Functional Analysis of the PoSERK-Interacting Protein PorbcL in the Embryogenic Callus Formation of Tree Peony (Paeonia ostii T. Hong et J. X. Zhang)
Abstract
:1. Introduction
2. Results
2.1. Construction of Yeast Library and Screening of PoSERK-Interacting Proteins
2.2. Bioinformatics Analysis of PorbcL
2.3. Subcellular Localization of PorbcL
2.4. Verification of the Interaction between PoSERK and PorbcL
2.5. Expression Pattern Analysis of PorbcL
2.6. RT-qPCR Analysis of Genes Expression Levels
2.7. Morphological and Anatomical Observations of Callus
2.8. Endogenous Plant Hormone Contents
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Treatment Methods
4.2. Yeast Library Construction and Screening of PoSERK-Interacting Proteins
4.3. Cloning and Analysis of PorbcL
4.4. Subcellular Localization Analysis
4.5. Verification of the Protein-Protein Interaction
4.6. Callus Transformation
4.7. Hormone Content Determination
4.8. Morphological and Anatomical Observations
4.9. Real-Time Quantitative PCR Analysis
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, X.J.; Liang, H.Y.; Guo, D.L.; Guo, L.L.; Duan, X.G.; Jia, Q.S.; Hou, X.G. Integrated analysis of transcriptomic and proteomic data from tree peony (P. ostii) seeds reveals key developmental stages and candidate genes related to oil biosynthesis and fatty acid metabolism. Hortic. Res. 2019, 6, 111. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Guo, D.L.; Guo, L.L.; Guo, Q.; Wang, H.F.; Hou, X.G. Construction of a high-density genetic map and QTLs mapping with GBS from the interspecific F1 population of P. ostii ‘Fengdan Bai’ and P. suffruticosa ‘Xin Riyuejin’. Sci. Hortic. 2019, 246, 190–200. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, Y.Z.; Wang, Q.Y.; Li, B.; Wang, X.H.; Zhou, X.; Zhang, H.C.; Xu, W.Z.; Li, S.S.; Wang, L.S. The combination of DNA methylation and positive regulation of anthocyanin biosynthesis by MYB and bHLH transcription factors contributes to the petal blotch formation in Xibei tree peony. Hortic. Res. 2023, 10, uhad100. [Google Scholar] [CrossRef]
- Xu, Y.F.; Shang, W.Q.; Li, L.D.; Song, Y.L.; Wang, G.Q.; Shi, L.Y.; Shen, Y.X.; Sun, Y.K.; He, S.L.; Wang, Z. Transcriptome Landscape Analyses of the Regulatory Network for Zygotic Embryo Development in Paeonia ostii. Int. J. Mol. Sci. 2023, 24, 10715. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Zhang, Y.; Xu, Y.F.; Zhu, X.Y.; Xu, X.F.; Chang, S.; Deng, R.X. Three new monoterpene glycosides from oil peony seed cake. Ind. Crops Prod. 2018, 111, 371–378. [Google Scholar] [CrossRef]
- Zhang, W.Q.; Zhang, H.X.; Zhao, G.D.; Wang, N.; Guo, L.L.; Hou, X.G. Molecular mechanism of somatic embryogenesis in paeonia ostii ‘Fengdan’ based on transcriptome analysis combined histomorphological observation and metabolite determination. BMC Genom. 2023, 24, 665. [Google Scholar] [CrossRef]
- Meng, L.; Chen, Y.; Zheng, Z.J.; Wang, L.; Xu, Y.H.; Li, X.J.; Xiao, Z.J.; Tang, Z.; Wang, Z.S. Ultrasound-Assisted Extraction of Paeonol from Moutan Cortex: Purification and Component Identification of Extract. Molecules 2024, 29, 622. [Google Scholar] [CrossRef]
