Organic Luminescent Sensor for Mercury(II) and Iron(III) Ions in Aqueous Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Sensor A
2.2. Binding Studies
2.3. Quantum Yield Analysis
2.4. Equilibration Adsorption Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Renzoni, A.; Zino, F.; Franchi, E. Mercury levels along the food chain and risk for exposed populations. Environ. Res. 1998, 77, 68–72. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Wang, S.; Liu, M.; Chen, Z.; Xu, J.; Dong, Y. Transport and transformation of atmospheric metals in ecosystems: A review. J. Hazard. Mater. Adv. 2023, 9, 100218. [Google Scholar] [CrossRef]
- Mng'Ong'O, M.; Munishi, L.K.; Ndakidemi, P.A.; Blake, W.; Comber, S.; Hutchinson, T.H. Toxic metals in East African agro-ecosystems: Key risks for sustainable food production. J. Environ. Manag. 2021, 294, 112973. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhao, Y.; Wang, Z.; Liu, Y. Distribution characteristics, bioaccumulation and trophic transfer of heavy metals in the food web of grassland ecosystems. Chemosphere 2021, 278, 130407. [Google Scholar] [CrossRef]
- Cheng, H.F.; Hu, Y.A. Lead (Pb) Isotopic Fingerprinting and Its Applications in Lead Pollution Studies in China: A Review. Environ. Pollut. 2009, 58, 1134–1146. [Google Scholar] [CrossRef]
- Di Bella, C.; Calagna, A.; Cammilleri, G.; Schembri, P.; Monaco, D.L.; Ciprì, V.; Battaglia, L.; Barbera, G.; Ferrantelli, V.; Sadok, S.; et al. Risk assessment of cadmium, lead, and mercury on human health in relation to the consumption of farmed sea bass in italy: A meta-analytical approach. Front. Mar. Sci. 2021, 8, 616488. [Google Scholar] [CrossRef]
- Panhwar, A.H.; Kazi, T.G.; Afridi, H.I.; Arain, S.A.; Arain, M.S.; Brahaman, K.D.; Naeemullah, A.S. Correlation of cadmium and aluminum in blood samples of kidney disorder patients with drinking water and tobacco smoking: Related health risk. Geochem. Health 2016, 38, 265–274. [Google Scholar] [CrossRef]
- Tong, S.Y.; Meija, J.; Zhou, L.; Methven, B.; Mester, Z.; Yang, L. High-precision measurements of the isotopic composition of common lead using MC-ICPMS: Comparison of calibration strategies based on full gravimetric isotope mixture and regression models. Anal. Chem. 2019, 91, 4164–4171. [Google Scholar] [CrossRef]
- Luo, X.; Liu, L.; Deng, F.; Luo, S. Novel ion-imprinted polymer using crown ether as a functional monomer for selective removal of pb(ii) ions in real environmental water samples. J. Mater. Chem. A 2013, 1, 8280–8286. [Google Scholar] [CrossRef]
- Wani, A.B.; Ara, A.; Usmani, J.A. Lead Toxicity: A Review. Interdiscip. Toxicol. 2015, 8, 55–64. [Google Scholar] [CrossRef]
- Charvát, P.; Klimeš, K.; Pospíšil, J.; Klemeš, J.; Varbanov, P. An overview of mercury emissions in the energy industry—A step to mercury footprint assessment. J. Clean. Prod. 2020, 267, 122087. [Google Scholar] [CrossRef]
- Dworak, S.; Rechberger, H. Mercury throughput of the Austrian manufacturing industry—Discussion of data and data gaps. Resources. Conserv. Recycl. 2021, 166, 105344. [Google Scholar] [CrossRef]
- Dziok, T.; Bury, M.; Burmistrz, P. Mercury release from municipal solid waste in the thermal treatment process. Fuel 2022, 329, 125528. [Google Scholar] [CrossRef]
- Sun, W.; Wang, Q.; Zhou, Y.; Wu, J. Material and energy flows of the iron and steel industry: Status quo, challenges and perspectives. Appl. Energy 2020, 268, 114946. [Google Scholar] [CrossRef]
