Concurrent Effects between Geomagnetic Storms and Magnetospheric Substorms
Abstract
:1. Introduction
2. Data
3. Methods
3.1. Time Delay Embedding
3.2. Dynamical System Metrics for Univariate Time Series
3.3. Dynamical System Metrics for Bivariate Time Series
4. Results
4.1. Instantaneous Dimensions
4.2. Instantaneous Stability
4.3. Differences between Quiet and Storm Time Conditions
- 1.
- Group I: nT;
- 2.
- Group II: nT;
- 3.
- Group III: nT.
4.4. Case Study: The Bastille Day Geomagnetic Storm
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CME | Coronal Mass Ejection |
GNSS | Global Navigation Satellite Systems |
HF | High Frequency |
SEP | Solar Energetic proton |
SMI | Solar wind-magnetosphere–ionosphere |
SSC | Sudden Storm Commencement |
References
- Akasofu, S.I. A Review of Studies of Geomagnetic Storms and Auroral/Magnetospheric Substorms based on the Electric Current Approach. Front. Astron. Space Sci. 2021, 7, 100. [Google Scholar] [CrossRef]
- Borovsky, J.E. Perspective: Is Our Understanding of Solar-Wind/Magnetosphere Coupling Satisfactory? Front. Astron. Space Sci. 2021, 8, 5. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Sugiura, M.; Iyemori, T.; Goldstein, B.E.; Gonzalez, W.D.; Akasofu, S.I.; Smith, E.J. The nonlinear response of AE to the IMF BS driver: A spectral break at 5 h. Geophys. Res. Lett. 1990, 17, 279–282. [Google Scholar] [CrossRef] [Green Version]
- Vassiliadis, D.V.; Sharma, A.S.; Eastman, T.E.; Papadopoulos, K. Low-dimensional chaos in magnetospheric activity from AE time series. Geophys. Res. Lett. 1990, 17, 1841–1844. [Google Scholar] [CrossRef] [Green Version]
- Klimas, A.J.; Vassiliadis, D.; Baker, D.N.; Roberts, D.A. The organized nonlinear dynamics of the magnetosphere. J. Geophys. Res. 1996, 101, 13089–13114. [Google Scholar] [CrossRef]
- Consolini, G. Chapter 7—Emergence of Dynamical Complexity in the Earth’s Magnetosphere. In Machine Learning Techniques for Space Weather; Camporeale, E., Wing, S., Johnson, J.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 177–202. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Hajra, R.; Echer, E.; Gjerloev, J.W. Extremely intense (SML ≤-2500 nT) substorms: Isolated events that are externally triggered? Ann. Geophys. 2015, 33, 519–524. [Google Scholar] [CrossRef] [Green Version]
- Tozzi, R.; De Michelis, P.; Coco, I.; Giannattasio, F. A Preliminary Risk Assessment of Geomagnetically Induced Currents over the Italian Territory. Space Weather 2019, 17, 46–58. [Google Scholar] [CrossRef] [Green Version]
- Bothmer, V.; Daglis, I.A. Space Weather—Physics and Effects; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar] [CrossRef] [Green Version]
- Temmer, M. Space weather: The solar perspective. Living Rev. Sol. Phys. 2021, 18, 4. [Google Scholar] [CrossRef]
- Foullon, C.; Malandraki, O. SpaceWeather of the Heliosphere: Processes and Forecasts. In IAU Symposium Proceedings; Cambridge University Press: Cambridge, UK, 2018; Volume 335. [Google Scholar] [CrossRef] [Green Version]
- Chandorkar, M.; Camporeale, E. Chapter 9—Probabilistic Forecasting of Geomagnetic Indices Using Gaussian Process Models. In Machine Learning Techniques for Space Weather; Camporeale, E., Wing, S., Johnson, J.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 237–258. [Google Scholar] [CrossRef]
- Alberti, T.; Consolini, G.; Lepreti, F.; Laurenza, M.; Vecchio, A.; Carbone, V. Timescale separation in the solar wind-magnetosphere coupling during St. Patrick’s Day storms in 2013 and 2015. J. Geophys. Res. (Space Phys.) 2017, 122, 4266–4283. [Google Scholar] [CrossRef]
- Manshour, P.; Balasis, G.; Consolini, G.; Papadimitriou, C.; Paluš, M. Causality and Information Transfer Between the Solar Wind and the Magnetosphere–Ionosphere System. Entropy 2021, 23, 390. [Google Scholar] [CrossRef]
- Consolini, G.; Alberti, T.; De Michelis, P. On the Forecast Horizon of Magnetospheric Dynamics: A Scale-to-Scale Approach. J. Geophys. Res. (Space Phys.) 2018, 123, 9065–9077. [Google Scholar] [CrossRef]
