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Abstract: As a fundamental component of trajectory processing and analysis, trajectory map-matching
can be used for urban traffic management and tourism route planning, among other applications.
While there are many trajectory map-matching methods, urban high-sampling-frequency GPS
trajectory data still depend on simple geometric matching methods, which can lead to mismatches
when there are multiple trajectory points near one intersection. Therefore, this study proposed a novel
segmented trajectory matching method in which trajectory points were separated into intersection and
non-intersection trajectory points. Matching rules and processing methods dedicated to intersection
trajectory points were developed, while a classic “Look-Ahead” matching method was applied to
non-intersection trajectory points, thereby implementing map matching of the whole trajectory. Then,
a comparative analysis between the proposed method and two other new related methods was
conducted on trajectories with multiple sampling frequencies. The results indicate that the proposed
method is not only competent for intersection matching with high-frequency trajectory data but also
superior to two other methods in both matching efficiency and accuracy.

Keywords: map matching; GPS trajectory; high sampling frequency; road network

1. Introduction

Due to the popularity of mobile positioning devices, a significant volume of trajectory data with
various types is generated. Furthermore, big data analysis and increasing location-based service
applications have made mobile trajectory processing, analysis, and application a focus area of current
research. Trajectory data acquisition depends on different positioning devices that vary in terms of
accuracy errors, where the trajectories deviate from the original road or points of interest. Therefore,
map matching is required before processing and analyzing trajectory data [1]. Trajectory map-matching
is also required to add semantic information to trajectory data and attach geographic ground information
to trajectories.

In the past few decades, many map matching methods have been proposed. These methods
can be divided into geometric, topological, and advanced methods [1], or they can be divided into
local and global methods [2]. For different application scenarios, there are real-time trajectory map
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matching methods, offline trajectory map matching methods, GPS trajectory map matching methods,
other location trajectory map matching methods, low-sampling trajectory map matching methods,
high-sampling trajectory map matching, urban trajectory map matching methods, and indoor trajectory
map matching methods [3,4]. However, there are few studies on high-frequency sampling trajectories
in urban road networks.

Currently, GPS data are acquired at short intervals, such as 1 or 5 s, in urban areas because of
advancements in GPS technology and big data processing technology development [5]. This short
interval has led to massive high-sampling-frequency trajectory data for vehicles (e.g., buses and taxis)
and pedestrians. Because usually moving objects stop or move at a low speed at road intersections,
there are multiple trajectory points at road intersections. Moreover, because of the matching complexity
of trajectory points at road intersection, there will be a higher likelihood of mismatches. An incorrect
matching example is shown in Figure 1.
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Figure 1. Incorrect matching of intersection trajectory points. Points pi and pi+1 are matched to r2 using 
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Figure 1. Incorrect matching of intersection trajectory points. Points pi and pi+1 are matched to r2 using
other methods. However, pi should be matched to r1, and pi+1 should be matched to r3.

For the high-resolution GPS data, the author proposes a global matching method that first
segments and then merges [6]. This method can balance efficiency and accuracy, but cannot deal with
the matching error of the trajectory points at the road intersection. Wang et al. [7] proposed a method
combining the junction decision domain with the hidden Markov model. While the method improves
the matching accuracy of the trajectory points at the road intersection, the matching efficiency of the
method is low. Therefore, this method is not suitable for high sampling frequency data.

To address the problem of intersection trajectory mapping, this study proposes a segmented
trajectory matching method. Firstly, the trajectory is interrupted at the road intersection position, and
it is divided into a set of intersection trajectory segments (including intersection trajectory points) and
non-intersection trajectory segments (excluding intersection trajectory points). Secondly, dedicated
matching rules and processing methods are proposed for the intersection segment, and the matching
of the non-intersection trajectory segment is done using a classic “Look-Ahead” matching method [8].
Finally, map matching for the entire trajectory is successful.

2. Related Works

Currently, there are two primary map-matching methods: Local matching and global matching.

