Genetic Basis of Tillering Angle from Other Plants to Wheat: Current Progress and Future Perspectives
Abstract
:1. Introduction
2. Regulatory Mechanisms of Wheat Tillering Angle
2.1. QTL Mapping and Gene Analysis for Tillering Angle
2.2. Regulation of Tiller Angle Plasticity in Wheat
3. Regulation Mechanism of Tillering Angle in Other Plants
3.1. Regulation of Rice Tiller Angle by Shoot Gravitropism
Gene | Accession Numbers | Gene Product Function | Transgenic Method | Phenotype | Reference(s) |
---|---|---|---|---|---|
AGPL1/3 | LOC_Os05g50380 LOC_Os03g52460 | Subunit of ADP-glucose | Knockout | Large tiller angle | [68] |
LPA1 | LOC_Os03g13400 | Indeterminate domain protein | RNAi | Large tiller angle | [19,80] |
ONAC106 | LOC_Os08g33670 | NAC transcription factor | Overexpression | Large tiller angle | [63] |
CRCT | Os05g0595300 | Contains a CCT domain | Overexpression | Large tiller angle | [69] |
OsPIL15 | Os01g0286100 | Phytochrome-interacting factors-like 15 | Overexpression | Smaller tiller angle | [78] |
LAZY2 | LOC_Os02g08380 | YbaB-like | RNAi | Small tiller angle | [76] |
OsbZIP49 | LOC_Os06g41100 | Leucine zipper transcription factors | Overexpression | Large tiller angle | [79] |
OspPGM | LOC_Os10g11140 | phosphoglucomutase | Knockdown | Large tiller angle | [70,76] |
LA2 | LOC_Os02g08380 | YbaB-like | RNAi | Large tiller angle | [76] |
LA3 | LOC_Os03g04100 | Chloroplast-localized tryptophan-rich protein | knockout | Large tiller angle | [77] |
3.2. Microstructure Plasticity in the Regulation of Tillering Angle
3.3. Cell Wall Plasticity in the Regulation of Tillering Angle
3.4. Regulation of Tillering Angle by Endogenous Hormones
3.4.1. Auxin and Tiller Angle
3.4.2. Other Plant Hormones and Tiller Angle
Gene | Accession Numbers | Gene Product Function | Transgenic Method | Phenotype | Reference(s) |
---|---|---|---|---|---|
PAY1 | LOC_Os08g31470 | Plant architecture and yield | Knockdown | Large tiller angle | [124] |
LA1 | LOC_Os11g29840 | IGT family protein | Knockdown | Large tiller angle | [125,126,146,147,148,149,150] |
HSFA2D | LOC_Os03g06630 | Heat stress transcription factor | RNAi | Large tiller angle | [17] |
WOX6/11 | LOC_Os03g20910/LOC_Os07g48560 | WUSCHEL-related homeobox | Knockdown | Large tiller angle | [17] |
BRXL4 | LOC_Os08g36020 | Plant-specific Brevis Radix Like 4 | Overexpression | Large tiller angle | [127] |
OsHOX1 | Os10g0561800 | HD-ZIP II transcription factor | Overexpression | Large tiller angle | [129] |
OsHOX28 | Os06g0140400 | HD-ZIP II transcription factor | Overexpression | Large tiller angle | [129] |
OsPIN2 | LOC_Os06g44970 | auxin efflux carrier | Overexpression | Large tiller angle | [137] |
OsPIN1b | LOC_Os11g04190 | auxin efflux carrier | Large tiller angle | [151] | |
TAC1 | LOC_Os09g35980 | IGT family protein | Overexpression | Large tiller angle | [20,53,54] |
Fuct-1 | Os08g0472600 | α1,3-fucosyltransferase | Knockdown | Large tiller angle | [138] |
OsMIR167a | MI0000676 | MicroRNA | Overexpression | Large tiller angle | [131] |
OsARF12 | LOC_Os04g57610 | auxin response factor | Knockdown | Large tiller angle | [131] |
OsARF17 | LOC_Os06g46410 | auxin response factor | Knockdown | Large tiller angle | [131] |
OsARF25 | LOC_Os12g41950 | auxin response factor | RNAi | Large tiller angle | [131] |
OsGRF7 | Os12g0484900 | Plant-specific transcriptional regulator | Overexpression | Small tiller angle | [152] |
OsLIC | Os06g0704300 | Novel CCCH-type zinc-finger protein | Antisense | Large tiller angle | [145] |
D2 | LOC_Os01g10040 | cytochrome P450 | Knockdown | Small tiller angle | [18] |
TAC4 | LOC_Os02g25230 | Conserved protein with unknown function | RNAi | Large tiller angle | [9] |
D3 | LOC_Os06g06050 | An F-box component of the SKP–Cullin–F box (SCF) E3 ubiquitin ligase complex | RNAi | Large tiller angle | [143] |
4. Mechanical Regulation of Asymmetric Plant Growth
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Y.M.; Hou, J.; Liu, H.; Li, T.; Wang, K.; Hao, C.Y.; Liu, H.X.; Zhang, X.Y. TaBT1, affecting starch synthesis and thousand kernel weight, underwent strong selection during wheat improvement. J. Exp. Bot. 2019, 70, 1497–1511. [Google Scholar] [CrossRef] [PubMed]
- Itam, M.; Mega, R.; Tadano, S.; Abdelrahman, M.; Matsunaga, S.; Yamasaki, Y.; Akashi, K.; Tsujimoto, H. Metabolic and physiological responses to progressive drought stress in bread wheat. Sci. Rep. 2020, 10, 17189. [Google Scholar] [CrossRef]
- Zhao, L.; Zheng, Y.T.; Wang, Y.; Wang, S.S.; Wang, T.Z.; Wang, C.G.; Chen, Y.; Zhang, K.P.; Zhang, N.; Dong, Z.D.; et al. A HST1-like gene controls tiller angle through regulating endogenous auxin in common wheat. Plant Biotechnol. J. 2022, 21, 122–135. [Google Scholar] [CrossRef] [PubMed]
- Engledow, F.L.; Wadham, S.M. Investigations on yield in the cereals1. I. J. Agric. Sci. 1923, 13, 390–439. [Google Scholar] [CrossRef]
- Donald, C.M. The breeding of crop ideotypes. Euphytica 1968, 17, 385–403. [Google Scholar] [CrossRef]
- Reinhardt, D.; Kuhlemeier, C. Plant architecture. EMBO Rep. 2002, 3, 846–851. [Google Scholar] [CrossRef]
- Teichmann, T.; Muhr, M. Shaping plant architecture. Front. Plant Sci. 2015, 6, 233. [Google Scholar] [CrossRef]
- Li, B.; Gao, F.; Ren, B.Z.; Dong, S.T.; Liu, P.; Zhao, B.; Zhang, J.W. Lignin metabolism regulates lodging resistance of maize hybrids under varying planting density. J. Integr. Agric. 2021, 20, 2077–2089. [Google Scholar] [CrossRef]