- Xin, H.; Wang, S.; Chun, T.; Xue, X.; Long, W.; Xue, R.; Zhang, R. Effective pathways for energy conservation and emission reduction in iron and steel industry towards peaking carbon emissions in China: Case study of Henan. J. Clean. Prod. 2023, 399, 136637. [Google Scholar] [CrossRef]
- Zhang, X.; Xue, C.; Wang, R.; Shen, R.; Lan, P. Physiological and proteomic dissection of the rice roots in response to iron deficiency and excess. J. Proteom. 2022, 267, 2022. [Google Scholar] [CrossRef]
- Guo, L.; Wu, P.; Jiang, W.; Liu, Y.; Kuang, S.; Jiang, J.; Tang, L.; Tang, W.; Zhang, Y.; Zhou, Q.; et al. The impaired immune function and structural integrity by dietary iron deficiency or excess in gill of fish after infection with Flavobacterium columnare: Regulation of NF-κB, TOR, JNK, p38MAPK, Nrf2 and MLCK signaling. Fish Shellfish Immunol. 2018, 74, 593–608. [Google Scholar] [CrossRef]
- Perng, V.; Li, C.; Navazesh, S.; Klocke, C.; Pinneles, D.; Lein, P.; Ji, P. Iron Deficiency and Iron Excess Alter Dendritic Architecture of Pyramidal Neurons in the Hippocampus of Neonatal Pigs. Curr. Dev. Nutr. 2020, 4, 4141232. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality: Recommendations; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Volynkin, S.S.; Demakov, P.A.; Shuvaeva, O.V.; Kovalenko, K.A. Metal-organic framework application for mercury speciation using solid phase extraction followed by direct thermal release–electrothermal atomization atomic absorption spectrophotometric detection (ETA AAS). Anal. Chim. Acta 2021, 1177, 338795. [Google Scholar] [CrossRef]
- dos Santos, N.; dos Santos, L.; Damin, I.; Vale, M.; Dessuy, M. Multielement determination of metals in edible seeds by HR-CS GF AAS and direct analysis. J. Food Compos. Anal. 2022, 111, 104625. [Google Scholar] [CrossRef]
- Lores-Padín, A.; Fernández, B.; García, M.; González-Iglesias, H.; Pereiro, R. Real matrix-matched standards for quantitative bioimaging of cytosolic proteins in individual cells using metal nanoclusters as immunoprobes-label: A case study using laser ablation ICP-MS detection. Anal. Chim. Acta 2022, 1221, 340128. [Google Scholar] [CrossRef]
- Qin, J.; Su, Z.; Mao, Y.; Liu, C.; Qi, B.; Fang, G.; Wang, S. Carboxyl-functionalized hollow polymer microspheres for detection of trace metal elements in complex food matrixes by ICP-MS assisted with solid-phase extraction. Ecotoxicol. Environ. Saf. 2021, 208, 111729. [Google Scholar] [CrossRef]
- Dimpe, K.; Ngila, J.; Mabuba, N.; Nomngongo, P. Evaluation of sample preparation methods for the detection of total metal content using inductively coupled plasma optical emission spectrometry (ICP-OES) in wastewater and sludge. Phys. Chem. Earth Parts A/B/C 2014, 76–78, 42–48. [Google Scholar] [CrossRef]
- Pal, H.; Majumder, S. Ultra-low-level detection of mercury (Hg2+) heavy metal carcinogens in aqueous medium using electrochemistry. Mater. Today Proc. 2020, 29, 1129–1131. [Google Scholar] [CrossRef]
- Tong, Y.; Wu, Y.; Bai, H.; Li, S.; Jiang, L.; Zhou, Q.; Chen, C. Highly efficient and simultaneous magnetic solid phase extraction of heavy metal ions from water samples with l-Cysteine modified magnetic polyamidoamine dendrimers prior to high performance liquid chromatography. Chemosphere 2023, 313, 137340. [Google Scholar] [CrossRef]
- Dehdashtian, S.; Pourreza, N.; Rostamnia, S. Electrochemical sensing of indole in plasma using Pd nanoparticles modified metal-organic framework Cr-MIL-101/ionic liquid sensor. Microchem. J. 2022, 181, 107839. [Google Scholar] [CrossRef]