- Gao, J.; Xue, J.Q.; Xue, Y.Q.; Liu, R.; Ren, X.X.; Wang, S.L.; Zhang, X.X. Transcriptome sequencing and identification of key callus browning-related genes from petiole callus of tree peony (Paeonia suffruticosa cv. Kao) cultured on media with three browning inhibitors. Plant Physiol. Biochem. 2020, 149, 36–49. [Google Scholar] [CrossRef]
- Song, Y.L.; Shang, W.Q.; Wang, Z.; He, S.L.; Sun, Y.K.; Shi, L.Y.; Shen, Y.X.; He, D. Functional Analysis of Glucose-6-Phosphate Translocator PoGPT1 in Embryogenic Callus Formation of Tree Peony. Horticulturae 2022, 8, 957. [Google Scholar] [CrossRef]
- Vetriventhan, M.; Upadhyaya, H.D.; Anandakumar, C.R.; Senapathy, S.; Parzies, H.K.; Bharathi, A.; Varshney, R.K.; Gowda, C.L.L. Assessing genetic diversity, allelic richness and genetic relationship among races in ICRISAT foxtail millet core collection. Plant Genet. Resour. 2012, 10, 214–223. [Google Scholar] [CrossRef]
- Cheng, X.; Feng, Y.; Chen, D.L.; Luo, C.; Yu, X.F.; Huang, C.L. Evaluation of Rosa germplasm resources and analysis of floral fragrance components in R. rugosa. Front. Plant Sci. 2022, 13, 1026763. [Google Scholar] [CrossRef] [PubMed]
- Nie, C.R.; Zhang, Y.J.; Zhang, X.Q.; Xia, W.S.; Sun, H.B.; Zhang, S.S.; Li, N.; Ding, Z.Q.; Lv, Y.M.; Wang, N. Genome assembly, resequencing and genome-wide association analyses provide novel insights into the origin, evolution and flower colour variations of flowering cherry. Plant J. 2023, 114, 519–533. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.Y. Advances in the breeding of tree peonies and a cultivar system for the cultivar group. Int. J. Plant Breed. 2007, 1, 90–104. [Google Scholar]
- Peng, L.P.; Cheng, F.Y.; Zhong, Y.; Xu, X.X.; Xian, H.L. Phenotypic variation in cultivar populations of Paeonia ostii. Plant Sci. J. 2018, 36, 170–180. [Google Scholar]
- Guo, X.; Cheng, F.Y.; Zhong, Y. Genetic Diversity of Paeonia rockii (Flare Tree Peony) Germplasm Accessions Revealed by Phenotypic Traits, EST-SSR Markers and Chloroplast DNA Sequences. Forests 2020, 11, 672. [Google Scholar] [CrossRef]
- Zhou, H.; Cheng, F.Y.; Wang, R.; Zhong, Y.; He, C. Transcriptome Comparison Reveals Key Candidate Genes Responsible for the Unusual Reblooming Trait in Tree Peonies. PLoS ONE 2013, 8, e79996. [Google Scholar] [CrossRef]
- Guo, L.L.; Guo, D.L.; Zhao, W.; Hou, X.G. Newly developed SSR markers reveal genetic diversity and geographical clustering in Paeonia suffruticosa based on flower colour. J. Hortic. Sci. Biotech. 2018, 93, 416–424. [Google Scholar] [CrossRef]
- Li, Y.Y.; Guo, L.L.; Wang, Z.Y.; Zhao, D.H.; Guo, D.L.; Carlson, J.E.; Yin, W.L.; Hou, X.G. Genome-wide association study of 23 flowering phenology traits and 4 floral agronomic traits in tree peony (Paeonia section Moutan DC.) reveals five genes known to regulate flowering time. Hortic. Res. 2023, 10, uhac263. [Google Scholar] [CrossRef] [PubMed]
- Suo, Z.L.; Zhang, C.H.; Zheng, Y.Q.; He, L.X.; Jin, X.B.; Hou, B.X.; Li, J.J. Revealing genetic diversity of tree peonies at micro-evolution level with hyper-variable chloroplast markers and floral traits. Plant Cell Rep. 2012, 31, 2199–2213. [Google Scholar] [CrossRef]
- Chang, Y.T.; Zhang, W.B.; Ma, Y.J.; Xia, M.S.; Fan, K.K.; Jiang, Z.H.; Hu, T. Transcriptome analysis of floral bud development and function analysis of a novel CO gene in Paeonia × lemoinei ‘High Noon’. Sci. Rep. 2022, 12, 17281. [Google Scholar] [CrossRef]