- Li, H.; Sun, H.Y.; Jiang, J.H.; Sun, X.Y.; Tan, L.B.; Sun, C.Q. TAC4 controls tiller angle by regulating the endogenous auxin content and distribution in rice. Plant Biotechnol. J. 2021, 19, 64–73. [Google Scholar] [CrossRef]
- Peng, J.R.; Richards, D.E.; Hartley, N.M.; Murphy, G.P.; Devos, K.M.; Flintham, J.E.; Beales, J.; Fish, L.J.; Worland, A.J.; Pelica, F.; et al. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 1999, 400, 256–261. [Google Scholar] [CrossRef]
- Dockter, C.; Hansson, M. Improving barley culm robustness for secured crop yield in a changing climate. J. Exp. Bot. 2015, 66, 3499–3509. [Google Scholar] [CrossRef] [PubMed]
- Beveridge, C.A.; Kyozuka, J. New genes in the strigolactone-related shoot branching pathway. Curr. Opin. Plant Biol. 2010, 13, 34–39. [Google Scholar] [CrossRef]
- Zadnikova, P.; Simon, R. How boundaries control plant development. Curr. Opin. Plant Biol. 2014, 17, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.F.; Chen, J.C.; Zhang, X.L. Genetic regulation of shoot architecture in cucumber. Hortic. Res. 2021, 8, 143. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Smith, S.M.; Li, J.Y. Genetic regulation of shoot architecture. Annu. Rev. Plant Biol. 2018, 69, 437–468. [Google Scholar] [CrossRef]
- McSteen, P.; Leyser, O. Shoot branching. Annu. Rev. Plant Biol. 2005, 56, 353–374. [Google Scholar] [CrossRef]
- Zhang, N.; Yu, H.; Yu, H.; Cai, Y.Y.; Huang, L.Z.; Xu, C.; Xiong, G.S.; Meng, X.B.; Wang, J.Y.; Chen, H.F.; et al. A core regulatory pathway controlling rice tiller angle mediated by the LAZY1-dependent asymmetric distribution of auxin. Plant Cell 2018, 30, 1461–1475. [Google Scholar] [CrossRef]
- Dong, H.J.; Zhao, H.; Xie, W.B.; Han, Z.M.; Li, G.W.; Yao, W.; Bai, X.F.; Hu, Y.; Guo, Z.L.; Lu, K.; et al. A novel tiller angle gene, TAC3, together with TAC1 and D2 largely determine the natural variation of tiller angle in rice cultivars. PLoS Genet. 2016, 12, e1006412. [Google Scholar] [CrossRef]
- Wu, X.R.; Tang, D.; Li, M.; Wang, K.J.; Cheng, Z.K. Loose plant architecture1, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice. Plant Physiol. 2013, 161, 317–329. [Google Scholar] [CrossRef]
- Yu, B.S.; Lin, Z.W.; Li, H.X.; Li, X.J.; Li, J.Y.; Wang, Y.H.; Zhang, X.; Zhu, Z.F.; Zhai, W.X.; Wang, X.K.; et al. TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J. 2007, 52, 891–898. [Google Scholar] [CrossRef]
- Paulsen, G. Application of physiology in wheat breeding. Crop Sci. 2002, 42, 2228. [Google Scholar] [CrossRef]
- Roberts, D.W.A. Identification of loci on chromosome 5A of wheat involved in control of cold hardiness, vernalization, leaf length, rosette growth habit, and height of hardened plants. Genome 1990, 33, 247–259. [Google Scholar] [CrossRef]
- Li, W.L.; Nelson, J.C.; Chu, C.Y.; Shi, L.H.; Huang, S.H.; Liu, D.J. Chromosomal locations and genetic relationships of tiller and spike characters in wheat. Euphytica 2002, 125, 357–366. [Google Scholar] [CrossRef]
- Giraldo, P.; Royo, C.; Gonzalez, M.; Carrillo, J.M.; Ruiz, M. Genetic diversity and association mapping for agromorphological and grain quality traits of a structured collection of durum wheat landraces including subsp. durum, turgidum and diccocon. PLoS ONE 2016, 11, e0166577. [Google Scholar] [CrossRef]
- Liu, Y.X.; Lin, Y.; Gao, S.; Li, Z.Y.; Ma, J.; Deng, M.; Chen, G.Y.; Wei, Y.M.; Zheng, Y.L. A genome-wide association study of 23 agronomic traits in Chinese wheat landraces. Plant J. 2017, 91, 861–873. [Google Scholar] [CrossRef]
- Marone, D.; Rodriguez, M.; Saia, S.; Papa, R.; Rau, D.; Pecorella, I.; Laido, G.; Pecchioni, N.; Lafferty, J.; Rapp, M.; et al. Genome-wide association mapping of prostrate/erect growth habit in winter durum wheat. Int. J. Mol. Sci. 2020, 21, 394. [Google Scholar] [CrossRef]
- Zhao, D.H.; Yang, L.; Xu, K.J.; Cao, S.H.; Tian, Y.B.; Yan, J.; He, Z.H.; Xia, X.C.; Song, X.Y.; Zhang, Y. Identification and validation of genetic loci for tiller angle in bread wheat. Theor. Appl. Genet. 2020, 133, 3037–3047. [Google Scholar] [CrossRef]
- Li, H.B. Fine Mapping of Wheat Tillering Angle Regulatory Gene TaTA1-6D. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2021. (In Chinese). [Google Scholar]
- Liu, J.J.; Zhou, J.G.; Tang, H.P.; Tu, Y.; Mu, Y.; Gou, L.L.; Jiang, Q.T.; Liu, Y.X.; Chen, G.Y.; Wang, J.R.; et al. A major vernalization-independent QTL for tiller angle on chromosome arm 2BL in bread wheat. Crop J. 2022, 10, 185–193. [Google Scholar] [CrossRef]
- Liu, W.L.; Li, Y.Y.; Sun, Y.; Tang, J.Q.; Che, J.Y.; Yang, S.P.; Wang, X.Y.; Zhang, R.; Zhang, H.J. Genetic analysis of morphological traits in spring wheat from the Northeast of China by a genome-wide association study. Front. Genet. 2022, 13, 934757. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, C.; Wang, T.; Liu, J.; Qiao, Q.; Yang, Y.; Hu, P.; Zhang, L.; Zhao, S.; Chen, D.; et al. Identification of the candidate gene controlling tiller angle in common wheat through genome-wide association study and linkage analysis. Crop J. 2023, 11, 870–877. [Google Scholar] [CrossRef]
- Cao, X.; Deng, M.; Zhang, Z.; Liu, Y.; Yang, X.; Zhou, H.; Zhang, Z. Molecular characterization and expression analysis of TaTAC1 gene in Triticum aestivum. J. Plant Genet. Resour. 2017, 18, 125–132. (In Chinese) [Google Scholar]
- Wang, Y. Cloning and functional analysis of the TaTAC1 gene regulating tiller in bread wheat (Triticum aestivum L.). Master’s Thesis, Henan Agricultural University, Zhengzhou, China, 2019. (In Chinese). [Google Scholar]
- Sultan, S.E. Phenotypic plasticity and plant adaptation. Acta Bot. Neerl. 1995, 44, 363–383. [Google Scholar] [CrossRef]
