Exploring the Percolation Phenomena in Quantum Networks
Abstract
:1. Introduction
2. Percolation Theory
3. Quantum Network
4. Entanglement Percolation in Quantum Networks
4.1. Classical Entanglement Percolation
4.2. Quantum Entanglement Percolation
5. Concurrence Percolation in Quantum Networks
5.1. Concurrence Percolation Theory
5.2. Critical Phenomena in Concurrence Percolation
6. Entanglement Percolation in Mixed State Networks
7. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Mower, J.; Zhang, Z.; Desjardins, P.; Lee, C.; Shapiro, J.H.; Englund, D. High-dimensional quantum key distribution using dispersive optics. Phys. Rev. A At. Mol. Opt. Phys. 2013, 87, 062322. [Google Scholar] [CrossRef]
- Zhong, T.; Zhou, H.; Horansky, R.D.; Lee, C.; Verma, V.B.; Lita, A.E.; Restelli, A.; Bienfang, J.C.; Mirin, R.P.; Gerrits, T.; et al. Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding. New J. Phys. 2015, 17, 022002. [Google Scholar] [CrossRef]
- Lee, C.; Bunandar, D.; Zhang, Z.; Steinbrecher, G.R.; Ben Dixon, P.; Wong, F.N.; Shapiro, J.H.; Hamilton, S.A.; Englund, D. Large-alphabet encoding for higher-rate quantum key distribution. Opt. Express 2019, 27, 17539–17549. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo-Villegas, J.A.; Imany, P.; Odele, O.D.; Leaird, D.E.; Ou, Z.Y.; Qi, M.; Weiner, A.M. Persistent energy–time entanglement covering multiple resonances of an on-chip biphoton frequency comb. Optica 2017, 4, 655–658. [Google Scholar] [CrossRef]
- Chang, K.C.; Cheng, X.; Sarihan, M.C.; Wong, C.W. Towards optimum Franson interference recurrence in mode-locked singly-filtered biphoton frequency combs. Photonics Res. 2023, 11, 1175–1184. [Google Scholar] [CrossRef]
- Chang, K.C.; Sarihan, M.C.; Cheng, X.; Erker, P.; Mueller, A.; Spiropulu, M.; Shaw, M.D.; Korzh, B.; Huber, M.; Wong, C.W. Experimental high-dimensional entanglement certification and quantum steering with time-energy measurements. arXiv 2023, arXiv:2310.20694. [Google Scholar]
- Bakhshinezhad, P.; Mehboudi, M.; Carceller, C.R.I.; Tavakoli, A. Scalable entanglement certification via quantum communication. PRX Quantum 2024, 5, 020319. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, W.K. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 1993, 70, 1895. [Google Scholar] [CrossRef]
- Dür, W.; Briegel, H.J.; Cirac, J.I.; Zoller, P. Quantum repeaters based on entanglement purification. Phys. Rev. A 1999, 59, 169. [Google Scholar] [CrossRef]
- Hartmann, L.; Kraus, B.; Briegel, H.J.; Dür, W. Role of memory errors in quantum repeaters. Phys. Rev. A At. Mol. Opt. Phys. 2007, 75, 032310. [Google Scholar] [CrossRef]
- Dong, G.; Fan, J.; Shekhtman, L.M.; Shai, S.; Du, R.; Tian, L.; Chen, X.; Stanley, H.E.; Havlin, S. Resilience of networks with community structure behaves as if under an external field. Proc. Natl. Acad. Sci. USA 2018, 115, 6911–6915. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Wang, F.; Shekhtman, L.M.; Danziger, M.M.; Fan, J.; Du, R.; Liu, J.; Tian, L.; Stanley, H.E.; Havlin, S. Optimal resilience of modular interacting networks. Proc. Natl. Acad. Sci. USA 2021, 118, e1922831118. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sanhedrai, H.; Dong, G.; Shekhtman, L.M.; Wang, F.; Buldyrev, S.V.; Havlin, S. Efficient network immunization under limited knowledge. Natl. Sci. Rev. 2021, 8, nwaa229. [Google Scholar] [CrossRef] [PubMed]
- Flory, P.J. Molecular size distribution in three dimensional polymers. I. Gelation1. J. Am. Chem. Soc. 1941, 63, 3083–3090. [Google Scholar] [CrossRef]
- Stauffer, D.; Aharony, A. Introduction to Percolation Theory; Taylor & Francis: Oxfordshire, UK, 2018. [Google Scholar]
- Meng, X.; Hu, X.; Tian, Y.; Dong, G.; Lambiotte, R.; Gao, J.; Havlin, S. Percolation theories for quantum networks. Entropy 2023, 25, 1564. [Google Scholar] [CrossRef]
- Li, M.; Liu, R.R.; Lü, L.; Hu, M.B.; Xu, S.; Zhang, Y.C. Percolation on complex networks: Theory and application. Phys. Rep. 2021, 907, 1–68. [Google Scholar] [CrossRef]
- Bunde, A.; Havlin, S. Fractals and Disordered Systems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Chitambar, E.; Gour, G. Quantum resource theories. Rev. Mod. Phys. 2019, 91, 025001. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, L. Multipartite entanglement measure and complete monogamy relation. Phys. Rev. A 2020, 101, 032301. [Google Scholar] [CrossRef]