- Kamide, Y.; Baumjohann, W.; Daglis, I.A.; Gonzalez, W.D.; Grande, M.; Joselyn, J.A.; McPherron, R.L.; Phillips, J.L.; Reeves, E.G.D.; Rostoker, G.; et al. Current understanding of magnetic storms: Storm-substorm relationships. J. Geophys. Res. 1998, 103, 17705–17728. [Google Scholar] [CrossRef]
- De Michelis, P.; Consolini, G.; Materassi, M.; Tozzi, R. An information theory approach to the storm-substorm relationship. J. Geophys. Res. (Space Phys.) 2011, 116, A08225. [Google Scholar] [CrossRef]
- Akasofu, S.I. Polar and Magnetosphere Substorms; Springer: Dordrecht, Germany, 1968; Volume 11. [Google Scholar] [CrossRef]
- Daglis, L.A.; Livi, S.; Sarris, E.T.; Wilken, B. Energy density of ionospheric and solar wind origin ions in the near-Earth magnetotail during substorms. J. Geophys. Res. 1994, 99, 5691–5704. [Google Scholar] [CrossRef]
- Akasofu, S.I. Auroral Substorms: Search for Processes Causing the Expansion Phase in Terms of the Electric Current Approach. Space Sci. Rev. 2017, 212, 341–381. [Google Scholar] [CrossRef] [Green Version]
- Stumpo, M.; Consolini, G.; Alberti, T.; Quattrociocchi, V. Measuring Information Coupling between the Solar Wind and the Magnetosphere-Ionosphere System. Entropy 2020, 22, 276. [Google Scholar] [CrossRef] [Green Version]
- McPherron, R.L.; Baker, D.N.; Bargatze, L.F.; Clauer, C.R.; Holzer, R.E. IMF control of geomagnetic activity. Adv. Space Res. 1988, 8, 71–86. [Google Scholar] [CrossRef]
- Kamide, Y. Is Substorm Occurrence a Necessary Condition for a Magnetic Storm? J. Geomagn. Geoelectr. 1992, 44, 109–117. [Google Scholar] [CrossRef]
- Kamide, Y.; Kokubun, S. Two-component auroral electrojet: Importance for substorm studies. J. Geophys. Res. 1996, 101, 13027–13046. [Google Scholar] [CrossRef]
- Lui, A.T.Y. Dipolarization front and current disruption. Geophys. Res. Lett. 2016, 43, 10050–10058. [Google Scholar] [CrossRef]
- Davis, T.N.; Sugiura, M. Auroral electrojet activity index AE and its universal time variations. J. Geophys. Res. 1966, 71, 785–801. [Google Scholar] [CrossRef] [Green Version]
- Iyemori, T. Storm-time magnetospheric currents inferred from mid-latitude geomagnetic field variations. J. Geomagn. Geoelectr. 1990, 42, 1249–1265. [Google Scholar] [CrossRef]
- Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980; Springer: Berlin/Heidelberg, Germany, 1981; Volume 898, p. 366. [Google Scholar] [CrossRef]
- Mañé, R. On the dimension of the compact invariant sets of certain non-linear maps. In Dynamical Systems and Turbulence, Warwick 1980; Springer: Berlin/Heidelberg, Germany, 1981; Volume 898, p. 230. [Google Scholar] [CrossRef]
- Packard, N.H.; Crutchfield, J.P.; Farmer, J.D.; Shaw, R.S. Geometry from a Time Series. Phys. Rev. Lett. 1980, 45, 712–716. [Google Scholar] [CrossRef]
- Sauer, T.; Yorke, J.A.; Casdagli, M. Embedology. J. Stat. Phys. 1991, 65, 579–616. [Google Scholar] [CrossRef]
- Fraser, A.M.; Swinney, H.L. Independent coordinates for strange attractors from mutual information. Phys. Rev. A 1986, 33, 1134–1140. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; Chapman and Hall: London, UK, 1986. [Google Scholar]
- Epanechnikov, V.A. Non-Parametric Estimation of a Multivariate Probability Density. Theory Probab. Its Appl. 1969, 14, 153–158. [Google Scholar] [CrossRef]
- Donner, R.V.; Stolbova, V.; Balasis, G.; Donges, J.F.; Georgiou, M.; Potirakis, S.M.; Kurths, J. Temporal organization of magnetospheric fluctuations unveiled by recurrence patterns in the Dst index. Chaos 2018, 28, 085716. [Google Scholar] [CrossRef]
- Alberti, T.; Lekscha, J.; Consolini, G.; De Michelis, P.; Donner, R.V. Disentangling nonlinear geomagnetic variability during magnetic storms and quiescence by timescale dependent recurrence properties. J. Space Weather Space Clim. 2020, 10, 25. [Google Scholar] [CrossRef]
- Kennel, M.B.; Brown, R.; Abarbanel, H.D.I. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 1992, 45, 3403–3411. [Google Scholar] [CrossRef] [Green Version]