- Olgun, M.; Yildirim, T.; Turan, M. Adaptation of wheat genotypes (Triticum aestivum L.) to cold climate. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2005, 55, 9–15. [Google Scholar]
- Satyakam; Zinta, G.; Singh, R.K.; Kumar, R. Cold adaptation strategies in plants-An emerging role of epigenetics and antifreeze proteins to engineer cold resilient plants. Front. Genet. 2022, 13, 909007. [Google Scholar] [CrossRef]
- Gao, H.B.; Wang, W.G.; Wang, Y.H.; Liang, Y. Molecular mechanisms underlying plant architecture and its environmental plasticity in rice. Mol. Breed. 2019, 39, 167. [Google Scholar] [CrossRef]
- Ruszkowski, M.; Jaworska, K.J.G.P. An attempt to determine the genetic relationship between external form (growth type) of young plants and winter-hardiness in winter wheat. Genet. Pol. 1964, 5, 255–260. [Google Scholar]
- Klages, K.H. Metrical attributes and the physiology of hardy varieties of winter wheat. Agron. J. 1926, 18, 529–566. [Google Scholar] [CrossRef]
- Fukuda, N.; Fujita, M.; Ohta, Y.; Sase, S.; Nishimura, S.; Ezura, H. Directional blue light irradiation triggers epidermal cell elongation of abaxial side resulting in inhibition of leaf epinasty in geranium under red light condition. Sci. Hortic. 2008, 115, 176–182. [Google Scholar] [CrossRef]
- Roberts, D.W.A. The effect of light on development of the rosette growth habit of winter wheat. Can. J. Bot. 1984, 62, 818–822. [Google Scholar] [CrossRef]
- Xu, Y.B.; Shen, Z.T.; Xu, J.C.; Zhu, H.; Chen, Y.; Zhu, L.H. Interval mapping of quantitative trait loci by molecular markers in rice (Oryza-sativa L.). Sci. China Ser. B Chem. 1995, 38, 422–428. [Google Scholar]
- Li, Z.K.; Paterson, A.H.; Pinson, S.R.M.; Stansel, J.W. RFLP facilitated analysis of tiller and leaf angles in rice (Oryza sativa L.). Euphytica 1999, 109, 79–84. [Google Scholar] [CrossRef]
- Yan, J.Q.; Zhu, J.; He, C.X.; Benmoussa, M.; Wu, P. Molecular marker-assisted dissection of genotype x environment interaction for plant type traits in rice (Oryza sativa L.). Crop Sci. 1999, 39, 538–544. [Google Scholar] [CrossRef]
- Qian, Q.; He, P.; Teng, S.; Zeng, D.L.; Zhu, L.H. QTLs analysis of tiller angle in rice (Oryza sativa L.). Acta Genet. Sin. 2001, 28, 29–32. [Google Scholar] [PubMed]
- Thomson, M.J.; Tai, T.H.; McClung, A.M.; Lai, X.H.; Hinga, M.E.; Lobos, K.B.; Xu, Y.; Martinez, C.P.; McCouch, S.R. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor. Appl. Genet. 2003, 107, 479–493. [Google Scholar] [CrossRef] [PubMed]
- He, J.W.; Shao, G.N.; Wei, X.J.; Huang, F.L.; Sheng, Z.H.; Tang, S.Q.; Hu, P.S. Fine mapping and candidate gene analysis of qTAC8, a major quantitative trait locus controlling tiller angle in rice (Oryza sativa L.). PLoS ONE 2017, 12, e0178177. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Tan, L.; Sun, H.; Zhao, X.; Liu, F.; Cai, H.; Fu, Y.; Sun, X.; Gu, P.; Zhu, Z.; et al. Natural variations at TIG1 encoding a TCP Transcription factor contribute to plant architecture domestication in rice. Mol. Plant 2019, 12, 1075–1089. [Google Scholar] [CrossRef]
- Hu, M.; Lv, S.W.; Wu, W.G.; Fu, Y.C.; Liu, F.X.; Wang, B.B.; Li, W.G.; Gu, P.; Cai, H.W.; Sun, C.Q.; et al. The domestication of plant architecture in African rice. Plant J. 2018, 94, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Huang, W.; Gao, J.P.; Yang, J.; Shi, M.; Zhu, M.Z.; Luo, D.; Lin, H.X. Genetic control of rice plant architecture under domestication. Nat. Genet. 2008, 40, 1365–1369. [Google Scholar] [CrossRef]
- Tan, L.B.; Li, X.R.; Liu, F.X.; Sun, X.Y.; Li, C.G.; Zhu, Z.F.; Fu, Y.C.; Cai, H.W.; Wang, X.K.; Xie, D.X.; et al. Control of a key transition from prostrate to erect growth in rice domestication. Nat. Genet. 2008, 40, 1360–1364. [Google Scholar] [CrossRef]
- Wu, Y.Z.; Zhao, S.S.; Li, X.R.; Zhang, B.S.; Jiang, L.Y.; Tang, Y.Y.; Zhao, J.; Ma, X.; Cai, H.W.; Sun, C.Q.; et al. Deletions linked to PROG1 gene participate in plant architecture domestication in Asian and African rice. Nat. Commun. 2018, 9, 4157. [Google Scholar] [CrossRef]
- Hollender, C.A.; Waite, J.M.; Tabb, A.; Raines, D.; Chinnithambi, S.; Dardick, C. Alteration of TAC1 expression in Prunus species leads to pleiotropic shoot phenotypes. Hortic. Res. 2018, 5, 26. [Google Scholar] [CrossRef] [PubMed]
- Waite, J.M.; Dardick, C. TILLER ANGLE CONTROL 1 modulates plant architecture in response to photosynthetic signals. J. Exp. Bot. 2018, 69, 4935–4944. [Google Scholar] [CrossRef] [PubMed]
- Volkmann, D.; Baluska, F. Gravity: One of the driving forces for evolution. Protoplasma 2006, 229, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Firn, R.D.; Digby, J. Solving the puzzle of gravitropism—has a lost piece been found? Planta 1997, 203, S159–S163. [Google Scholar] [CrossRef] [PubMed]
- Strohm, A.; Baldwin, K.; Masson, P. Multiple roles for membrane-associated protein trafficking and signaling in gravitropism. Front. Plant Sci. 2012, 3, 274. [Google Scholar] [CrossRef]
- Darwin, F. The statolith-theory of geotropism. Proc. R. Soc. Lond. 1903, 71, 362–373. [Google Scholar] [CrossRef]
- Fukaki, H.; Wysocka-Diller, J.; Kato, T.; Fujisawa, H.; Benfey, P.N.; Tasaka, M. Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana. Plant J. 1998, 14, 425–430. [Google Scholar] [CrossRef]
- Fujihira, K.; Kurata, T.; Watahiki, M.K.; Karahara, I.; Yamamoto, K.T. An agravitropic mutant of Arabidopsis, endodermal-amyloplast less 1, that lacks amyloplasts in hypocotyl endodermal cell layer. Plant Cell Physiol. 2000, 41, 1193–1199. [Google Scholar] [CrossRef]