2.1. Local Matching Methods

Local matching algorithms follow a greedy strategy of sequentially extending the solution from an
already matched portion [9]. The key to such local matching methods is to find a locally optimal point
or segment on a road network. The most commonly used local matching method is the geometry-based
method [10,11], where trajectory matching is made based on constraints such as distance and direction.
It features a favorable matching effect for high-sampling-frequency trajectories (one trajectory point
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or more can be matched on one road), but it has difficulty ensuring a high matching accuracy for
low-sampling-frequency trajectories. To enhance matching accuracy, some new methods have been
developed, such as topology map matching [5,8], spatial-temporal feature-based map matching [2,12],
and weight-based map matching [13–17]. In a study by Brakatsoulas et al. [8], an incremental matching
method has been proposed using the “Look-Ahead” matching strategy. With this method, a topological
relationship between the road matched by the subsequent point and that by the current point is
established to correct the road matched by the current point. Wang et al. [5] propose a Kalman
filter based correcting algorithm to improve the matching accuracy of the traditional topological
algorithm on the complicated road sections, such as intersections and parallel roads. They also use
a parallelized map-matching algorithm to improve the processing efficiency of the map matching.
Lou et al., have proposed a spatio-temporal map-matching algorithm for low-sampling-rate GPS
trajectories [2]. The authors model the temporal analysis with speed and travel time data to improve
its accuracy. Hsueh and Chen have proposed a similar approach—STD-matching—which adds the
real-time direction factor to ST-matching [12].

In recent years, more weight-based map matching methods have been proposed. Hashemi and
Karimi [14] propose a dynamic weight-based map-matching algorithm. Its factors are composed
of distance between the GPS point and road segments, difference between the heading of the GPS
point and direction of road segments, and difference between the direction of consecutive GPS points
and direction of road segments. Its dynamic weights are calculated from positional accuracy, speed,
and traveled distance from previous GPS points. Sharath et al. [15] also establish four influencing
factors of GPS point matching, proximity, kinematic, turn intent prediction, connectivity, and then
develop a new dynamic two-dimensional weight-based map-matching algorithm by incorporating
dynamic weight coefficients and road width to enable the lane-level identification. Hu et al. [16] propose
an information fusion (IF) matching method based on the moving-object-related meta-information,
which includes four fields: Location, speed, direction, and timestamp. This method has a better effect
on handling ambiguous cases. Zhao et al. [17] use the speed, bearing difference, perpendicular distance,
and spatial correlation as the influence factor of GPS point matching. They dynamically estimate the
weight of each factor based on the Dempster–Shafer theory.

Overall, the local methods only consider a few points adjacent to the point to be matched, it runs
fast and performs well when the sampling frequency is very high (e.g., 2–5 s) [2]. However, as the
sampling frequency decreases, its matching accuracy will decrease significantly. While some recent
methods also improve the matching accuracy of low- and medium-frequency data, such methods are
more suitable for high-frequency or medium-frequency data than global methods.

2.2. Global Matching Methods

Comparatively, global matching methods aim to identify a road network similar to the trajectory
based on all trajectory points of the whole trajectory section, and then try to find a trajectory that is as
close as the sampling track among all available trajectories in the road network [9]. The similarities
among multiple line segments are measured using Frechet distance [8,18–20], using long common
subsequence (LCS) [6], or using the likelihood function [21–23] in global matching methods. Yin and
Wolfson [19] plot a network map using the Frechet distance among relative trajectories as the weight
of a road section. Besides, Dijkstra’s shortest path algorithm has been used for the shortest path
calculation to obtain the final matched road. Brakatsoulas et al. [8] propose the concept of average
Frechet distance to identify the overall path using the free space diagram of the relative trajectories
of various road sections. Zhu et al. [6] generated candidate matched paths for the entire trajectory
using a separate trajectory into segments and then got the best-matched path based on the LCS.
Millard-Ball et al. [21] use a three-part quasi-likelihood function, which is composed of geometric
likelihood, topologic likelihood, and temporal likelihood, to get the best match from the candidate set.
Knapen et al. [22] first divide the trace of GPS into chronologically ordered and then find the maximum
likelihood of partial routes based on an acyclic directed graph. Moreover, Rappos et al. [23] have
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proposed a force-directed map matching method, which uses an attractive force model according to
the distance and the angle between the GPS point and the road edge, and the length of the road edge.

Other research is based on the hidden Markov model (HMM) for map matching. Newson and
Krumm [24] propose an HMM map matching for location data with noise and sparseness. Since their
research, many studies have improved on this method. Koller et al. [25] propose fast map matching
(FMM) based on HMM which replaces the Viterbi algorithm with a bidirectional Dijkstra and employs
a lazy evaluation to reduce the number of costly route calculations. Yang et al. [26] also present a fast
map matching, an algorithm integrating hidden Markov model with precomputation. Qi et al. [7] put
forward a junction decision domain model, which is used to improve the map-matching algorithm
based on the HMM. It effectively reduces the error rate of junction matching. In addition, in real-time
matching, the HMM is also used more frequently. A new incremental map-matching algorithm
based on HMM is proposed for real-time matching [27,28]. For inaccurate and sparse location data,
Jagadeesh and Srikanthan [29] offer a novel map-matching solution that combines the widely-used
approach based on the HMM with the concept of drivers’ route choice. Algizawy et al. [30] extend
the typical HMM used in map matching to accommodate for highly sparse mobile phone data by an
adaptive probability.