- Kennel, M.B.; Buhl, M. Estimating Good Discrete Partitions from Observed Data: Symbolic False Nearest Neighbors. Phys. Rev. Lett. 2003, 91, 084102. [Google Scholar] [CrossRef] [Green Version]
- Faranda, D.; Messori, G.; Yiou, P. Dynamical proxies of North Atlantic predictability and extremes. Sci. Rep. 2017, 7, 41278. [Google Scholar] [CrossRef]
- Faranda, D.; Messori, G.; Alvarez-Castro, M.C.; Yiou, P. Dynamical properties and extremes of Northern Hemisphere climate fields over the past 60 years. Nonlinear Process. Geophys. 2017, 24, 713–725. [Google Scholar] [CrossRef] [Green Version]
- Moreira Freitas, A.C.; Milhazes Freitas, J.; Todd, M. Extremal Index, Hitting Time Statistics and periodicity. arXiv 2010, arXiv:1008.1350. [Google Scholar]
- Lucarini, V.; Faranda, D.; Wouters, J.; Kuna, T. Towards a General Theory of Extremes for Observables of Chaotic Dynamical Systems. J. Stat. Phys. 2014, 154, 723–750. [Google Scholar] [CrossRef]
- Faranda, D.; Messori, G.; Yiou, P. Diagnosing concurrent drivers of weather extremes: Application to warm and cold days in North America. Clim. Dyn. 2020, 54, 2187–2201. [Google Scholar] [CrossRef]
- Abadi, M.; Moreira Freitas, A.C.; Milhazes Freitas, J. Dynamical counterexamples regarding the Extremal Index and the mean of the limiting cluster size distribution. arXiv 2018, arXiv:1808.02970. [Google Scholar] [CrossRef]
- Alberti, T.; Consolini, G.; De Michelis, P. Complexity measures of geomagnetic indices in the last two solar cycles. J. Atmos. Sol.-Terr. Phys. 2021, 217, 105583. [Google Scholar] [CrossRef]
- Faranda, D.; Vaienti, S. Correlation dimension and phase space contraction via extreme value theory. Chaos 2018, 28, 041103. [Google Scholar] [CrossRef] [Green Version]
- Parks, G.K. Physics of Space Plasmas: An Introduction; Addison-Wesley: Redwood City, CA, USA, 1991. [Google Scholar]
- Parks, G.K.; Lee, E.; Fu, S.Y.; Fillingim, M.; Dandouras, I.; Cui, Y.B.; Hong, J.; Rème, H. Outflow of low-energy O+ ion beams observed during periods without substorms. Ann. Geophys. 2015, 33, 333–344. [Google Scholar] [CrossRef] [Green Version]
- Wanliss, J. Fractal properties of SYM-H during quiet and active times. J. Geophys. Res. (Space Phys.) 2005, 110, A03202. [Google Scholar] [CrossRef]
- Balasis, G.; Daglis, I.A.; Kapiris, P.; Mandea, M.; Vassiliadis, D.; Eftaxias, K. From pre-storm activity to magnetic storms: A transition described in terms of fractal dynamics. Ann. Geophys. 2006, 24, 3557–3567. [Google Scholar] [CrossRef] [Green Version]
- Balasis, G.; Daglis, I.A.; Papadimitriou, C.; Kalimeri, M.; Anastasiadis, A.; Eftaxias, K. Dynamical complexity in Dst time series using non-extensive Tsallis entropy. Geophys. Res. Lett. 2008, 35, L14102. [Google Scholar] [CrossRef] [Green Version]
- De Michelis, P.; Consolini, G. On the local Hurst exponent of geomagnetic field fluctuations: Spatial distribution for different geomagnetic activity levels. J. Geophys. Res. (Space Phys.) 2015, 120, 2691–2701. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alberti, T.; Faranda, D.; Consolini, G.; De Michelis, P.; Donner, R.V.; Carbone, V. Concurrent Effects between Geomagnetic Storms and Magnetospheric Substorms. Universe 2022, 8, 226. https://doi.org/10.3390/universe8040226
Alberti T, Faranda D, Consolini G, De Michelis P, Donner RV, Carbone V. Concurrent Effects between Geomagnetic Storms and Magnetospheric Substorms. Universe. 2022; 8(4):226. https://doi.org/10.3390/universe8040226
Chicago/Turabian StyleAlberti, Tommaso, Davide Faranda, Giuseppe Consolini, Paola De Michelis, Reik V. Donner, and Vincenzo Carbone. 2022. "Concurrent Effects between Geomagnetic Storms and Magnetospheric Substorms" Universe 8, no. 4: 226. https://doi.org/10.3390/universe8040226
APA StyleAlberti, T., Faranda, D., Consolini, G., De Michelis, P., Donner, R. V., & Carbone, V. (2022). Concurrent Effects between Geomagnetic Storms and Magnetospheric Substorms. Universe, 8(4), 226. https://doi.org/10.3390/universe8040226