Coefficient Functionals of Sakaguchi-Type Starlike Functions Involving Caputo-Type Fractional Derivatives Subordinated to the Three-Leaf Function
Abstract
:1. Introduction, Definitions, and Preliminaries
- 1.
- 2.
- 3.
2. Initial Bounds for
3. Coefficient Inequalities for the Function
4. Coefficient Associated with
5. Initial Logarithmic Coefficient Bounds for
6. Zalcman Functional
7. Krushkal Inequality for the Class
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duren, P.L. Univalent Functions, Grundlehren der Mathematischen Wissenschaften, 259; Springer: New York, NY, USA, 1983. [Google Scholar]
- Srivastava, H.M.; Owa, S. An application of the fractional derivative. Math. Jpn. 1984, 29, 383–389. [Google Scholar]
- Salagean, G.S. Subclasses of univalent functions. In Complex Analysis—Fifth Romanian-Finnish Seminar: Part 1, Proceedings of the Seminar, Bucharest, Romania, 28 June–3 July 1981; Springer: Berlin/Heidelberg, Germany, 1398; pp. 362–372. [Google Scholar]
- Bernardi, S.D. Convex and starlike univalent functions. Trans. Am. Math.Soc. 1969, 135, 429–446. [Google Scholar] [CrossRef]
- Caputo, M. Linear models of dissipation whose Q is almost frequency independent, Part II. J. R. Astr. Soc. 1967, 13, 529. [Google Scholar] [CrossRef]
- Salah, J.; Darus, M.A. Subclass of uniformly convex functions associated with a fractional calculus operator involving Caputo’s fractional differentiation. Acta Univ. Apulensis 2010, 24, 295–304. [Google Scholar]
- Vijaya, K.; Murugusundaramoorthy, G.; Breaz, D.; Oros, G.I.; El-Deeb, S.M. Ozaki-type bi-close-to-convex and bi-concave functions involving a modified Caputo’s fractional operator linked with a three-leaf function. Fractal Fract. 2024, 8, 220. [Google Scholar] [CrossRef]
- Pommerenke, C. Univalent Functions; Vanderhoeck & Ruprecht: Gottingen, Germany, 1975. [Google Scholar]
- Hayman, W.K. On the second Hankel determinant of mean univalent functions. Proc. Lond. Math. Soc. 1968, 3, 77–94. [Google Scholar] [CrossRef]
- Keogh, F.R.; Merkes, E.P. A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
- Keopf, W. On the Fekete-Szegö problem for close-to-convex functions. Proc. Am. Math. Soc. 1987, 101, 89–95. [Google Scholar] [CrossRef]
- Khan, M.G.; Ahmad, B.; Murugusundaramoorthy, G.; Chinram, R.; Mashwani, W.K. Applications of modified Sigmoid functions to a class of starlike functions. J. Funct. Spaces 2020, 8, 8844814. [Google Scholar] [CrossRef]
- Mishra, A.K.; Gochhayat, P. The Fekete-Szegö problems for k-uniformly convex functions and for a class defined by the Owa-Serivastava operator. J. Math. Sci. 2008, 347, 563–572. [Google Scholar]
- Noonan, J.W.; Thomas, D.K. On the Second Hankel determinant of a really mean p-valent functions. Trans. Am. Math. 1976, 22, 337–346. [Google Scholar] [CrossRef]
- Wilkes, D.M.; Morgera, S.D.; Noor, F.; Hayes, M.H. A Hermitian Toeplitz matrix is unitarily similar to a real Toeplitz-plus-Hankel matrix. IEEE Trans. Signal Process. 1991, 39, 2146–2148. [Google Scholar] [CrossRef]
- Cho, N.E.; Kumar, S.; Kumar, V.; Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Sharma, K.; Jain, N.K.; Ravichandran, V. Starlike functions associated with cardioid. Afrika Math. 2016, 27, 923–939. [Google Scholar] [CrossRef]
- Wani, L.A.; Swaminathan, A. Starlike and convex functions associated with a Nephroid domain. Bull. Malays. Math. Sci. Soc. 2021, 44, 79–104. [Google Scholar] [CrossRef]