Generally, the global methods have higher matching accuracy than the local method, especially for
low-sampling-frequency trajectories (e.g., the time interval is higher than 30 s). The reason is that the
global method can find the correct matching road section from a global perspective when there is a loss
of road information between the matching road sections of adjacent trajectory points. However, global
matching methods are more complex and have lower matching efficiency than local matching methods.

Therefore, this paper adopts the local matching strategy to improve the matching efficiency of
high-frequency data and uses the intersection segment matching method to improve the matching
accuracy of intersection matching points to achieve the purpose of matching efficiency and accuracy
for high-sampling trajectory data in urban roads.

3. Intersection Trajectory Segment Matching

3.1. Classification of Intersection Trajectory Point

The intersection trajectory segment is composed of a series of intersection trajectory points. Given
the complexity of trajectories at intersections, it is necessary to classify the spatial relations between the
trajectory and the intersection. To this end, some related concepts need to be defined as follows.

Definition 1. (Road network). This is a network structure made up of road network nodes and edges. A road
network edge starts and ends according to road network nodes. Moreover, one road network node must be the
starting or ending point of a road network.

Definition 2. (Intersection). This refers to a road network node consisting of the spatial location of the node
and the topological relationship between the node and the related road network edges.

Definition 3. (Road section). This is a road network edge strung by intersections and coordinate points
making up this edge.

Definition 4. (Intersection trajectory points). This is a trajectory point set adjacent to the intersection.
Due to errors in trajectory data acquisition, intersection trajectory points in this study are all trajectory points
falling within the circular area centering on the intersection point at a radius of the acquisition error. This is
represented by Equation (1):

P =

{
pi(xi, yi)|

√
(xi − xo)

2 + (yi − yo)
2
≤ ε

}
(1)
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where P is the set of intersection trajectory points; (xi, yi) and (xo, yo) are the coordinates of trajectory point pi
and the intersection node, respectively; and ε is the error radius.

Definition 5. (Intersection trajectory segment). This is a trajectory segment made up of intersection
trajectory points by sequence.

Definition 6. (Inbound point). This is the first point of the intersection trajectory points.

Definition 7. (Outbound point). This is the last point of the intersection trajectory points.

Definition 8. (Inbound road section). This is a matched road section before the trajectory enters the
intersection, and it should be the matched road with the inbound point.

Definition 9. (Outbound road section). This is a matched road section after the trajectory moves from the
intersection, and it should be the matched road with the outbound point.

Figure 2 illustrates examples of the above concepts.
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Figure 2. Examples of related concepts. There are four road sections, rs, re, ri, rj, which are connected
in an intersection o, and they form a road network. ε is the radius of the acquisition error. Trajectory
points from ps to pe are intersection trajectory points, and they are connected as intersection trajectory
segments. ps and pe are inbound and outbound points, respectively. rs is an inbound road section, and
re is an outbound road section.

Next, intersection trajectory point matching is needed. There are three places that intersection
trajectory points should match with: The inbound road section, the outbound road section, and the
intersection. Therefore, relations between intersection trajectory points and the intersection and
intersection-related road sections could be classified as long as the inbound and outbound sections of
the trajectory at the intersection are determined. They are classified into the following four types:

• Type 1 (Inside point). The intersection trajectory point is located within the angle between the
inbound road section and the outbound road section, such as point pk in Figure 2.

• Type 2 (Inbound-road-related point). The intersection trajectory point is located within the angle
between the inbound road section and any other road section, except the outbound section, such
as points ps and pi in Figure 2.

• Type 3 (Outbound-road-related point). The intersection trajectory point is located within the angle
between the outbound road section and any other road section, except the inbound section, such
as point pe in Figure 2.
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• Type 4 (Outside point). The intersection trajectory point is located within the angle between the
other two road sections, except the inbound and outbound sections, such as point pj in Figure 2.

These four types of trajectory points cover the relations between the intersections and road sections
at all trajectory points. Based on the different relationships, the road sections or intersections can
be matched.

