An Improved ANN-Based Label Placement Method Considering Surrounding Features for Schematic Metro Maps
Abstract
:1. Introduction
2. Analysis and Modeling of Labeling Natural Intelligence
2.1. Analysis of Labeling Natural Intelligence
2.1.1. Place Labels without Overlaps
2.1.2. Place Labels without Ambiguity
2.1.3. Place Labels from the Same Passing Line on the Same Side
2.1.4. Place Labels in the Most Preferred Position
2.2. Modeling of Labeling Natural Intelligence
2.2.1. Modeling of Overlaps
2.2.2. Modeling of Ambiguity
2.2.3. Modeling of Passing Line Direction
3. ANN-Based Label Placement Method with Natural Intelligence
3.1. Construction of the ANN Labeling Model
3.2. Training and Testing the ANN Labeling Model
4. Experimental Evaluation
4.1. Experimental Data
4.2. Experimental Evaluation Method
4.3. Experimental Results
5. Discussion
5.1. Impact Analysis of Different Characteristics and Settings
5.2. Reduce Overlapping Labels Using an Optimization Algorithm
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nollenburg, M.; Wolff, A. Drawing and labeling high-quality metro maps by mixed-integer programming. IEEE Trans. Vis. Comput. Graph. 2011, 17, 626–641. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.J.; Gray, H.; Lesnik, J. Preference versus performance: Investigating the dissociation between objective measures and subjective ratings of usability for schematic metro maps and intuitive theories of design. Int. J. Hum. Comput. Stud. 2017, 98, 109–128. [Google Scholar] [CrossRef]
- Morrison, A. Public transport maps in western European cities. Cartogr. J. 1996, 33, 93–110. [Google Scholar] [CrossRef]
- Hong, S.-H.; Merrick, D.; do Nascimento, H.A.D. The metro map layout problem. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; pp. 482–491. [Google Scholar]
- Nöllenburg, M. A survey on automated metro map layout methods. In Proceedings of the 1st Schematic Mapping Workshop, Essex, UK, 2–3 April 2014. [Google Scholar]
- Lan, T.; Li, Z.L.; Peng, Q.; Gong, X.Y. Automated labeling of schematic maps by optimization with knowledge acquired from existing maps. Trans. GIS 2020, 24, 1722–1739. [Google Scholar] [CrossRef]
- Lan, T.; Li, Z.L.; Wang, J.C.; Gong, C.Y.; Ti, P. An ANNs-based method for automated labelling of schematic metro maps. ISPRS Int. J. Geo-Inf. 2022, 11, 36. [Google Scholar] [CrossRef]
- Avelar, S.; Hurni, L. On the design of schematic transport maps. Cartogr. Int. J. Geogr. Inf. Geovis. 2006, 41, 217–228. [Google Scholar] [CrossRef]
- Stott, J.M.; Rodgers, P. Metro map layout using multicriteria optimization. In Proceedings of the Eighth International Conference on Information Visualisation, London, UK, 16 July 2004; pp. 355–362. [Google Scholar]
- Avelar, S. Convergence analysis and quality criteria for an iterative schematization of networks. GeoInformatica 2007, 11, 497–513. [Google Scholar] [CrossRef]
- Stott, J.; Rodgers, P.; Martínez-Ovando, J.C.; Walker, S.G. Automatic metro map layout using multicriteria optimization. IEEE Trans. Vis. Comput. Graph. 2011, 17, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.S.; Chi, M.T. Focus+context metro maps. IEEE Trans. Vis. Comput. Graph. 2011, 17, 2528–2535. [Google Scholar] [CrossRef]
- Roberts, M.J.; Newton, E.J.; Lagattolla, F.D.; Hughes, S.; Hasler, M.C. Objective versus subjective measures of Paris Metro map usability: Investigating traditional octolinear versus all-curves schematics. Int. J. Hum.-Comput. Stud. 2013, 71, 363–386. [Google Scholar] [CrossRef]