- Abe, K.; Takahashi, H.; Suge, H. Graviresponding sites in shoots of normal and lazy rice seedlings. Physiol. Plant. 1994, 92, 371–374. [Google Scholar] [CrossRef]
- Abe, K.; Takahashi, H.; Suge, H. Localization of cells containing sedimented amyloplasts in the shoots of normal and lazy rice seedlings. Biol. Sci. Space 1994, 8, 221–225. [Google Scholar] [CrossRef]
- Sakuraba, Y.; Piao, W.; Lim, J.H.; Han, S.H.; Kim, Y.S.; An, G.; Paek, N.C. Rice ONAC106 inhibits leaf senescence and increases salt tolerance and tiller angle. Plant Cell Physiol. 2015, 56, 2325–2339. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Xiao, X.L.; Zong, J.Q.; Chen, J.B.; Li, J.J.; Guo, H.L.; Liu, J.X. Comparative transcriptome analysis provides new insights into erect and prostrate growth in bermudagrass (Cynodon dactylon L.). Plant Physiol. Biochem. 2017, 121, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Fan, J.B.; Liu, J.X. Comparative proteomic analysis provides new insights into the specialization of shoots and stolons in bermudagrass (Cynodon dactylon L.). BMC Genom. 2019, 20, 708. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.Y.; Chen, S.; Wang, Z.Z.; Liu, J.X.; Zhang, B. Proteome analysis of bermudagrass stolons and rhizomes provides new insights into the adaptation of plant stems to aboveground and underground growth. J. Proteom. 2021, 241, 104245. [Google Scholar] [CrossRef] [PubMed]
- Hirose, T.; Ohdan, T.; Nakamura, Y.; Terao, T. Expression profiling of genes related to starch synthesis in rice leaf sheaths during the heading period. Physiol. Plant. 2006, 128, 425–435. [Google Scholar] [CrossRef]
- Okamura, M.; Hirose, T.; Hashida, Y.; Yamagishi, T.; Ohsugi, R.; Aoki, N. Starch reduction in rice stems due to a lack of OsAGPL1 or OsAPL3 decreases grain yield under low irradiance during ripening and modifies plant architecture. Funct. Plant Biol. 2013, 40, 1137–1146. [Google Scholar] [CrossRef]
- Morita, R.; Sugino, M.; Hatanaka, T.; Misoo, S.; Fukayama, H. CO2-responsive CONSTANS, CONSTANS-like, and time of chlorophyll a/b binding protein Expression1 protein is a positive regulator of starch synthesis in vegetative organs of rice. Plant Physiol. 2015, 167, 1321–1331. [Google Scholar] [CrossRef]
- Periappuram, C.; Steinhauer, L.; Barton, D.L.; Taylor, D.C.; Chatson, B.; Zou, J. The plastidic phosphoglucomutase from Arabidopsis. A reversible enzyme reaction with an important role in metabolic control. Plant Physiol. 2000, 122, 1193–1200. [Google Scholar] [CrossRef]
- Yu, T.S.; Lue, W.L.; Wang, S.M.; Chen, J.C. Mutation of arabidopsis plastid phosphoglucose isomerase affects leaf starch synthesis and floral initiation. Plant Physiol. 2000, 123, 319–325. [Google Scholar] [CrossRef]
- Ritte, G.; Lloyd, J.R.; Eckermann, N.; Rottmann, A.; Kossmann, J.; Steup, M. The starch-related R1 protein is an α-glucan, water dikinase. Proc. Natl. Acad. Sci. USA 2002, 99, 7166–7171. [Google Scholar] [CrossRef]
- Baunsgaard, L.; Lütken, H.; Mikkelsen, R.; Glaring, M.A.; Pham, T.T.; Blennow, A. A novel isoform of glucan, water dikinase phosphorylates pre-phosphorylated α-glucans and is involved in starch degradation in Arabidopsis. Plant J. 2005, 41, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Vitha, S.; Yang, M.; Sack, F.D.; Kiss, J.Z. Gravitropism in the starch excess mutant of Arabidopsis thaliana. Am. J. Bot. 2007, 94, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Stitt, M.; Zeeman, S.C. Starch turnover: Pathways, regulation and role in growth. Curr. Opin. Plant Biol. 2012, 15, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Wang, W.; Zhang, N.; Cai, Y.; Liang, Y.; Meng, X.; Yuan, Y.; Li, J.; Wu, D.; Wang, Y. LAZY2 controls rice tiller angle through regulating starch biosynthesis in gravity-sensing cells. New Phytol. 2021, 231, 1073–1087. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Huang, L.; Song, Y.; Yuan, Y.; Xu, S.; Wang, X.; Liang, Y.; Zhou, J.; Liu, G.; Li, J.; et al. LAZY3 interacts with LAZY2 to regulate tiller angle by modulating shoot gravity perception in rice. Plant Biotechnol. J. 2023, 21, 1217–1228. [Google Scholar] [CrossRef]
- Xie, C.M.; Zhang, G.; An, L.; Chen, X.Y.; Fang, R.X. Phytochrome-interacting factor-like protein OsPIL15 integrates light and gravitropism to regulate tiller angle in rice. Planta 2019, 250, 105–114. [Google Scholar] [CrossRef]
- Ding, C.; Lin, X.; Zuo, Y.; Yu, Z.; Baerson, S.R.; Pan, Z.; Zeng, R.; Song, Y. Transcription factor OsbZIP49 controls tiller angle and plant architecture through the induction of indole-3-acetic acid-amido synthetases in rice. Plant J. 2021, 108, 1346–1364. [Google Scholar] [CrossRef]
- Tanimoto, M.; Tremblay, R.; Colasanti, J. Altered gravitropic response, amyloplast sedimentation and circumnutation in the Arabidopsis shoot gravitropism 5 mutant are associated with reduced starch levels. Plant Mol. Biol. 2008, 67, 57–69. [Google Scholar] [CrossRef]
- Tomas, M.; Flexas, J.; Copolovici, L.; Galmes, J.; Hallik, L.; Medrano, H.; Ribas-Carbo, M.; Tosens, T.; Vislap, V.; Niinemets, U. Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: Quantitative limitations and scaling up by models. J. Exp. Bot. 2013, 64, 2269–2281. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Shan, X.T.; Zhao, Q.; Shi, F.L. The MicroRNA397a-LACCASE17 module regulates lignin biosynthesis in Medicago ruthenica (L.). Front. Plant Sci. 2022, 13, 978515. [Google Scholar] [CrossRef]