3.2. Matching Rules

According to the intersection trajectory point classification described above, there are four types
of relations between trajectory points and the intersection and intersection-related road sections.
Considering that the matched trajectory should be consistent with the inbound and outbound sections,
the positions’ intersection trajectory points are matched with the inbound section, the outbound
section, and the intersection only. Thus, the following matching rules are made targeting the four
abovementioned types:

• Rule I: An inside point is matched using the shortest distance method.
• Rule II: An inbound-road-related point is matched to the inbound road section.
• Rule III: An outbound-road-related point is matched to the outbound road section.
• Rule IV: An outside point is matched to the intersection.

In addition, the inbound point is matched to the inbound road section, and the outbound point
is matched to the outbound road section. However, when there is only one point in the intersection
trajectory points, the point is the inbound point and also the outbound point, so the point should be
matched by the above four matching rules.

As shown in Figure 3, since point p1 is located within the angle between the inbound road section
r1 and any other road section r2, p1 is an inbound-road-related point, and is directly matched to r1.
Since point p2 is located within the angle between the other two road sections r2 and r3, p2 is an
outside point and is matched to the intersection o. Since point p3 is located within the angle between
the inbound road section r1 and the outbound road section r4, point p3 is an inside point and is
matched to r4 by calculating the shortest distance from p3 to r1, and that from p3 to r4. Since point p4 is
located within the angle between the outbound road section r4 and any other road section r3, p4 is an
outbound-road-related point and is directly matched to r4.
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Figure 3. Classification and matching of intersection trajectory points. There are four road sections,
r1, r2, r3, r4, which are connected in an intersection o. r1 is the inbound road sections (rs) and r4 is
outbound road sections (re). {p1, p2, p3, p4} are the intersection trajectory points. p1 and p4 are the
inbound point (ps) and outbound point (pe), respectively.
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3.3. Abnormity Adjustment

Errors, however, could occur during trajectory point acquisition. In particular, when the trajectory
point stopped or moved at a low speed at the intersection, the incurred error would cause the matched
result to show returns on the trajectory along the road network. For example, the inbound section
falls behind the intersection, and the outbound section or the intersection falls behind the outbound
section after trajectory matching. There is only one correctly matched trajectory sequence: Inbound
road section, intersection, outbound road section.

Figure 4 shows an abnormity example of intersection trajectory point matching.
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Figure 4. Intersection trajectory point matching abnormity. Points p1, p2, p3, and p4 are matched to
r1(rs), o, r1(rs), and r4(re), respectively. Thus, the matched trajectory sequence is (rs, o, rs, re), which
suggests that the trajectory is retraced in road section rs. Since this is an incorrect retrace, it is necessary
to transform such disorder into an orderly sequence.

It can be seen from rules II–IV that the trajectory points that match to the inbound and outbound
sections can be adjusted to the intersection; such adjustment does not apply to those matched to the
intersection. According to rule I, the trajectory points that match to the inbound section can be adjusted
to the intersection and the outbound section, and those that match to the outbound section can be
adjusted to the intersection and the inbound section.

A more reasonable result can be reached through adjustment, but this is complicated since it is
necessary to determine not only the rule where the matched trajectory point is generated but also
how to adjust. Therefore, a simplification is made in the proposed method by specifying that the
adjustment is made only from the inbound section to the intersection or from the outbound section to
the intersection. This is how rule V for abnormity adjustment is made.

• Rule V: The road segments matched by intersection trajectory points strictly follow the “inbound
road section–intersection–outbound road section” sequence.

Rule V can be done by the following method. Suppose that the inbound road section is rs, the outbound
road section is re, the intersection is o, and the matched road segments are {ri|1 ≤ i ≤ n, ri ∈ {rs, re, o}},
each element in the set {ri} should be handled from position 1 to n − 1 by the following four situations:

1. IF ri = re AND ri+1 = o, THEN ri = o.
2. IF ri = re AND ri+1 = rs, THEN ri = o, ri+1 = o.
3. IF ri = o AND ri+1 = rs, THEN ri+1 = o.
4. No adjustment is made in any other situation.
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For example, there is an intersection trajectory segment containing nine points, expressed as (p1, p2,
p3, p4, p5, p6, p7, p8, p9). Suppose that, according to match rules I–IV, the sequence of the matched road
section is (rs, rs, o, o, re, o, rs, re, re). Then, in the sequence, there are two abnormities (re, o) and (o, rs)
because o must be before re and rs must be before o. Therefore, according to rule V, (re, o) is adjusted to
(o, o), and (o, rs) is adjusted to (o, o). Therefore, the entire adjusted road section sequence is (rs, rs, o, o, o,
o, o, re, re).