- Mark Ware, J.; Taylor, G.E.; Anand, S.; Thomas, N. Automated production of schematic maps for mobile applications. Trans. GIS 2006, 10, 25–42. [Google Scholar] [CrossRef]
- Li, Z.L.; Dong, W.H. A stroke-based method for automated generation of schematic network maps. Int. J. Geogr. Inf. Sci. 2010, 24, 1631–1647. [Google Scholar] [CrossRef]
- Ware, M.; Richards, N. An ant colony system algorithm for automatically schematizing transport network data sets. In Proceedings of the IEEE Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; pp. 1892–1900. [Google Scholar]
- Ti, P.; Li, Z.L. Generation of schematic network maps with automated detection and enlargement of congested areas. Int. J. Geogr. Inf. Sci. 2014, 28, 521–540. [Google Scholar] [CrossRef]
- Lan, T.; Li, Z.L.; Ti, P. Integrating general principles into mixed-integer programming to optimize schematic network maps. Int. J. Geogr. Inf. Sci. 2019, 33, 2305–2333. [Google Scholar] [CrossRef]
- Schwetman, J.D. Harry Beck’s London Underground map: A convex lens for the global city. Transfers 2014, 4, 86–103. [Google Scholar] [CrossRef]
- Imhof, E. Positioning names on maps. Am. Cartogr. 1975, 2, 128–144. [Google Scholar] [CrossRef]
- Yoeli, P. The logic of automated map lettering. Cartogr. J. 1972, 9, 99–108. [Google Scholar] [CrossRef]
- Christensen, J.; Marks, J.; Shieber, S. An empirical study of algorithms for point-feature label placement. ACM Trans. Graph. 1995, 14, 203–232. [Google Scholar] [CrossRef]
- Oucheikh, R.; Harrie, L. A feasibility study of applying generative deep learning models for map labeling. Cartogr. Geogr. Inf. Sci. 2024, 51, 168–191. [Google Scholar] [CrossRef]
- Wu, H.-Y.; Niedermann, B.; Takahashi, S.; Roberts, M.J.; Nöllenburg, M. A survey on transit map layout—From design, machine, and human perspectives. Comput. Graph. Forum 2020, 39, 619–646. [Google Scholar] [CrossRef]
- Ribeiro, J.T.; Rijo, R.; Leal, A. Fast automatic schematics for public transport spider maps. Procedia Technol. 2012, 5, 659–669. [Google Scholar] [CrossRef]
- Oke, O.; Siddiqui, S. Efficient automated schematic map drawing using multiobjective mixed integer programming. Comput. Oper. Res. 2015, 61, 1–17. [Google Scholar] [CrossRef]
- Wolff, A. Drawing subway maps: A survey. Inform. Forsch. Und Entwickl. 2007, 22, 23–44. [Google Scholar] [CrossRef]
- Niedermann, B.; Haunert, J.-H. An algorithmic framework for labeling network maps. Algorithmica 2018, 80, 1493–1533. [Google Scholar] [CrossRef]
- Netzel, R.; Ohlhausen, B.; Kurzhals, K.; Woods, R.; Burch, M.; Weiskopf, D. User performance and reading strategies for metro maps: An eye tracking study. Spat. Cogn. Comput. 2017, 17, 39–64. [Google Scholar] [CrossRef]
- Jacobsen, B.; Wallinger, M.; Kobourov, S.; Nöllenburg, M. MetroSets: Visualizing sets as metro maps. IEEE Trans. Vis. Comput. Graph. 2021, 27, 1257–1267. [Google Scholar] [CrossRef]
- Jiang, Y.N. Prediction of monthly mean daily diffuse solar radiation using artificial neural networks and comparison with other empirical models. Energy Policy 2008, 36, 3833–3837. [Google Scholar] [CrossRef]
- Basheer, I.A.; Hajmeer, M. Artificial neural networks: Fundamentals, computing, design, and application. J. Microbiol. Methods 2000, 43, 3–31. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Ye, L.; Su, Z.Q.; Zhou, L.M.; Cheng, L. Artificial neural network (ANN)-based crack identification in aluminum plates with lamb wave signals. J. Intell. Mater. Syst. Struct. 2009, 20, 39–49. [Google Scholar] [CrossRef]