- Raina, R.K.; Sokól, J. On Coefficient estimates for a certain class of starlike functions. Hacettepe. J. Math. Statist. 2015, 44, 1427–1433. [Google Scholar] [CrossRef]
- Raina, R.K.; Sokól, J. Some properties related to a certain class of starlike functions. Comptes Rendus Math. 2015, 353, 973–978. [Google Scholar] [CrossRef]
- Cho, N.E.; Kumar, S.; Kumar, V.; Ravichandran, V.; Serivasatava, H.M. Starlike functions related to the Bell numbers. Symmetry 2019, 11, 219. [Google Scholar] [CrossRef]
- Dzoik, J.; Raina, R.K.; Sokół, J. On certain subclasses of starlike functions related to a shell-like curve connected with Fibonacci numbers. Math. Comput. Model. 2013, 57, 1203–1211. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Bulboaca, T. Initial coefficients and Fekete-Szegő inequalities for functions related to van der pol numbers (VPN). Math. Slovaca. 2023, 73, 1183–1196. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G. Fekete–Szegő for certain subclasses of analytic functions related with nephroid domain. J. Contemp. Math. Anal. 2022, 57, 90–101. [Google Scholar] [CrossRef]
- Gandhi, S. Radius estimates for three leaf function and convex combination of starlike functions. In Mathematical. Analysis 1: Approximation Theory, Proceedings of the International Conference on Recent Advances in Pure and Applied Mathematics (ICRAPAM), New Delhi, India, 23–25 December 2018; Springer Proceedings in Mathematics & Statistics; Deo, N., Gupta, V., Acu, A., Agrawal, P., Eds.; Springer: Singapore, 2018; Volume 306, p. 306. [Google Scholar]
- Sakaguchi, K. On a certain univalent mapping. J. Math. Soc. Jpn. 1959, 11, 72–75. [Google Scholar] [CrossRef]
- Das, R.N.; Singh, P. On subfamily of schlicht mapping. Indian J. Pure Appl. Math. 1977, 8, 864–872. [Google Scholar]
- Seoudy, T.M. Convolution Results and Fekete-Szegö inequalities for certain classes of symmetric starlike and symmetric convex functions. J. Math. 2022, 2021, 8203921. [Google Scholar] [CrossRef]
- Karthikeyan, K.R.; Murugusundaramoorthy, G.S.; Purohit, D.; Suthar, D.L. Certain class of analytic functions with respect to symmetric points defined by q-calculus. J. Math. 2021, 2021, 8298848. [Google Scholar] [CrossRef]
- Mohammed, N.H. Sharp bounds of logarithmic coefficient problems for functions with respect to symmetric points. Mat. Stud. 2023, 59, 68–75. [Google Scholar] [CrossRef]
- Zaprawa, P. Initial logarithmic coefficients for functions starlike with respect to symmetric points. Bol. Soc. Mat. Mex. 2021, 27, 62. [Google Scholar] [CrossRef]
- Zaprawa, P. On coefficient problems for functions starlike with respect to symmetric points. Bol. Soc. Mat. Mex. 2022, 28, 17. [Google Scholar] [CrossRef]
- Libera, R.J.; Złotkiewicz, E.J. Early coefficients of the inverse of a regular convex function. Proc. Am. Math. Soc. 1982, 85, 225–230. [Google Scholar] [CrossRef]
- Arif, M.; Raza, M.; Tang, H.; Hussain, S.; Khan, H. Hankel determinant of order three for familiar subsets of analytic functions related with sine function. Open. Math. 2019, 17, 1615–1630. [Google Scholar] [CrossRef]
- Kwon, O.S.; Lecko, A.; Sim, Y.J. On the fourth coefficient of functions in the carathéodory class. Comput. Methods Funt. Theory 2018, 18, 307–314. [Google Scholar] [CrossRef]