3.4. Intersection Trajectory Segment Matching Algorithm

The intersection trajectory segment matching is shown in Algorithm 1. It outlines the framework
of the intersection trajectory segment matching (InterectTrajMatch) algorithm. Firstly, the algorithm
computes the candidate distance sets dlist between each intersection trajectory point on P and
intersection-related road sections R. Secondly, the algorithm sorts intersection-related road sections
R by distance value on dlist and then gets the two road sections with the shortest distance. Thirdly,
the algorithm finds matched road sections using rules I–IV and adds it to candidate matched road
section sets rmlist. Finally, after getting the candidate matching road sections of all trajectory points,
the algorithm adjusts matched road sections by rule V and returns RM as a result.

Algorithm 1 The intersection trajectory segment matching algorithm (InterectTrajMatch)

Input: Intersection trajectory points P = {pi|i = 1, . . . , n}, inbound road section rs, outbound road section re,
intersection point o, intersection-related Road Sections R = {ri|i = 1, . . . , m}
Output: The matched road section sequence RM = {rmi|i = 1, . . . , n}
1: Initialize dlist as an empty list; //dlist is a list of candidate distances
2: Initialize rmlist as an empty list; //rmlist is a list of candidate matched road sections
3: for i = 1 to n do //Traversing P
4: for j = 1 to m do //Traversing R
5: d = Distance(pi, rj);
6: dlist.add(d);
7: end for
8: R.sort(dlist); //sort R by distance value on dlist
9: GetShortestTwoSections(R, ref r1, ref r2); //get two road sections with the shortest distance
10: rm = MatchbyRule1234(r1, r2, re, rs, o); //find matched road section by rule I, II, III, IV
11: rmlist.add(rm);
12: end for
13: RM = AdjustbyRule5(rmlist); //adjust match road section by rule V.
14: return RM;

3.5. Matching of Inbound Road Section and Outbound Road Section

It is crucial to match the correct inbound and outbound road section. This affects the correct
execution of Algorithm 1. As defined in Definitions 8 and 9, the inbound road section is matched
before the trajectory enters the intersection, which is usually matched with the inbound point, and the
outbound road section is matched after the trajectory moves from the intersection, which is usually
matched with the outbound point. However, since the inbound point is very close to its next point,
the road matching of the inbound point is often wrong according to the “Look Ahead” method,
as shown in Figure 1. Therefore, the inbound road section is defined as the road that matches with
the previous point of the inbound point. Obviously, this requires that the matching road of the entry
point is the same as the matching road of its previous point. This is achievable at high-frequency
sampling, but in the case of medium-frequency or low-frequency sampling and some exceptional cases
the distance between the inbound point and its previous point is great, so the matching road of the
inbound point and its previous point are not the same road section, as shown in Figure 5.

As shown in Figure 5a, points ps to pe are in the ε-neighborhood of the intersection o, the matching
road section at the previous point of the inbound point ps-1 is rs’, and the adjacent intersection of
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rs’ is o’. Therefore, it is necessary to judge whether the point ps and its subsequent points are in the
ε-neighborhood of o’ instead of o. When ps is not in the ε-neighborhood of o’, the inbound point ps

in Figure 5a is not an intersection point. As shown in Figure 5b, the inbound point ps in Figure 5a is
converted to ps-1, and the intersection trajectory point is the new ps to pe. Moreover, due to the adjacent
relationship between rs’ and rs, the matching road section of ps-1 is still rs instead of ri, according to the
“Look Ahead” method.
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inbound point and its previous point in actual processing.

3.6. Error Radius ε

Error radius ε includes trajectory point positioning error and road data error. This error radius is
represented by Equation (2):

ε = εl + εr (2)

where εl is positioning error, which is determined by the positioning technique; εr is road data error,
which is mainly caused by the difference between the actual road width and the road line data, and its
calculation is as shown in Equation (3) [7]:

εr = 0.5×
w

sinα2
(3)

where w is the width of road, α is the angle between two intersecting roads. In order to simplify the
calculation, the angle is generally considered to be 90 degrees.

Error radius ε influences the efficiency and accuracy of the intersection matching method. Due
to errors in positioning data and the road network, the trajectory point within the intersection is
excluded if ε is too small, which might result in a mismatch. Otherwise, the trajectory point beyond
the intersection will be included, which will lead to lower matching efficiency and a new mismatch
(i.e., when the road this trajectory point matched is one of the adjoining roads of the intersection).