- Yang, C.C.; Prasher, S.O.; Landry, J.; DiTommaso, A. Application of artificial neural networks in image recognition and classification of crop and weeds. Can. Agric. Eng. 2000, 42, 147–152. [Google Scholar]
- Trentin, E.; Gori, M. A survey of hybrid ANN/HMM models for automatic speech recognition. Neurocomputing 2001, 37, 91–126. [Google Scholar] [CrossRef]
- Rodzin, S.; Bova, V.; Kravchenko, Y.; Rodzina, L. Deep learning techniques for natural language processing. In Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2022; pp. 121–130. [Google Scholar]
- Brintha, N.C.; Nagaraj, P.; Tejasri, A.; Durga, B.V.; Teja, M.T.; Kumar, M.N.V.P. A food recommendation system for predictive diabetic patients using ANN and CNN. In Proceedings of the 7th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 22–24 June 2022; pp. 1364–1371. [Google Scholar]
- Courtial, A.; El Ayedi, A.; Touya, G.; Zhang, X. Exploring the potential of deep learning segmentation for mountain roads generalisation. ISPRS Int. J. Geo-Inf. 2020, 9, 338. [Google Scholar] [CrossRef]
- Touya, G.; Zhang, X.; Lokhat, I. Is deep learning the new agent for map generalization? Int. J. Cartogr. 2019, 5, 142–157. [Google Scholar] [CrossRef]
- Feng, Y.; Thiemann, F.; Sester, M. Learning cartographic building generalization with deep convolutional neural networks. ISPRS Int. J. Geo-Inf. 2019, 8, 258. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, Z.L. Use of artificial neural networks for selective omission in updating road networks. Cartogr. J. 2014, 51, 38–51. [Google Scholar] [CrossRef]
- Henry, C.J.; Storie, C.D.; Palaniappan, M.; Alhassan, V.; Swamy, M.; Aleshinloye, D.; Curtis, A.; Kim, D. Automated LULC map production using deep neural networks. Int. J. Remote Sens. 2019, 40, 4416–4440. [Google Scholar] [CrossRef]
- Kang, Y.H.; Gao, S.; Roth, R.E. Transferring multiscale map styles using generative adversarial networks. Int. J. Cartogr. 2019, 5, 115–141. [Google Scholar] [CrossRef]
- Ishak, S.; Al-Deek, H. Performance of automatic ANN-based incident detection on freeways. J. Transp. Eng. 1999, 125, 281–290. [Google Scholar] [CrossRef]
- Barvir, R.; Vit, V. Graphic Map Load Measuring Tool—Development and verification. Int. J. Cartogr. 2021, 7, 285–303. [Google Scholar] [CrossRef]
Labeling Natural Intelligence | Source |
---|---|
Place labels without overlaps | References [1,4,5,6,7,9,11,12,24,25,26,27,28,29,30] |
Place labels without ambiguity | References [1,6,11,12,24,29,30] |
Place labels from the same passing line on the same side | References [1,5,6,7,11,12,24,26,27,28,30] |
Place labels in the most preferred position | References [1,4,6,7,9,11,12,26,27,28,30] |
Variables Modeling Label–Point Overlap | Variables Modeling Label–Edge Overlap | Variables Modeling Label–Label Overlap | Variables Modeling Ambiguity of Labels | Variables Modeling Direction of Passing Lines | |
---|---|---|---|---|---|
Point 1 | |||||
Point 2 | |||||
Point 3 | |||||
Point N |
Hyperparameters | Initial Values | Explanation |
---|---|---|
Learning rate | 0.005 | Controls the balance between convergence speed and stability |
Batch size | 5 | The number of training examples utilized in one iteration of the training process |
Momentum | 0.9 | Accelerates optimization, smooths gradient updates, and helps overcome noisy gradients and oscillations |
Step size Gamma | 7 0.1 | Affects the change in the learning rate |
Number of epochs | 50 | Determines how many times the network learns from the entire training dataset |
