and ECDSA at 1207.3 milliseconds. Com-
pared with other works (work [30] and work [31]), our implementation consistently shows
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lower time consumption for both signing and verification. This improvement is particularly
noticeable because the SM2 signing algorithm involves more point doubling operations on
the base point “G” than the verification algorithm. By precomputing the base point “G”,
we achieve a more significant speedup in this aspect, resulting in a noticeable difference in
the time required for signing and verification.

Figure 1. Performance comparison of SM2 digital signature implementations.

5.4. Performance of SM2 Data Encryption Algorithm Implementation

This section presents performance overhead tests for our implemented SM2 data
encryption algorithm. We tested encryption on data sizes of 32 B, 64 B, 128 B, 256 B, 512 B,
1 KB, 2 KB, 4 KB, 8 KB, 16 KB, 32 KB, 64 KB, 128 KB, and 256 KB. For each data size,
randomly generated data were used to eliminate potential biases.

The performance testing followed these steps: (1) randomly generate the test data;
(2) encrypt and decrypt each group of test data 300 times, repeating this process 10 times;
and (3) exclude the maximum and minimum values from each group’s results and calculate
the average to obtain the final test result for that data size.

For comparative purposes, we selected ECIES (secp256k1) as a reference algorithm in
addition to our implemented SM2 data encryption algorithm. The SM3 algorithm was used
as the hash function within the SM2 algorithm. The organized test results are presented in
Tables 10 and 11.

Table 10. The duration of 300 encryption processes.

Time/ms SM2 use SM3 Our SM2 Use SM3 ECIES secp256k1

32 B 181.0 104.3 249.1
64 B 181.6 104.5 254.4
128 B 183.6 103.9 260.0
256 B 187.3 109.1 267.4
512 B 194.8 116.7 278.6
1 KB 210.3 131.5 295.1
2 KB 239.5 166.8 324.2
4 KB 298.1 207.6 378.6
8 KB 415.4 320.1 483.4
16 KB 647.4 549.2 693.4
32 KB 1113.4 1021.2 1116.2
64 KB 2054.0 1912.6 1976.9
128 KB 3969.7 3847.3 3938.0
256 KB 7784.4 7654.8 7644.2
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Table 11. The duration of 300 decryption processes.

Time/ms SM2 Use SM3 Our SM2 Use SM3 ECIES secp256k1

32 B 97.4 73.2 116.2
64 B 98.3 73.9 124.3
128 B 99.5 74.8 130.8
256 B 100.7 75.7 138.7
512 B 104.9 78.8 145.2
1 KB 113.5 85.3 159.3
2 KB 129.2 97.1 185.2
4 KB 159.8 120.0 206.6
8 KB 222.9 167.3 308.5
16 KB 347.4 260.7 387.2
32 KB 556.6 447.6 541.0
64 KB 994.4 821.0 849.5
128 KB 1704.3 1578.4 1528.0
256 KB 3546.9 3165.3 3061.6

From Figures 2 and 3, it is clear that our implemented SM2 data encryption algorithm
improves encryption and decryption speeds compared with the original implementation.
The time overhead for the signing and verification process is reduced by approximately 20%
compared with the existing OpenSSL implementation, while the time overhead for data
encryption and decryption is reduced by about 25% for smaller data sizes. The proportion
of overhead from the hash function in the data encryption algorithm increases with the size
of the data to be encrypted, and the time consumption of the encryption algorithms using
the same hash function tends to converge as data size increases.

Figure 2. The duration of 300 encryption processes.
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Figure 3. The duration of 300 decryption processes.

6. Discussion

Although our work has achieved significant improvements in the computational
efficiency of the SM2 algorithm, several limitations remain.

First, while the proposed optimizations effectively reduce execution time, additional
factors, such as power consumption and memory requirements, also influence the adoption
of the algorithm in real-world IoT devices. Experimental results show that memory usage
remains largely unchanged, as the reduction in computational redundancy is counter-
balanced by the increased demand from SIMD parallel instruction sets. However, the
parallelism achieved through SIMD instructions may lead to higher power consumption
during cryptographic operations, which is a critical concern for resource-constrained IoT
environments. Balancing execution speed, power consumption, and memory usage will be
a focus of future research. For example, exploring low-power architectures and optimizing
instruction-level parallelism could mitigate the increased energy demands, while adaptive
strategies that adjust computational methods dynamically based on device contexts may
further enhance practical applicability.

Second, although resilience to side-channel attacks is a critical consideration for cryp-
tographic algorithms, especially in IoT devices, this study primarily focuses on optimiz-
ing computational efficiency through software-level improvements. Techniques such as
constant-time algorithms, scalar randomization, and secure memory access are commonly
used to address side-channel vulnerabilities [31–34]. However, integrating such counter-
measures typically involves trade-offs between security and performance, which were
beyond the scope of this work. Future studies will explore software-based strategies to
enhance side-channel attack resistance, such as algorithmic masking and timing attack
mitigations, aiming to improve the security of the optimized SM2 algorithm without
significantly compromising its performance gains.

In the future, we aim to investigate solutions that simultaneously address the above
limitations. By integrating power-efficient optimizations and side-channel countermea-
sures, the proposed algorithm can be further refined to meet the stringent requirements of
IoT applications, ensuring both high performance and robust security.

7. Conclusions

With the ongoing increase in computational power, traditional ECC algorithms are
encountering performance bottlenecks. To address these issues, we optimized elliptic
curve group computation by introducing a cross Montgomery modular multiplication
algorithm based on polynomial expansion and leveraging SIMD technology to accelerate



Electronics 2024, 13, 4661 18 of 19

the Montgomery ladder algorithm using Co-Z operations. This approach enhances ECC
performance and bolsters information security. By segmenting large integer operations
into polynomials, we perform modular multiplication and reduction simultaneously, re-
ducing storage demands and streamlining the Montgomery multiplication process. The
incorporation of SIMD technology enables parallel processing, significantly boosting com-
putational efficiency through optimized instruction scheduling and loop unrolling, which
minimizes control overhead and enhances micro-level execution. Our results show that the
optimized SM2 digital signature algorithm reduces computation time by approximately
20%, while the SM2 data encryption algorithm achieves a 25% performance improvement
in encryption and decryption times for smaller data sizes. These optimizations advance
ECC performance and provide strong support for information security.
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