4. Segmented Trajectory Matching Method

A segmented trajectory matching strategy is used for the map matching of the whole trajectory.
First, the trajectory is divided into the intersection trajectory segment and the non-intersection trajectory
segment based on ε. The proposed intersection trajectory segment matching method is applied to
the intersection trajectory segment, and the “Look-Ahead” method is applied to the non-intersection
trajectory segment. The algorithm of the proposed method is shown in Algorithm 2.

Algorithm 2 outlines the framework of the segmented trajectory matching algorithm. Firstly,
it finds matching road sections of the first point of trajectory by the shortest distance method from
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all roads and adds it to the matched road section sequence RM. Secondly, it calculates the distance
between each trajectory point and current intersection point oc. If the distance is less than the radius ε,
it will be added to candidate intersection trajectory points plist until the distance of the next point is
greater than ε. If the set plist is not empty, the algorithm matches each point on plist to a road section
using Algorithm 1 and adds them to the RM; otherwise, it matches the current point by the “Look
Ahead” method and adds it to the RM. Finally, the algorithm returns RM as a result.

In the algorithm, the inbound point (rs) and the outbound point (re) are matched using the
“Look Ahead” method, so the correctness of their matching depends on the “Look Ahead” method.
Since the method is more suitable for high-frequency data, when the data sampling frequency is low,
the matching accuracy will be significantly affected. Therefore, the algorithm is suitable for processing
high and medium frequency trajectory data, which means that there is at least one trajectory point on
each road. However, due to data errors, the frequency of the trajectory data is not consistent. There are
some trajectory points with a large time interval in the high-frequency data. In order to avoid this
problem, a time interval threshold is set. If the time interval between the current trajectory point and
the previous point does not exceed the threshold, the current point is matched by the “Look Ahead”
method. If it exceeds, the current point is treated as the first point of the trajectory and matched by the
MatchFirstPoint function.

Algorithm 2 Segmented trajectory matching algorithm

Input: Trajectory points P = {pi|i = 1, . . . , n}, intersection points O = {oi|i = 1, . . . , m}, road sections R = {ri|i = 1,
. . . , k}, error radius ε
Output: The matched road section sequence RM
1: Initialize plist as an empty list; //plist is a list of candidate intersection trajectory point
2: Initialize rrlist as an empty list; //rrlist is a list of candidate intersection-related road section
3: Initialize rmlist as an empty list; //rmlist is a list of candidate matched road section.
4: rf = MatchFirstPoint(p1, R); //match first point by shortest distance method from all roads.
5: RM.add(rf );
6: rs = rf ; //rs means inbound road section
7: for i = 2 to n do //Traversing P from p2

8: oc = FindCurrentIntersectionPoint(rf, O); //oc is the intersection close to point pi
9: if (Distance(pi, oc) ≤ ε)
10: plist.add(pi);
11: else
12: rrlist = FindRelatedRoadSections (oc, R); //rrlist is oc-related road section sets
13: if (plist.count > 0)
14: re = MatchbyLookAhead(pi−1, rrlist); //match outbound point by Look Ahead method

[8], re is the outbound road section
15: rmlist = InterectTrajMatch(plist, rs, re, oc, rrlist); //Agorithm 1
16: RM.add(rmlist);
17: plist.clear();
18: else
19: re = MatchbyLookAhead(pi, rrlist);
20: RM.add(re);
21: end if
22: rs = re; //current matched road section is next inbound section
23: end if
24: end for
25: return RM
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5. Experiment and Results

5.1. Experimental Data and Scheme

Experimental data: This includes three trajectory data of taxis with different sampling frequencies
during a week within Beijing [31,32] and the road network of Beijing, as shown in Figure 6.
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The three different frequency trajectory data are selected from the entire taxi trajectory dataset,
which contains the GPS trajectories of 10,357 taxis during the period of 2–8 February 2008 within
Beijing. As shown in Table 1, the trajectories are collected at three different sampling intervals: 1 s,
5 s, and 15 s. Precisely, the sampling interval of data 1 is 1 s, and there are 151,542 trajectory points in
data 1. The sampling interval of data 2 is 5 s, and the number of trajectory points of data 2 is 30,156.
The sampling interval of data 3 is 15 s, and the number of trajectory points of data 3 is 7141.

Table 1. Trajectory data information.

Number Sampling Interval (s) Number of Trajectory Points

1 1 151,542
2 5 30,156
3 15 7141

Experiment implementation: To access and visualize the trajectories and map data, ArcGIS 10
plug-in development is carried out using C# on the. NET platform.

Analysis: The analysis process consists of two parts: First, this method is analyzed using different
error radii from the efficiency and accuracy; second, a comparative analysis of this method with the LCS
method [6] and the decision domain HMM method [7] is conducted from the efficiency and accuracy.