- Altpeter, F.; Springer, N.M.; Bartley, L.E.; Blechl, A.E.; Brutnell, T.P.; Citovsky, V.; Conrad, L.J.; Gelvin, S.B.; Jackson, D.P.; Kausch, A.P.; et al. Advancing crop transformation in the era of genome editing. Plant Cell. 2016, 28, 1510–1520. [Google Scholar] [CrossRef] [PubMed]
- Shang, W.Q.; Wang, Z.; He, S.L.; Liu, Y.P.; Fu, Z.Z. Research on the relationship between phenolic acids and rooting of tree peony (Paeonia suffruticosa) plantlets in vitro. Sci. Hortic. 2017, 224, 53–60. [Google Scholar] [CrossRef]
- Wen, S.S.; Chen, L.; Cheng, F.Y.; Tian, R.N. Correction to: Micropropagation of tree peony (Paeonia sect. Moutan): A review. Plant Cell Tissue Organ Cult. 2020, 141, 15. [Google Scholar] [CrossRef]
- Sun, Y.K.; Shang, W.Q.; Yuan, J.H.; Wang, Z.; He, S.L.; Song, Y.L.; Shi, L.Y.; Shen, Y.X.; Ma, J.; Xu, Y.F.; et al. Functional Analysis of PsARRO−1 in Root Development of Paeonia suffruticosa. Horticulturae 2022, 8, 903. [Google Scholar] [CrossRef]
- Zhu, X.T.; Li, X.Q.; Ding, W.J.; Jin, S.H.; Wang, Y. Callus induction and plant regeneration from leaves of peony. Hortic. Environ. Biotechnol. 2018, 59, 575–582. [Google Scholar] [CrossRef]
- Ci, H.T.; Li, C.Y.; Aung, T.T.; Wang, S.L.; Yun, C.; Wang, F.; Ren, X.X.; Zhang, X.X. A Comparative Transcriptome Analysis Reveals the Molecular Mechanisms That Underlie Somatic Embryogenesis in Peaonia ostii ‘Fengdan’. Int. J. Mol. Sci. 2022, 23, 10595. [Google Scholar] [CrossRef]
- Fehér, A.; Pasternak, T.; Ötvös, K.; Miskolczi, P.; Dudits, D. Induction of embryogenic competence in somatic plant cells: A review. Biol. Sect. Bot. 2002, 51, 5–12. [Google Scholar]
- Zeng, F.C.; Zhang, X.L.; Jin, S.X.; Cheng, L.; Liang, S.G.; Hu, L.S.; Guo, X.P.; Nie, Y.C.; Cao, J.L. Chromatin reorganization and endogenous auxin/cytokinin dynamic activity during somatic embryogenesis of cultured cotton cell. Plant Cell Tiss. Organ Cult. 2007, 90, 63–70. [Google Scholar] [CrossRef]
- Xue, W.Y.; Liu, N.; Zhang, T.T.; Li, J.; Chen, P.P.; Yang, Y.T.; Chen, S.X. Substance metabolism, IAA and CTK signaling pathways regulating the origin of embryogenic callus during dedifferentiation and redifferentiation of cucumber cotyledon nodes. Sci. Hort. 2022, 293, 110680. [Google Scholar] [CrossRef]
- Zheng, B.B.; Liu, J.J.; Gao, A.Q.; Chen, X.M.; Gao, L.L.; Liao, L.; Luo, B.W.; Ogutu, C.O.; Han, Y.P. Epigenetic reprogramming of H3K27me3 and DNA methylation during leaf-to-callus transition in peach. Hortic. Res. 2022, 9, uhac132. [Google Scholar] [CrossRef]
- Tvorogova, V.E.; Lutova, L.A. Genetic regulation of zygotic embryogenesis in Angiosperm plants. Russ. J. Plant Physiol. 2018, 65, 1–14. [Google Scholar] [CrossRef]
- Xiao, Y.F.; Li, J.J.; Zhang, Y.; Zhang, X.M.; Liu, H.L.; Qin, Z.H.; Chen, B.W. Transcriptome analysis identifies genes involved in the somatic embryogenesis of Eucalyptus. BMC Genom. 2020, 21, 803. [Google Scholar] [CrossRef] [PubMed]
- Mi, C.; Zhao, Y.N.; Liu, Z.G.; Chen, Q.X.; Sun, W.C.; Fang, Y.; Li, X.C.; Wu, J.Y. Cloning of RuBisCo Subunits Genes rbcL and rbcS from Winter Rapeseed (Brassica rapa) and Their Expression under Drought Stress. Acta Agron. Sin. 2018, 44, 1882–1890. [Google Scholar] [CrossRef]