- Zhang, B.C.; Gao, Y.H.; Zhang, L.J.; Zhou, Y.H. The plant cell wall: Biosynthesis, construction, and functions. J. Integr. Plant Biol. 2021, 63, 251–272. [Google Scholar] [CrossRef] [PubMed]
- Burton, R.A.; Gidley, M.J.; Fincher, G.B. Heterogeneity in the chemistry, structure and function of plant cell walls. Nat. Chem. Biol. 2010, 6, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.Y.; Liu, Y.S.; Zeng, Y.N.; Himmel, M.E.; Baker, J.O.; Bayer, E.A. How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 2012, 338, 1055–1060. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gao, C.; Mentink-Vigier, F.; Tang, L.; Zhang, D.; Wang, S.; Cao, S.; Xu, Z.; Liu, X.; Wang, T.; et al. Arabinosyl deacetylase modulates the arabinoxylan acetylation profile and secondary wall formation. Plant cell 2019, 31, 1113–1126. [Google Scholar] [CrossRef]
- Somerville, C.; Bauer, S.; Brininstool, G.; Facette, M.; Hamann, T.; Milne, J.; Osborne, E.; Paredez, A.; Persson, S.; Raab, T.; et al. Toward a systems approach to understanding plant cell walls. Science 2004, 306, 2206–2211. [Google Scholar] [CrossRef]
- Boerjan, W.; Ralph, J.; Baucher, M. Lignin biosynthesis. Annu. Rev. Plant Biol. 2003, 54, 519–546. [Google Scholar] [CrossRef]
- Kokubo, A.; Kuraishi, S.; Sakurai, N. Culm strength of barley 1: Correlation among maximum bending stress, cell wall dimensions, and cellulose content. Plant Physiol. 1989, 91, 876–882. [Google Scholar] [CrossRef]
- Kokubo, A.; Sakurai, N.; Kuraishi, S.; Takeda, K. Culm brittleness of barley (Hordeum vulgare L.) mutants is caused by smaller number of cellulose molecules in cell wall 1. Plant Physiol. 1991, 97, 509–514. [Google Scholar] [CrossRef]
- Li, Y.; Qian, Q.; Zhou, Y.; Yan, M.; Sun, L.; Zhang, M.; Fu, Z.; Wang, Y.; Han, B.; Pang, X.; et al. BRITTLE CULM1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants. Plant Cell 2003, 15, 2020–2031. [Google Scholar] [CrossRef]
- Jones, L.; Ennos, A.R.; Turner, S.R. Cloning and characterization of irregular xylem4 (irx4): A severely lignin-deficient mutant of Arabidopsis. Plant J. 2001, 26, 205–216. [Google Scholar] [CrossRef]
- Vanholme, R.; Morreel, K.; Ralph, J.; Boerjan, W. Lignin engineering. Curr. Opin. Plant Biol. 2008, 11, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Bonawitz, N.D.; Chapple, C. The genetics of lignin biosynthesis: Connecting genotype to phenotype. Annu. Rev. Genet. 2010, 44, 337–363. [Google Scholar] [CrossRef] [PubMed]
- Berthet, S.; Demont-Caulet, N.; Pollet, B.; Bidzinski, P.; Cézard, L.; Le Bris, P.; Borrega, N.; Hervé, J.; Blondet, E.; Balzergue, S.; et al. Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell 2011, 23, 1124–1137. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Nakashima, J.; Chen, F.; Yin, Y.; Fu, C.; Yun, J.; Shao, H.; Wang, X.; Wang, Z.-Y.; Dixon, R.A. LACCASE is necessary and nonredundant with PEROXIDASE for lignin polymerization during vascular development in Arabidopsis. Plant Cell 2013, 25, 3976–3987. [Google Scholar] [CrossRef]
- Jones-Rhoades, M.W.; Bartel, D.P. Computational identification of plant MicroRNAs and their targets, including a stress-induced miRNA. Mol. Cell 2004, 14, 787–799. [Google Scholar] [CrossRef]
- Lu, S.F.; Sun, Y.H.; Chiang, V.L. Stress-responsive microRNAs in Populus. Plant J. 2008, 55, 131–151. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Yu, Y.; Wang, C.Y.; Li, Z.Y.; Liu, Q.; Xu, J.; Liao, J.Y.; Wang, X.J.; Qu, L.H.; Chen, F.; et al. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat. Biotechnol. 2013, 31, 848–852. [Google Scholar] [CrossRef]
- Wang, C.Y.; Zhang, S.C.; Yu, Y.; Luo, Y.C.; Liu, Q.; Ju, C.L.; Zhang, Y.C.; Qu, L.H.; Lucas, W.J.; Wang, X.J.; et al. MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis. Plant Biotechnol. J. 2014, 12, 1132–1142. [Google Scholar] [CrossRef]
- Swetha, C.; Basu, D.; Pachamuthu, K.; Tirumalai, V.; Nair, A.; Prasad, M.; Shivaprasad, P.V. Major domestication-related phenotypes in indica rice are due to loss of miRNA-mediated laccase silencing. Plant Cell 2018, 30, 2649–2662. [Google Scholar] [CrossRef]
- Mohnen, D. Pectin structure and biosynthesis. Curr. Opin. Plant Biol. 2008, 11, 266–277. [Google Scholar] [CrossRef]
- Willats, W.G.T.; Orfila, C.; Limberg, G.; Buchholt, H.C.; van Alebeek, G.; Voragen, A.G.J.; Marcus, S.E.; Christensen, T.; Mikkelsen, J.D.; Murray, B.S.; et al. Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls—Implications for pectin methyl esterase action, matrix properties, and cell adhesion. J. Biol. Chem. 2001, 276, 19404–19413. [Google Scholar] [CrossRef] [PubMed]
- Levesque-Tremblay, G.; Pelloux, J.; Braybrook, S.A.; Müller, K. Tuning of pectin methylesterification: Consequences for cell wall biomechanics and development. Planta 2015, 242, 791–811. [Google Scholar] [CrossRef] [PubMed]
- Sterling, J.D.; Atmodjo, M.A.; Inwood, S.E.; Kolli, V.S.K.; Quigley, H.F.; Hahn, M.G.; Mohnen, D. Functional identification of an Arabidopsis pectin biosynthetic homogalacturonan galacturonosyltransferase. Proc. Natl. Acad. Sci. USA 2006, 103, 5236–5241. [Google Scholar] [CrossRef] [PubMed]
- Wolf, S.; Mouille, G.; Pelloux, J. Homogalacturonan methyl-esterification and plant development. Mol. Plant 2009, 2, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Phyo, P.; Wang, T.; Kiemle, S.N.; O’Neill, H.; Pingali, S.V.; Hong, M.; Cosgrove, D.J. Gradients in wall mechanics and polysaccharides along growing inflorescence stems. Plant Physiol. 2017, 175, 1593–1607. [Google Scholar] [CrossRef] [PubMed]