City | Method | ||||
---|---|---|---|---|---|
Nanjing | Our method | 0 | 6 | 33 | 39 |
Benchmark | 9 | 24 | 58 | 91 | |
Suzhou | Our method | 0 | 2 | 39 | 41 |
Benchmark | 1 | 7 | 54 | 62 | |
Singapore | Our method | 0 | 9 | 12 | 21 |
Benchmark | 7 | 28 | 33 | 68 |
City | Method | |
---|---|---|
Nanjing | Our method | 2234.7 |
Benchmark | 1807.3 | |
Suzhou | Our method | 1939.7 |
Benchmark | 1792.6 | |
Singapore | Our method | 3542.1 |
Benchmark | 3111.6 |
City | Method | ||
---|---|---|---|
Nanjing | Our method | 104 | 135 |
Benchmark | 138 | 136 | |
Suzhou | Our method | 89 | 111 |
Benchmark | 120 | 116 | |
Singapore | Our method | 121 | 129 |
Benchmark | 135 | 125 |
City | Method | Number | Proportion |
---|---|---|---|
Nanjing | Our method | 35 | 83.3% |
Benchmark | 7 | 16.7% | |
Suzhou | Our method | 30 | 71.4% |
Benchmark | 12 | 28.6% | |
Singapore | Our method | 31 | 73.8% |
Benchmark | 11 | 26.2% |
Experiment | Explanation | |
---|---|---|
Hidden layers-based | Remove hidden layer 1 () | |
Remove hidden layer 2 () | ||
Remove hidden layer 3 () | ||
Characteristic variables-based | Remove variables of label–point overlap | |
Remove variables of label–edge overlap | ||
Remove variables of label–label overlap | ||
Remove variables of ambiguity of labels | ||
Remove variables of direction of passing lines |
City | Experiment | |||||
---|---|---|---|---|---|---|
Nanjing | 0 | 6 | 32 | 38 | 2178.9 | |
1 | 6 | 37 | 44 | 2207.1 | ||
0 | 7 | 35 | 42 | 2252.9 | ||
Reference | 0 | 6 | 33 | 39 | 2234.7 | |
Suzhou | 0 | 2 | 37 | 39 | 1961.3 | |
0 | 2 | 40 | 42 | 1958.5 | ||
0 | 2 | 41 | 43 | 2001.7 | ||
Reference | 0 | 2 | 39 | 41 | 1939.7 | |
Singapore | 0 | 9 | 14 | 23 | 3531.4 | |
0 | 9 | 14 | 23 | 3474.7 | ||
0 | 8 | 8 | 16 | 3550.7 | ||
Reference | 0 | 9 | 12 | 21 | 3542.1 |
City | Experiment | |||||
---|---|---|---|---|---|---|
Nanjing | 5 | 53 | 39 | 97 | 1973.2 | |
4 | 15 | 40 | 59 | 2131.2 | ||
0 | 6 | 37 | 43 | 2151.2 | ||
0 | 5 | 41 | 46 | 2158.2 | ||
0 | 7 | 33 | 40 | 2207.0 | ||
Reference | 0 | 6 | 33 | 39 | 2234.7 | |
Suzhou | 3 | 16 | 44 | 63 | 1894.3 | |
0 | 4 | 42 | 46 | 1948.0 | ||
0 | 2 | 41 | 43 | 1939.8 | ||
0 | 2 | 39 | 41 | 1927.8 | ||
0 | 2 | 40 | 42 | 1957.3 | ||
Reference | 0 | 2 | 39 | 41 | 1939.7 | |
Singapore | 3 | 76 | 22 | 101 | 2960.0 | |
5 | 23 | 27 | 55 | 3354.9 | ||
0 | 9 | 16 | 25 | 3483.5 | ||
0 | 8 | 10 | 18 | 3516.9 | ||
0 | 8 | 12 | 20 | 3497.8 | ||
Reference | 0 | 9 | 12 | 21 | 3542.1 |
Initial Placement | Overlapping Labels | Number of Iterations |
---|---|---|
Our method | 41 | 18 |
Random method | 105 | 58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Lan, T.; Sun, C.; Cheng, D.; Shi, X.; Chen, M.; Zeng, G. An Improved ANN-Based Label Placement Method Considering Surrounding Features for Schematic Metro Maps. ISPRS Int. J. Geo-Inf. 2024, 13, 294. https://doi.org/10.3390/ijgi13080294
Wu Z, Lan T, Sun C, Cheng D, Shi X, Chen M, Zeng G. An Improved ANN-Based Label Placement Method Considering Surrounding Features for Schematic Metro Maps. ISPRS International Journal of Geo-Information. 2024; 13(8):294. https://doi.org/10.3390/ijgi13080294
Chicago/Turabian StyleWu, Zhiwei, Tian Lan, Chenzhen Sun, Donglin Cheng, Xing Shi, Meisheng Chen, and Guangjun Zeng. 2024. "An Improved ANN-Based Label Placement Method Considering Surrounding Features for Schematic Metro Maps" ISPRS International Journal of Geo-Information 13, no. 8: 294. https://doi.org/10.3390/ijgi13080294