- Ravichandran, V.; Verma, S. Bound for the fifth coefficient of certain starlike functions. Comptes Rendus Math. 2015, 353, 505–510. [Google Scholar] [CrossRef]
- De-Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
- Avkhadiev, F.G.; Wirths, K.J. Schwarz-Pick Type Inequalities; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Fitz Gerald, C.H.; Pommerenke, C. The de-Branges theorem on univalent functions. Trans. Am. Math. Soc. 1985, 290, 683–690. [Google Scholar] [CrossRef]
- Fitz Gerald, C.H.; Pommerenke, C. A theorem of de-Branges on univalent functions. Serdica 1987, 13, 21–25. [Google Scholar]
- Kayumov, I.P. On Brennan’s conjecture for a special class of functions. Math. Notes 2005, 78, 498–502. [Google Scholar] [CrossRef]
- Alimohammadi, D.; Analouei Adegani, E.; Bulboaca, T.; Cho, N.E. Logarithmic coefficient bounds and coefficient conjectures for classes associated with convex functions. J. Funct. Spaces 2021, 2021, 6690027. [Google Scholar] [CrossRef]
- Deng, Q. On the logarithmic coefficients of Bazilevic functions. Appl. Math. Comput. 2011, 217, 5889–5894. [Google Scholar] [CrossRef]
- Roth, O. A sharp inequality for the logarithmic coefficients of univalent functions. Proc. Am. Math. Soc. 2007, 135, 2051–2054. [Google Scholar] [CrossRef]
- Bansal, D.; Sokół, J. Zalcman conjecture for some subclass of analytic functions. J. Frac. Cal. Appl. 2017, 8, 1–5. [Google Scholar]
- Brown, J.E.; Tsao, A. On the Zalcman conjecture for starlikeness and typically real functions. Math. Z. 1986, 191, 467–474. [Google Scholar] [CrossRef]
- Ma, W. The Zalcman conjecture for close-to-convex functions. Proc. Am. Math. Soc. 1988, 104, 741–744. [Google Scholar] [CrossRef]
- Krushkal, S.L. A short geometric proof of the Zalcman and Bieberbach conjectures. arXiv 2014, arXiv:1408.1948. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Thilagavathi, K. Coeffcient estimate of bi-univalent functions involving Caputo fractional calculus operator. Southeast Asian Bull. Math. 2014, 38, 433–444. [Google Scholar]
- Priya, H.; Sruthakeerthi, B. Texture analysis using Horadam polynomial coefficient estimate for the class of Sakaguchi kind function. Sci. Rep. 2023, 13, 14436. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsager, K.M.; El-Deeb, S.M.; Murugusundaramoorthy, G.; Breaz, D. Coefficient Functionals of Sakaguchi-Type Starlike Functions Involving Caputo-Type Fractional Derivatives Subordinated to the Three-Leaf Function. Mathematics 2024, 12, 2273. https://doi.org/10.3390/math12142273
Alsager KM, El-Deeb SM, Murugusundaramoorthy G, Breaz D. Coefficient Functionals of Sakaguchi-Type Starlike Functions Involving Caputo-Type Fractional Derivatives Subordinated to the Three-Leaf Function. Mathematics. 2024; 12(14):2273. https://doi.org/10.3390/math12142273
Chicago/Turabian StyleAlsager, Kholood M., Sheza M. El-Deeb, Gangadharan Murugusundaramoorthy, and Daniel Breaz. 2024. "Coefficient Functionals of Sakaguchi-Type Starlike Functions Involving Caputo-Type Fractional Derivatives Subordinated to the Three-Leaf Function" Mathematics 12, no. 14: 2273. https://doi.org/10.3390/math12142273
APA StyleAlsager, K. M., El-Deeb, S. M., Murugusundaramoorthy, G., & Breaz, D. (2024). Coefficient Functionals of Sakaguchi-Type Starlike Functions Involving Caputo-Type Fractional Derivatives Subordinated to the Three-Leaf Function. Mathematics, 12(14), 2273. https://doi.org/10.3390/math12142273