- Parre, E.; Geitmann, A. Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense. Planta 2005, 220, 582–592. [Google Scholar] [CrossRef]
- Bosch, M.; Hepler, P.K. Pectin methylesterases and pectin dynamics in pollen tubes. Plant Cell 2005, 17, 3219–3226. [Google Scholar] [CrossRef]
- Rockel, N.; Wolf, S.; Kost, B.; Rausch, T.; Greiner, S. Elaborate spatial patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis, and reflects the distribution of esterified and de-esterified pectins. Plant J. 2008, 53, 133–143. [Google Scholar] [CrossRef]
- Sanati Nezhad, A.; Packirisamy, M.; Geitmann, A. Dynamic, high precision targeting of growth modulating agents is able to trigger pollen tube growth reorientation. Plant J. 2014, 80, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.Y.; Wu, B.B.; Feng, S.L.; Lu, S.Q.; Guan, C.M.; Zhang, X.; Qiu, D.L.; Hu, Y.C.; Zhou, Y.H.; Li, C.Y.; et al. Mechanical regulation of organ asymmetry in leaves. Nat. Plants 2017, 3, 724–733. [Google Scholar] [CrossRef]
- Haas, K.T.; Wightman, R.; Meyerowitz, E.M.; Peaucelle, A. Pectin homogalacturonan nanofilament expansion drives morphogenesis in plant epidermal cells. Science 2020, 367, 1003–1007. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.X.; Yan, G.B.; Wang, S.B.; Yu, L.Q.; Lin, W.; Lu, S.P.; Guo, L.; Yang, Q.Y.; Dai, C. Comparative transcriptome profiling reveals the multiple levels of crosstalk in phytohormone networks in Brassica napus. Plant Biotechnol. J. 2023, 21, 1611–1627. [Google Scholar] [CrossRef] [PubMed]
- Ciura, J.; Kruk, J. Phytohormones as targets for improving plant productivity and stress tolerance. J. Plant Physiol. 2018, 229, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, J.; Fukui, K.; Seto, Y.; Takaoka, Y.; Okamoto, M. Ligand-receptor interactions in plant hormone signaling. Plant J. 2021, 105, 290–306. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.; Alabadi, D.; Blazquez, M.A. Spatial regulation of plant hormone action. J. Exp. Bot. 2023, 74, 6089–6103. [Google Scholar] [CrossRef]
- Verma, V.; Ravindran, P.; Kumar, P.P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016, 16, 86. [Google Scholar] [CrossRef]
- Yamamuro, C.; Zhu, J.K.; Yang, Z.B. Epigenetic modifications and plant hormone action. Mol. Plant 2016, 9, 57–70. [Google Scholar] [CrossRef]
- Wang, W.G.; Gao, H.B.; Liang, Y.; Li, J.Y.; Wang, Y.H. Molecular basis underlying rice tiller angle: Current progress and future perspectives. Mol. Plant 2022, 15, 125–137. [Google Scholar] [CrossRef]
- Leyser, O. Regulation of shoot branching by auxin. Trends Plant Sci. 2003, 8, 541–545. [Google Scholar] [CrossRef]
- Gallavotti, A. The role of auxin in shaping shoot architecture. J. Exp. Bot. 2013, 64, 2593–2608. [Google Scholar] [CrossRef]
- Ljung, K.; Bhalerao, R.P.; Sandberg, G. Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J. 2001, 28, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Tan, L.B.; Zhu, Z.F.; Xiao, L.T.; Xie, D.X.; Sun, C.Q. PAY1 improves plant architecture and enhances grain yield in rice. Plant J. 2015, 83, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Li, P.J.; Wang, Y.H.; Qian, Q.; Fu, Z.M.; Wang, M.; Zeng, D.L.; Li, B.H.; Wang, X.J.; Li, J.Y. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res. 2007, 17, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, T.; Iino, M. Identification of the gravitropism-related rice gene LAZY1 and elucidation of LAZY1-dependent and -independent gravity signaling pathways. Plant Cell Physiol. 2007, 48, 678–688. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liang, Y.; Yuan, Y.; Wang, L.; Meng, X.; Xiong, G.; Zhou, J.; Cai, Y.; Han, N.; Hua, L.; et al. OsBRXL4 regulates shoot gravitropism and rice tiller angle through affecting LAZY1 nuclear localization. Mol. Plant 2019, 12, 1143–1156. [Google Scholar] [CrossRef]
- Che, X.; Splitt, B.L.; Eckholm, M.T.; Miller, N.D.; Spalding, E.P. BRXL4-LAZY1 interaction at the plasma membrane controls Arabidopsis branch angle and gravitropism. Plant J. 2023, 113, 211–224. [Google Scholar] [CrossRef]
- Hu, Y.; Li, S.; Fan, X.; Song, S.; Zhou, X.; Weng, X.; Xiao, J.; Li, X.; Xiong, L.; You, A.; et al. OsHOX1 and OsHOX28 Redundantly shape rice tiller angle by reducing HSFA2D expression and auxin content. Plant Physiol. 2020, 184, 1424–1437. [Google Scholar] [CrossRef]
- Li, S.; Xie, Z.; Hu, C.; Zhang, J. A review of auxin response factors (ARFs) in plants. Front. Plant Sci. 2016, 7, 47. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.L.; Chen, Z.H.; Wei, Y.; Qi, Y.H.; Wu, C.Y. OsmiR167a-targeted auxin response factors modulate tiller angle via fine-tuning auxin distribution in rice. Plant Biotechnol. J. 2020, 18, 2015–2026. [Google Scholar] [CrossRef]
- Li, Y.-F.; Zheng, Y.; Addo-Quaye, C.; Zhang, L.; Saini, A.; Jagadeeswaran, G.; Axtell, M.J.; Zhang, W.; Sunkar, R. Transcriptome-wide identification of microRNA targets in rice. Plant J. 2010, 62, 742–759. [Google Scholar] [CrossRef]
- Zhang, Y. miRU: An automated plant miRNA target prediction server. Nucleic Acids Res. 2005, 33, W701–W704. [Google Scholar] [CrossRef] [PubMed]
- Bennett, M.J.; Marchant, A.; Green, H.G.; May, S.T.; Ward, S.P.; Millner, P.A.; Walker, A.R.; Schulz, B.; Feldmann, K.A. Arabidopsis AUX1 gene: A permease-like regulator of root gravitropism. Science 1996, 273, 948–950. [Google Scholar] [CrossRef]