- Hill, S.A.; Wootters, W.K. Entanglement of a pair of quantum bits. Phys. Rev. Lett. 1997, 78, 5022. [Google Scholar] [CrossRef]
- Meng, X.; Gao, J.; Havlin, S. Concurrence percolation in quantum networks. Phys. Rev. Lett. 2021, 126, 170501. [Google Scholar] [CrossRef]
- Acín, A.; Cirac, J.I.; Lewenstein, M. Entanglement percolation in quantum networks. Nat. Phys. 2007, 3, 256–259. [Google Scholar] [CrossRef]
- Bennett, C.H.; Bernstein, H.J.; Popescu, S.; Schumacher, B. Concentrating partial entanglement by local operations. Phys. Rev. A 1996, 53, 2046. [Google Scholar] [CrossRef] [PubMed]
- Perseguers, S.; Cirac, J.I.; Acín, A.; Lewenstein, M.; Wehr, J. Entanglement distribution in pure-state quantum networks. Phys. Rev. A At. Mol. Opt. Phys. 2008, 77, 022308. [Google Scholar] [CrossRef]
- Cuquet, M.; Calsamiglia, J. Entanglement percolation in quantum complex networks. Phys. Rev. Lett. 2009, 103, 240503. [Google Scholar] [CrossRef]
- Lapeyre Jr, G.J.; Wehr, J.; Lewenstein, M. Enhancement of entanglement percolation in quantum networks via lattice transformations. Phys. Rev. A At. Mol. Opt. Phys. 2009, 79, 042324. [Google Scholar] [CrossRef]
- Bose, S.; Vedral, V.; Knight, P. Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 1999, 60, 194. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Vidal, G. Majorization and the interconversion of bipartite states. Quantum Inf. Comput. 2001, 1, 76–93. [Google Scholar] [CrossRef]
- Meng, X.; Cui, Y.; Gao, J.; Havlin, S.; Ruckenstein, A.E. Deterministic entanglement distribution on series-parallel quantum networks. Phys. Rev. Res. 2023, 5, 013225. [Google Scholar] [CrossRef]
- Malik, O.; Meng, X.; Havlin, S.; Korniss, G.; Szymanski, B.K.; Gao, J. Concurrence percolation threshold of large-scale quantum networks. Commun. Phys. 2022, 5, 193. [Google Scholar] [CrossRef]
- Perseguers, S.; Lewenstein, M.; Acín, A.; Cirac, J.I. Quantum random networks. Nat. Phys. 2010, 6, 539–543. [Google Scholar] [CrossRef]
- Tilch, G.; Ermakova, T.; Fabian, B. A Multilayer Graph Model of the Internet Topology. Int. J. Netw. Virtual Organ. 2020, 22, 219–245. [Google Scholar] [CrossRef]
- Rozenfeld, H.D.; Ben-Avraham, D. Percolation in hierarchical scale-free nets. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2007, 75, 061102. [Google Scholar] [CrossRef] [PubMed]
- Rozenfeld, H.D.; Havlin, S.; Ben-Avraham, D. Fractal and transfractal recursive scale-free nets. New J. Phys. 2007, 9, 175. [Google Scholar] [CrossRef]
- Hu, X.; Dong, G.; Lambiotte, R.; Christensen, K.; Fan, J.; Tian, L.; Havlin, S.; Meng, X. Unveiling the Importance of Longer Paths in Quantum Networks. arXiv 2024, arXiv:2402.15462. [Google Scholar]
- Liu, X.; Li, D.; Ma, M.; Szymanski, B.K.; Stanley, H.E.; Gao, J. Network resilience. Phys. Rep. 2022, 971, 1–108. [Google Scholar] [CrossRef]
- Pirandola, S. End-to-end capacities of a quantum communication network. Commun. Phys. 2019, 2, 51. [Google Scholar] [CrossRef]
- Broadfoot, S.; Dorner, U.; Jaksch, D. Entanglement percolation with bipartite mixed states. Europhys. Lett. 2009, 88, 50002. [Google Scholar] [CrossRef]
- Broadfoot, S.; Dorner, U.; Jaksch, D. Singlet generation in mixed-state quantum networks. Phys. Rev. A At. Mol. Opt. Phys. 2010, 81, 042316. [Google Scholar] [CrossRef]
- Kent, A. Entangled mixed states and local purification. Phys. Rev. Lett. 1998, 81, 2839. [Google Scholar] [CrossRef]
- Yang, S.; Sarihan, M.C.; Chang, K.C.; Wong, C.W.; Dolecek, L. Efficient information reconciliation for energy-time entanglement quantum key distribution. In Proceedings of the 2019 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 3–6 November 2019; pp. 1364–1368. [Google Scholar]
- Boutros, J.J.; Soljanin, E. Time-entanglement QKD: Secret key rates and information reconciliation coding. IEEE Trans. Commun. 2023, 71, 7174–7188. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Hu, X.; Dong, G. Exploring the Percolation Phenomena in Quantum Networks. Mathematics 2024, 12, 3568. https://doi.org/10.3390/math12223568
Wang C, Hu X, Dong G. Exploring the Percolation Phenomena in Quantum Networks. Mathematics. 2024; 12(22):3568. https://doi.org/10.3390/math12223568
Chicago/Turabian StyleWang, Chuanxin, Xinqi Hu, and Gaogao Dong. 2024. "Exploring the Percolation Phenomena in Quantum Networks" Mathematics 12, no. 22: 3568. https://doi.org/10.3390/math12223568