The error radius needs to be determined before analysis. The error radius includes positioning
error and road data error. The trajectory data in the experiment uses civil GPS positioning data, and the
error is within 20 m [7]. According to China’s urban road design standards [33], the width of urban
roads ranges from 10 m to 60 m. Since the road network data in the experiment include various levels
of road data, its maximum width is 60 m. Therefore, the maximum value of the road data error is
60/2 ×

√
2 ≈ 42 m [7], and the maximum error radius is 62 m. Then, in order to comprehensively
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analyze the effects of different error radii on the efficiency and accuracy of the method, eleven error
radii (10 m, 20 m, 30 m, 40 m, 50 m, 60 m, 70 m, 80 m, 90 m, 100 m, and 110 m) are determined.

5.2. Comparison of Intersection Matching Methods

Figure 7 shows part of the matching result at the intersection, where the gray lines, yellow dotted
lines, blue dotted lines, and red dotted lines are the road network, original trajectories, the matching
result using the LCS method, and the matching result using this method, respectively. It can be seen
from the figure that there is a mismatch at the intersection in the matching result with the LCS method
(Figure 7a), whereas the matching result with the proposed method is correct (Figure 7b).
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Figure 7. Comparison of matching results: (a) The LCS method, and (b) the proposed method.

5.3. Efficiency Analysis

The efficiencies of this method at the eleven error radii are compared. The efficiency analysis
results of data 1–3 are shown in Figure 8. Figure 8a shows the total running time of each trajectory,
and Figure 8b shows the average running time per 1000 points of the trajectory.
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According to the experimental results in Figure 8, the following is observed: (1) With the increase
of the radius, the algorithm efficiency of this method shows a decreasing trend. However, the rate
of descent is low, especially after the error radius exceeds 70 m. (2) From the average time result of
Figure 8b, it can be shown that the higher the sampling frequency of the trajectory data, the higher the
efficiency of the method. Moreover, the average duration of data 3 is much larger than data 1 and 2,
which means that when the sampling interval is greater than 5 s, the efficiency of the method decreases
very rapidly with the increase of the sampling interval.

In order to compare the method with the LCS method and the decision domain HMM method,
the error radius is set to 60 m, and the similarity score threshold of LCS is 0.95. The results of the
analysis are shown in Table 2.

Table 2. Comparison of the efficiency of this method with the LCS method and the decision domain
HMM method.

Methods
Running Total Time (s)

Data 1 Data 2 Data 3

this method, 60 m 32.5 11.5 22.3

LCS, 95% 348.5 99.5 67.8

decision domain HMM, 60 m 454.6 120.6 96.4

According to the results of the efficiency comparison in Table 2, the following is observed:
(1) Compared to the LCS method and decision domain HMM method, the efficiency of the proposed
method is higher. (2) The higher the sampling frequency of the trajectory data, the higher the efficiency
of this method. For example, when the sampling interval is 15 s, the running time of the LCS method
and the decision domain HMM method is about 3 times and 4.5 times this method respectively,
and when the sampling interval is 5 s, the running time of the LCS method and the decision domain
HMM method is increased to 9 times and 11 times the method, respectively; when the sampling
interval is 1 s, the running time of the LCS method and the decision domain HMM method is increased
to 11 times and 13 times this method, respectively.

Therefore, the result of efficiency analysis not only indicates that the method is more efficient but
also shows that the method is more suitable for high frequencies.
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5.4. Accuracy Analysis

The accuracy analysis adopts two evaluation standards: One is all trajectory points matching
accuracy, and the other is intersection trajectory points matching accuracy.

All trajectory points matching accuracy is represented by Equation (4):

call =
nall_m

nall
(4)

where call is all trajectory points matching accuracy, nall_m is the number of trajectory points correctly
matched, and nall is the total number of trajectory points.

Intersection trajectory points matching accuracy is represented by Equation (5):

ci =
ni_m

ni
(5)

where ci is intersection trajectory points matching accuracy, ni_m is the number of intersection trajectory
point correctly matched, and ni is the total number of intersection trajectory point.

Similarly, the accuracy of the method at different error radii is analyzed, and then the accuracy of
this method is compared with the LCS method and decision domain HMM method.