- Muday, G.K.; Murphy, A.S. An emerging model of auxin transport regulation. Plant Cell 2002, 14, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Zhu, L.; Shou, H.X.; Wu, P. A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant Cell Physiol. 2005, 46, 1674–1681. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.N.; Fan, X.R.; Song, W.J.; Zhang, Y.L.; Xu, G.H. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnol. J. 2012, 10, 139–149. [Google Scholar] [CrossRef]
- Harmoko, R.; Yoo, J.Y.; Ko, K.S.; Ramasamy, N.K.; Hwang, B.Y.; Lee, E.J.; Kim, H.S.; Lee, K.J.; Oh, D.B.; Kim, D.Y.; et al. N-glycan containing a core α1,3-fucose residue is required for basipetal auxin transport and gravitropic response in rice (Oryza sativa). New Phytol. 2016, 212, 108–122. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.W.; Zhou, X.M.; Ahmad, N.; Zhang, K.; Tang, R.H.; Zhao, H.L.; Jiang, J.; Tian, M.D.; Li, C.S.; Li, A.Q.; et al. BSA-seq and genetic mapping identified candidate genes for branching habit in peanut. Theor. Appl. Genet. 2022, 135, 4457–4468. [Google Scholar] [CrossRef]
- Gomez-Roldan, V.; Fermas, S.; Brewer, P.B.; Puech-Pages, V.; Dun, E.A.; Pillot, J.P.; Letisse, F.; Matusova, R.; Danoun, S.; Portais, J.C.; et al. Strigolactone inhibition of shoot branching. Nature 2008, 455, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Zou, J.H.; Zhang, S.Y.; Zaitlin, D.; Zhu, L.H. Strigolactones are a new-defined class of plant hormones which inhibit shoot branching and mediate the interaction of plant-AM fungi and plant-parasitic weeds. Sci. China Life Sci. 2009, 52, 693–700. [Google Scholar] [CrossRef]
- Stirnberg, P.; Furner, I.J.; Ottoline Leyser, H.M. MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J. 2007, 50, 80–94. [Google Scholar] [CrossRef]
- Sang, D.J.; Chen, D.Q.; Liu, G.F.; Liang, Y.; Huang, L.Z.; Meng, X.B.; Chu, J.F.; Sun, X.H.; Dong, G.J.; Yuan, Y.D.; et al. Strigolactones regulate rice tiller angle by attenuating shoot gravitropism through inhibiting auxin biosynthesis. Proc. Natl. Acad. Sci. USA 2014, 111, 11199–11204. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.Y.; Chen, D.H.; Li, X.M.; Qiao, S.L.; Shi, C.N.; Li, C.X.; Shen, H.Y.; Wang, X.L. Brassinosteroid signaling regulates leaf erectness in Oryza sativa via the control of a specific U-type cyclin and cell proliferation. Dev. Cell 2015, 34, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xu, Y.; Zhang, C.; Ma, Q.; Joo, S.H.; Kim, S.K.; Xu, Z.H.; Chong, K. OsLIC, a novel CCCH-type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling. PLoS ONE 2008, 3, e3521. [Google Scholar] [CrossRef] [PubMed]
- Hollender, C.A.; Hill, J.L.; Waite, J.; Dardick, C. Opposing influences of TAC1 and LAZY1 on lateral shoot orientation in Arabidopsis. Sci. Rep. 2020, 10, 6051. [Google Scholar] [CrossRef]
- Taniguchi, M.; Furutani, M.; Nishimura, T.; Nakamura, M.; Fushita, T.; Iijima, K.; Baba, K.; Tanaka, H.; Toyota, M.; Tasaka, M.; et al. The Arabidopsis LAZY1 family plays a key role in gravity signaling within statocytes and in branch angle control of roots and shoots. Plant Cell 2017, 29, 1984–1999. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.B.; Mi, X.Z.; Jin, L.; Guo, R.; Zhu, J.Y.; Xie, H.; Liu, L.; An, Y.L.; Zhang, C.; Wei, C.L.; et al. OsLAZY1 mediates shoot gravitropism and branch angle in tea plants (Camellia sinensis). BMC Plant Biol. 2021, 21, 243. [Google Scholar] [CrossRef]
- Yoshihara, T.; Spalding, E.P. LAZY1 genes mediate the effects of gravity on auxin gradients and plant architecture. Plant Physiol. 2017, 175, 959–969. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, T.; Spalding, E.P.; Iino, M. AtLAZY1 is a signaling component required for gravitropism of the Arabidopsis thaliana inflorescence. Plant J. 2013, 74, 267–279. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, J.; Wu, L.; Shao, Y.; Wu, Y.; Mao, C. Functional divergence of PIN1 paralogousgenes in rice. Plant Cell Physiol. 2019, 60, 2720–2732. [Google Scholar] [CrossRef]
- Chen, Y.; Dan, Z.; Gao, F.; Chen, P.; Fan, F.; Li, S. Rice GROWTH-REGULATING FACTOR7 modulates plant architecture through regulating GA and Indole-3-Acetic Acid metabolism. Plant Physiol. 2020, 184, 393–406. [Google Scholar] [CrossRef]
- Du, F.; Jiao, Y. Mechanical control of plant morphogenesis: Concepts and progress. Curr. Opin. Plant Biol. 2020, 57, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Boudaoud, A. An introduction to the mechanics of morphogenesis for plant biologists. Trends Plant Sci. 2010, 15, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Hamant, O. Widespread mechanosensing controls the structure behind the architecture in plants. Curr. Opin. Plant Biol. 2013, 16, 654–660. [Google Scholar] [CrossRef] [PubMed]
- Correa, J.; Postma, J.A.; Watt, M.; Wojciechowski, T. Soil compaction and the architectural plasticity of root systems. J. Exp. Bot. 2019, 70, 6019–6034. [Google Scholar] [CrossRef] [PubMed]
- Porter, B.W.; Zhu, Y.J.; Webb, D.T.; Christopher, D.A. Novel thigmomorphogenetic responses in Carica papaya: Touch decreases anthocyanin levels and stimulates petiole cork outgrowths. Ann. Bot. 2009, 103, 847–858. [Google Scholar] [CrossRef]
- Lee, D.; Polisensky, D.H.; Braam, J. Genome-wide identification of touch- and darkness-regulated Arabidopsis genes: A focus on calmodulin-like and XTH genes. New Phytol. 2005, 165, 429–444. [Google Scholar] [CrossRef]
- Liu, Z.; Fadiji, T.; Yang, J.; Li, Z.; Tchuenbou-Magaia, F. Impact of mechanical stimulation on the life cycle of horticultural plant. Hortic. Plant J. 2023, 9, 381–394. [Google Scholar] [CrossRef]