- Zhu, X.G.; de Sturler, E.; Long, S.P. Optimizing the distribution ofresources between enzymes of carbon metabolism can dramatically increasephotosynthetic rate: A numerical simulation using an evolutionary algorithm. Plant Physiol. 2007, 145, 513–526. [Google Scholar] [CrossRef] [PubMed]
- Raines, C.A. Transgenic approaches to manipulate the environmental responses of the C3 carbon fixation cycle. Plant Cell Environ. 2006, 29, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.F.; Chen, S.L.; Wu, H.; Xu, H.W. Bioinformatics Analysis and Prediction of Rubisco Large Subunit (RbcL) in Sect. Ponticum G. Don. North. Hortic. 2016, 23, 102–108. [Google Scholar] [CrossRef]
- Whitney, S.M.; Houtz, R.L.; Alonso, H. Advancing our understanding and capacity to engneer nature’s CO2-sequestering enzyme, Rubisco. Plant Physiol. 2011, 155, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Tao, M.C.; Liu, D.; Wang, Y.Y.; Li, Z.L. Screening and Optimization of Rubisco Genetic Transformation of Dendrobium officinale Kimura et Migo. Mol. Plant Breed. 2021, 19, 7845–7850. [Google Scholar] [CrossRef]
- Xu, C.; He, C.G.; Mu, L.; Bi, Y.F.; Jiang, H. The Activities of Rubisco Carboxvlase and Activase and their Gene Expressionsin Alfalfa under Drought and Heat stresses. Acta Agrestia Sin. 2021, 29, 228–233. [Google Scholar] [CrossRef]
- Wang, B.M.; Li, H.B.; Chen, Y.Z.; Mo, H. Identification of Rubisco genes of Camellia oleifera Abel. andits application on the selection of high tea oil cultivars. J. Fujian Agr For. Univ. (Nat. Sci. Ed.) 2019, 48, 9. [Google Scholar]
- Zhang, S. Expression, Purification, Crystal Growth and Functional Analysis of RcRBCL, a Ribose-1,5-Bisphosphate Carboxylase/Oxygenase from Ricinus communis. Master’s Thesis, Inner Mongolia Minzu University, Tongliao, China, 2022. [Google Scholar] [CrossRef]
- Hecht, V.; Vielle-Calzada, J.P.; Hartog, M.V.; Schmidt, E.D.; Boutilier, K.; Grossniklaus, U.; de Vries, S.C. The Arabidopsis Somatic Embryogenesis Receptor Kinase 1 Gene Is Expressed in Developing Ovules and Embryos and Enhances Embryogenic Competence in Culture. Plant Physiol. 2001, 127, 803–816. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, E.D.L.; Guzzo, F.; Toonen, M.A.J.; de Vries, A.H.M. A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 1997, 124, 2049–2062. [Google Scholar] [CrossRef]
- Zakizadeh, H.; Stummann, B.M.; Lütken, H.; Müller, R. Isolation and characterization of four somatic embryogenesis receptor-like kinase (RhSERK) genes from miniature potted rose (Rosa hybrida cv. Linda). Plant Cell Tiss. Org. 2010, 101, 331–338. [Google Scholar] [CrossRef]
- Charbonnier, S.; Gallego, O.; Gavin, A.C. The social network of a cell: Recent advances in interactome mapping. Biotechnol. Annu. Rev. 2008, 14, 1–28. [Google Scholar] [CrossRef]
- Piehler, J. New methodologies for measuring protein interactions in vivo and in vitro. Curr. Opin. Struc. Biol. 2005, 15, 4–14. [Google Scholar] [CrossRef]
- Stagljar, I.; Korostensky, C.; Johnsson, N.; te Heesen, S. A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Prac. Natl. Acad. Sci. USA 1998, 95, 5187–5192. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Chang, E.; Yu, X.; Chen, Y.; Yang, Q.; Cao, Y.; Li, X.; Wang, Y.; Fu, A.; Xu, M. Molecular Characterization of Magnesium Chelatase in Soybean [Glycine max (L.) Merr.]. Front. Plant Sci. 2018, 9, 720. [Google Scholar] [CrossRef] [PubMed]