Figure 9 presents the accuracy comparison of this method at eleven error radii in data 1–3.
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Figure 9 shows that: (1) With the increase of the error radius, the accuracy of this method shows
an increasing trend. However, the increased speed is not stable. When the error radius is less than 40 m,
the increased speed is faster; when the error radius is between 40 m and 90 m, the increased speed is
slower; when the error radius is higher than 90 m, the accuracy no longer increases at all, and it even
decreases slightly. Thus, a suitable error radius should be between 60 m and 90 m. (2) The proposed
method is significantly affected by the trajectory data with different sampling frequencies. When
the sampling frequency is high, the matching accuracy varies among different error radii; otherwise,
the matching accuracy changes less. This feature is especially noticeable when the error radius is less
than 40 m. Therefore, the method is more suitable for high-frequency sampling trajectory data, and the
sampling interval does not exceed 15 s. (3) When the error radius continues to increase (e.g., more
than 90 m in the experiment), the matching accuracy may decrease. The reason is that the intersection
trajectory points have mistakenly included the trajectory points of roads that do not adjoin with the
intersection when the excessive error threshold exceeds the minimum length of the road adjoining
with the intersection, which led to a new mismatch.
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The results of comparing the accuracy of this method with the LCS method and the decision
domain HMM method are shown in Table 3.

Table 3. Accuracy comparison result.

Methods
All Trajectory Points Matching

Accuracy
Intersection Trajectory Points

Matching Accuracy

Data 1 Data 2 Data 3 Data 1 Data 2 Data 3

this method, 60 m 0.978 0.971 0.964 0.995 0.987 0.980
LCS, 95% 0.952 0.958 0.963 0.857 0.869 0.894

decision domain HMM, 60 m 0.972 0.969 0.965 0.992 0.985 0.977

According to the results of the accuracy comparison in Table 3, we can find that: (1) This method
is higher in matching accuracy than two other methods. Specifically, the method is slightly higher than
the two other methods in the matching accuracy of all trajectory points. It is slightly higher than the
decision domain HMM method, but it is much higher than the LCS method in the matching accuracy
of the intersection points. (2) The sampling frequency of the trajectory data has different effects on
different methods. As the sampling frequency decreases, the accuracy of the proposed method and the
decision domain HMM method also decreases, while the LCS method increases slightly. The results
show that this method and the decision domain HMM method are more suitable for high-frequency
data, while the LCS method is more suitable for low-frequency data. Besides, compared with the
decision domain HMM method, this method has a more considerable difference in matching accuracy
among the three experimental data. For example, the accuracy difference between data 1 and 3 of
the decision domain HMM method is 0.007, but this method reaches 0.014. Therefore, the proposed
method is more sensitive to the sampling frequency of the trajectory data.

6. Conclusions

This study has proposed a segmented matching method by which trajectory matching is divided
into intersection matching and non-intersection matching. The proposed method not only addresses
mistakes in intersection trajectory matching but also provides a higher matching efficiency and
better matching accuracy than the LCS method and decision domain HMM method. However,
from the results of the experimental analysis, the proposed method also has its applicable data and
application scenarios.

First of all, the method is more suitable for trajectory data of high-frequency sampling. It can be
found from the experiment that the higher the sampling frequency of the data, the higher the accuracy
of the method. When the frequency is gradually reduced, the accuracy of the method gets gradually
closer to the LCS method and decision domain HMM method. The reason is that when the trajectory
data sampling frequency is low, there may be fewer or no points at the intersection, so the intersection
trajectory point matching method in this research would be useless. Second, because the core of the
method is intersection trajectory points matching, the application scenario of the method should be in
a road network with multiple road intersections. Therefore, the method is more suitable for processing
the moving trajectory in the area with dense roads. Third, in this paper, the error radius ε is analyzed
in detail through the combination of theoretical derivation and experimental analysis. With the error
radius maximum (62 m) as the center value, 11 error radius values are selected for experimental
analysis. Experimental results show that the appropriate error radius values range from 50 m to 90 m.
However, it is still deficient in the error radius ε, which remains a dynamic range of values since it
is closely associated with trajectory data accuracy, road network data accuracy, and road network
data density. Therefore, ε should be set as large as possible, but less than the minimum length of the
trajectory matched. In addition, it is difficult for this method to deal with trajectory data where there is
a sizeable positional deviation. Therefore, before using this method for map matching, the trajectory
data needs to be preprocessed to eliminate the abnormal points.
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For future work, this method is based on a local matching method to deal with high-frequency
trajectory data in urban road networks, and it is difficult to achieve high accuracy when the trajectory
data has multiple road network scenes or contains multiple sampling frequencies. Therefore, a map
method combining a global matching method and a local matching method can be researched to be
applicable to various trajectory data.
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