- Anten, N.P.R.; Casado-Garcia, R.; Nagashima, H. Effects of mechanical stress and plant density on mechanical characteristics, growth, and lifetime reproduction of tobacco plants. Am. Nat. 2005, 166, 650–660. [Google Scholar] [CrossRef]
- Sparke, M.-A.; Wegscheider, A.; Winterhagen, P.; Ruttensperger, U.; Hegele, M.; Wünsche, J.N. Air-based mechanical stimulation controls plant height of ornamental plants and vegetable crops under greenhouse conditions. HortTechnology 2021, 31, 405–416. [Google Scholar] [CrossRef]
- Patterson, M.R. Role of mechanical loading in growth of sunflower (Helianthus annuus) seedlings. J. Exp. Bot. 1992, 43, 933–939. [Google Scholar] [CrossRef]
- Sparke, M.-A.; Müller, J.; Ruttensperger, U.; Heesch, F.; Wünsche, J.-N. Growth regulation by air stream-based mechanical stimulation in tomato (Solanum lycopersicum L.)—Part I: Optimization of application frequency and intensity. Sci. Hortic. 2022, 304, 111252. [Google Scholar] [CrossRef]
- Sparke, M.A.; Pujner, K.; Muller, J.; Ruttensperger, U.; Heesch, F.; Wunsche, J.N. Growth regulation by air stream-based mechanical stimulation in tomato (Solanum lycopersicum L.)—Part II: Phenotypic and physiological responses. Sci. Hortic. 2022, 305, 111359. [Google Scholar] [CrossRef]
- Zargar, O.; Pharr, M.; Muliana, A. Modeling and simulation of creep response of sorghum stems: Towards an understanding of stem geometrical and material variations. Biosyst. Eng. 2022, 217, 1–17. [Google Scholar] [CrossRef]
- Gomez, F.E.; Muliana, A.H.; Niklas, K.J.; Rooney, W.L. Identifying morphological and mechanical traits associated with stem lodging in bioenergy sorgh (Sorghum bicolor). Bioenergy Res. 2017, 10, 635–647. [Google Scholar] [CrossRef]
- Wang, Y.H.; He, W.M.; Dong, M.; Yu, F.H.; Zhang, L.L.; Cui, Q.G.; Chu, Y. Effects of shaking on the growth and mechanical properties of Hedysarum laeve may be independent of water regimes. Int. J. Plant Sci. 2008, 169, 503–508. [Google Scholar] [CrossRef]
- Guo, K.; Huang, C.; Miao, Y.; Cosgrove, D.J.; Hsia, K.J. Leaf morphogenesis: The multifaceted roles of mechanics. Mol. Plant 2022, 15, 1098–1119. [Google Scholar] [CrossRef]
QTL/Genes | Chromosome | Position | Reference |
---|---|---|---|
Vrn1 | 5A | - | [22] |
Near Gli-A2 (Xpsr10) | 6A | - | [23] |
Ppd-D1 | 2D | - | |
wPt-6509 | 3A | - | [24] |
wPt-1151 | 3B | - | |
A9729 | 3B | 104.14 cM | [25] |
A17278 | 6B | 36.84 cM | |
A12079 | 4A | 215.58 cM | |
S1133336 | 2A | 217.5–219.7 cM | [26] |
D1202558 | 2B | 60.3–64.7 cM | |
D2294169 | 2B | 65.1 cM | |
D1137224 | 2B | 117.7–124.3cM | |
D1271842 | 3A | 0.6–6.5 cM | |
D1266232 | 3B | 19.7–29.4 cM | |
S1049173 | 3B | 68.2–75.3 cM | |
D1665929 | 4A | 37.1–39.8 cM | |
D1110414 | 4B | 0–3 cM | |
D1395268 | 4B | 132.4–138 cM | |
D1720107 | 4B | 138.4 cM | |
D2276320 | 5A | 164.3–168.9 cM | |
D1721703 | 5A | 168.6 cM | |
D1076422 | 6A | 185.2–191.1 cM | |
D2289020 | 6B | 35.5–36.8 cM | |
D2295851 | 7A | 91.2–92.4 cM | |
D1031337 | 7A | 91.2–92.4 cM | |
D1112046 | 7B | 181.9–188.8 cM | |
QTA.caas-1A | 1A | 308.8–356.7 Mb | [27] |
QTA.caas-5DL | 5D | 408.6- 418.4 Mb | |
QTa.sau-2B-769 | 2B | 768.6–772.1 Mb | [29] |
QTa.sau-3D-603 | 3D | 603.2–604.2 Mb | |
QTa.sau-3D-607 | 3D | 607.4–609.3 Mb | |
AX-110938146-AX-110053306 | 2B | 91–92.6 Mb | [30] |
AX-111761871-AX-109015706 | 2B | 663.1–664.2 Mb | |
AX-108838201-AX-110788038 | 3D | 602.8–606.7 Mb | |
AX-109626990-AX-108746349 | 4A | 41.4–46.2 Mb | |
AX-108910180 | 5A | 688.9 Mb | |
AX-109887203-AX-108772938 | 5B | 696.7–697 Mb | |
AX-111577272-AX-109955515 | 6A | 23.8–24.4 Mb | |
QTA.hau-4B.1 | 4B | 32,415,741–38,780,285 bp | [31] |
QTA.hau-4B. | 4B | 51,187,994–65,940,855bp | |
QTA.hau-4D | 4D | 11,870,078–16,588,296 bp | |
TaTAC1-A1 | 5A | [32,33] | |
TaHST1L | 5A | [3] | |
TaTA1-6D | 6D | 467.31–470.10 Mb | [28] |
Gene | Accession Numbers | Gene Product Function | Transgenic Method | Phenotype | Reference(s) |
---|---|---|---|---|---|
PROG1 | LOC_Os07g05900 | C2H2 transcription factor | Knockdown | Small tiller angle | [50,51] |
PROG7 | - | C2H2 transcription factor | Overexpression | Large tiller angle | [49] |
RPAD | - | C2H2 transcription factor | Functional complementation | Small tiller angle | [52] |
TAC1 | LOC_Os09g35980 | IGT family protein | Overexpression | Wider tiller angle | [20,32,53,54] |
TAC3 | LOC_Os03g51660 | Conserved hypothetical protein | Knockdown | Wider tiller angle | [18] |
TIG1 | LOC_Os08g33530 | TCP transcriptional activator | Knockdown | Small tiller angle | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Lei, T.; Yan, Y.; Sun, M.; Zhong, T.; Wu, B.; Liu, H.; Zhang, C.; Sun, F.; Xi, Y. Genetic Basis of Tillering Angle from Other Plants to Wheat: Current Progress and Future Perspectives. Plants 2024, 13, 3237. https://doi.org/10.3390/plants13223237
Chen X, Lei T, Yan Y, Sun M, Zhong T, Wu B, Liu H, Zhang C, Sun F, Xi Y. Genetic Basis of Tillering Angle from Other Plants to Wheat: Current Progress and Future Perspectives. Plants. 2024; 13(22):3237. https://doi.org/10.3390/plants13223237
Chicago/Turabian StyleChen, Xiaohong, Tingshu Lei, Yuming Yan, Mengyu Sun, Tao Zhong, Baolin Wu, Hanxi Liu, Chao Zhang, Fengli Sun, and Yajun Xi. 2024. "Genetic Basis of Tillering Angle from Other Plants to Wheat: Current Progress and Future Perspectives" Plants 13, no. 22: 3237. https://doi.org/10.3390/plants13223237
APA StyleChen, X., Lei, T., Yan, Y., Sun, M., Zhong, T., Wu, B., Liu, H., Zhang, C., Sun, F., & Xi, Y. (2024). Genetic Basis of Tillering Angle from Other Plants to Wheat: Current Progress and Future Perspectives. Plants, 13(22), 3237. https://doi.org/10.3390/plants13223237