- Austin, B.R. Yield of wheat in the United Kingdom: Recent advances and prospects. Crop Sci. 1999, 39, 1608–1610. [Google Scholar] [CrossRef]
- Niewiadomski, P.; Knappe, S.; Geimer, S.; Fischer, K.; Schulz, B.; Unte, U.S.; Rosso, M.G.; Ache, P.; Flügge, U.-I.; Schneider, A. The Arabidopsis plastidic glucose 6-phosphate/phosphate translocator GPT1 is essential for pollen maturation and embryo sac development. Plant Cell 2005, 17, 760–775. [Google Scholar] [CrossRef]
- Schwender, J.; Goffman, F.; Ohlrogge, J.B.; Shachar-Hill, Y. Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 2004, 432, 779–782. [Google Scholar] [CrossRef]
- Maillot, P.; Lebel, S.; Schellenbaum, P.; Jacques, A.; Walter, B. Differential regulation of SERK, LEC1-like and pathogenesis-related genes during indirect secondary somatic embryogenesis in grapevine. Plant Physiol. Biochem. 2009, 47, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Paul, P.; Joshi, S.; Tian, R.; Junior, R.D.; Chakrabarti, M.; Perry, S.E. The MADS-domain factor AGAMOUS-Like18 promotes somatic embryogenesis. Plant Physiol. 2022, 188, 1617–1631. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.S.; Li, Z.Y.; Shi, P.; Zhang, D.P.; Htwe, Y.M.; Yu, Q.; Wang, Y. Transcriptional Regulations and Hormonal Signaling during Somatic Embryogenesis in the Coconut Tree: An Insight. Forests 2023, 14, 1800. [Google Scholar] [CrossRef]
- Jiménez, V.M.; Bangerth, F. Endogenous hormone concentrations and embryogenic callus development in wheat. Plant Cell Tissue Organ Cult. 2001, 67, 37–46. [Google Scholar] [CrossRef]
- Méndez-Hernández, H.A.; Ledezma-Rodriguez, M.; Avilez-Montalvo, R.N.; Juárez-Gómez, Y.L.; Skeete, A.O.; Avilez, J.; De-laPena, C.; Loyola-Vargas, V.M. Signaling overview of plant somatic embryogenesis. Front. Plant Sci. 2019, 10, 77. [Google Scholar] [CrossRef]
- Rose, R.J. Somatic embryogenesis in the Medicago truncatula model: Cellular and molecular mechanisms. Front. Plant Sci. 2019, 10, 267. [Google Scholar] [CrossRef]
- Kępczyńska, E.; Orłowska, A. Profiles of endogenous ABA, bioactive GAs, IAA and their metabolites in Medicago truncatula Gaertn. non-embryogenic and embryogenic tissues during induction phase in relation to somatic embryo formation. Planta 2021, 253, 67. [Google Scholar] [CrossRef]
- Ivanova, A.; Velcheva, M.; Denchev, P.; Atanassov, A.; van Onckelen, H.A. Endogenous hormone levels during direct somatic embryogenesis in Medicago falcata. Physiol. Plant 1994, 92, 85–89. [Google Scholar] [CrossRef]
- Friml, J.; Vieten, A.; Sauer, M.; Weijers, D.; Schwarz, H.; Hamann, T.; Offringa, R.; Jürgens, G. Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature 2003, 426, 147–153. [Google Scholar] [CrossRef]
- Elhiti, M.; Stasolla, C. Transduction of signals during somatic embryogenesis. Plants 2022, 11, 178. [Google Scholar] [CrossRef]
- Sparkes, I.A.; Runions, J.; Kearns, A.; Hawes, C. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat. Protoc. 2006, 1, 2019–2025. [Google Scholar] [CrossRef] [PubMed]
- Shen, P. The Preliminary Study on Establishment of Genetic Transformation System of Callus of Paeonia. Master’s Thesis, Henan Agricultural University, Zhengzhou, China, 2014. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201801&filename=1017253701.nh (accessed on 20 June 2021).
- Xu, L.; Cheng, F.Y.; Zhong, Y. Histological and cytological study on meristematic nodule induction and shoot organogenesis in Paeonia ostii ‘Feng Dan’. Plant Cell Tiss. Organ. Cult. 2022, 149, 609–620. [Google Scholar] [CrossRef]
- Kralik, P.; Ricchi, M. A basic guide to real time PCR in microbial diagnostics: Definitions, parameters, and everything. Front. Microbiol. 2017, 8, 108. [Google Scholar] [CrossRef] [PubMed]
- Forootan, A.; Sjöback, R.; Björkman, J.; Sjögreen, B.; Linz, L.; Kubista, M. Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR). Biomol. Detect. Quantif. 2017, 12, 1–6. [Google Scholar] [CrossRef]
Number | Name | Homologous Sequence (Arabidopsis thaliana) | Biological Function |
---|---|---|---|
1 | Protein GPR107-like | AT1G10980.1 | Transmembrane receptor family protein |
2 | Glucose-6-phosphatephosphate translocator (GPT1) | AT1G61800.1 | Dynamic domestication of photosynthesis |
3 | Post-GPI attachment to proteins factor 3(PGAP3) | AT2G46710 | Regulation of the periodic changes in secondary cell wall pits |
4 | Kelch repeat-containing protein At3g27220-like | At3g27220 | Galactose oxidase/Kelch repeat superfamily protein |
5 | Transcriptional adapter ADA2-like | AT4G16420 | Controls cell proliferation, mediates auxin and cytokinin signaling, and may be involved in freezing tolerance pathways |
6 | Golgin candidate 4 | AT2G46180 | Connects vesicles to the Golgi membrane, maintaining the overall structure of the Golgi apparatus |
7 | Probable cysteine protease RD21B | AT5G43060 | Involved in phagocytosis and clearance of excess intracellular material |
8 | Endoplasmin homolog | AT4G24190 | Regulates meristem formation by modulating the folding of CLV proteins |
9 | 60S ribosomal protein L4 | AT3G09630 | Structural component of ribosomes |
10 | FRIGIDA-like protein 4a | AT3G22440 | Cell differentiation, flower development |
11 | Uncharacterized GPI-anchored protein At4g28100 | AT4G28100 | Unknown |
12 | Signal peptide peptidase | AT2G03120 | Intramembrane-cleaving aspartic protease, catalyzes intramembrane proteolysis of signal peptides, and is involved in reproductive tissue development |
13 | Probable acyl-activating enzyme 17, peroxisomal | AT5G23050 | Forms acetyl-CoA to activate carboxylic acids |
14 | Tetraspanin-8 | AT2G23810 | Involved in the regulation of cell differentiation |
15 | Rubisco large subunit protein (rbcL) | ATCG00490 | Involved in the carboxylation of ribulose 1,5-bisphosphate, carbon dioxide fixation, and photorespiration |
16 | Universal stress protein A-like protein | AT3G01520 | Binds amide nitrogen and carbonyl oxygen |
17 | Tubulin beta-1 chain | AT1G75780 | Microtubule cytoskeleton organization, originates from the mitotic cell cycle |
18 | Transcription factor bHLH35 | AT5G57150 | Transcriptional regulation, embryonic development, flower development, senescence, etc. |
19 | NADPH-dependent aldo | AT2G37770 | Catalyzes the reduction of saturated and α,β-unsaturated aldehydes |
20 | Heat shock protein 90-5, chloroplastic | AT2G04030 | Chloroplast biogenesis and maintenance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Wang, J.; Zhu, J.; Shang, W.; Jia, W.; Sun, Y.; He, S.; Yang, X.; Wang, Z. Functional Analysis of the PoSERK-Interacting Protein PorbcL in the Embryogenic Callus Formation of Tree Peony (Paeonia ostii T. Hong et J. X. Zhang). Plants 2024, 13, 2697. https://doi.org/10.3390/plants13192697
Song Y, Wang J, Zhu J, Shang W, Jia W, Sun Y, He S, Yang X, Wang Z. Functional Analysis of the PoSERK-Interacting Protein PorbcL in the Embryogenic Callus Formation of Tree Peony (Paeonia ostii T. Hong et J. X. Zhang). Plants. 2024; 13(19):2697. https://doi.org/10.3390/plants13192697
Chicago/Turabian StyleSong, Yinglong, Jiange Wang, Jiale Zhu, Wenqian Shang, Wenqing Jia, Yuke Sun, Songlin He, Xitian Yang, and Zheng Wang. 2024. "Functional Analysis of the PoSERK-Interacting Protein PorbcL in the Embryogenic Callus Formation of Tree Peony (Paeonia ostii T. Hong et J. X. Zhang)" Plants 13, no. 19: 2697. https://doi.org/10.3390/plants13192697
APA StyleSong, Y., Wang, J., Zhu, J., Shang, W., Jia, W., Sun, Y., He, S., Yang, X., & Wang, Z. (2024). Functional Analysis of the PoSERK-Interacting Protein PorbcL in the Embryogenic Callus Formation of Tree Peony (Paeonia ostii T. Hong et J. X. Zhang). Plants, 13(19), 2697. https://doi.org/10.3390/plants13192697