- Darwish, N.; Kurdi, A.; Alshihri, S.; Tabbakh, T. Organic heterocyclic-based colorimetric and fluorimetric chemosensors for the detection of different analytes: A review (from 2015 to 2022). Mater. Today Chem. 2023, 27, 101347. [Google Scholar] [CrossRef]
- Li, A.; Liu, Y.; Chen, Z.; Li, S.; Zhong, R.; Cheng, D.; Chen, L.; He, L. Development of a Golgi-targeted fluorescent chemosensor for detecting ferrous ions overload under Golgi stress. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2023, 294, 122560. [Google Scholar] [CrossRef]
- Pandey, H.P.; Aggarwal, S.; Vats, M.; Rawat, V.; Pathak, S. Coumarin-based Chemosensors for Metal Ions Detection. Asian J. Org. Chem. 2022, 11, 23–75. [Google Scholar] [CrossRef]
- Kanan, S.; Abu-Yousef, I.; Hassouneh, N.; Malkawi, A.; Abdo, N.; Kanan, M. A Highly Selective Luminescent Sensor for Detecting Mercuric Ions in Water. Aust. J. Chem. 2019, 62, 1593–1599. [Google Scholar] [CrossRef]
- Rasin, P.; Haribabu, J.; Malappuram, K.; Manakkadan, V.; Palakkeezhillam, V.N.; Cesar Echeverria, C.; Sreekanth, A. A “turn-on” fluorescent chemosensor for the meticulous detection of gallium (III) ion and its use in live cell imaging, logic gates and keypad locks. J. Photochem. Photobiol. A Chem. 2023, 437, 114493. [Google Scholar] [CrossRef]
- Xie, H.; Hu, Q.; Qin, X.; Zhang, Y.; Li, L.; Li, J. Naked-eye chemosensor with high absolute fluorescence quantum yield for selective detection of Cu(II) and cell imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 283, 121740. [Google Scholar] [CrossRef] [PubMed]
- Kanan, S.; Malkawi, A. Recent advances in nanocomposite luminescent metal-organic framework sensors for detecting metal ions. Comments Inorg. Chem. 2021, 41, 1–66. [Google Scholar] [CrossRef]
- Jiang, J.; Lu, Y.; Zhou, Y.; Zhao, D.; Li, C. An Acid-base Resistant Zn-based Metal-organic Framework as a Luminescent Sensor for mercury(II). J. Solid State Chem. 2020, 283, 121–153. [Google Scholar] [CrossRef]
- Kang, W.; Han, C.; Liu, D.; Cui, G. A Bifunctional Benzimidazole-based Luminescent Zn2+ Coordination Polymer for Detection of Hg2+ and Photocatalytic Degrading of Methylene Blue. Inorg. Chem. Commun. 2019, 106, 81–85. [Google Scholar] [CrossRef]
- Wan, Y.; Zou, D.; Cui, Y.; Yang, Y.; Qian, G. A Zn Based Anionic Metal-organic Framework for Trace Hg2+ Ion Detection. J. Solid State Chem. 2018, 266, 70–73. [Google Scholar] [CrossRef]
- Latt, K.K.; Takahashi, Y. Fabrication and characterization of a α,β,γ,δ-Tetrakis(1-methylpyridinium-4-yl)porphine/silica nanocomposite thin-layer membrane for detection of ppb-level heavy metal ions. Anal. Chim. Acta 2011, 689, 103–109. [Google Scholar] [CrossRef]
- Yang, Y.; Jiang, J.; Shen, G.; Yu, R. An optical sensor for mercury ion based on the fluorescence quenching of tetra(p-dimethylaminophenyl)porphyrin. Anal. Chim. Acta 2009, 636, 83–88. [Google Scholar] [CrossRef]
- Jian, Y.; Zhe, W.; Li, Y.; Wenru, Q.; Jinlou, G. Porphyrinic MOFs for reversible fluorescent and colorimetric sensing of mercury(ii) ions in aqueous phase. RSC Adv. 2016, 6, 69807–69814. [Google Scholar]
- Kanan, S.; Kanan, M.; Patterson, H. Silver nanoclusters doped in X and mordenite zeolites as heterogeneous catalysts for the decomposition of carbamate pesticides in solution. Res. Chem. Intermed. 2006, 32, 871. [Google Scholar] [CrossRef]
- Kanan, S.; Kanan, M.; Patterson, H. Photoluminescence spectroscopy as a probe of silver doped zeolites as photocatalysts. Curr. Opin. Solid State Mater. Sci. 2003, 7, 443. [Google Scholar] [CrossRef]
- Fan, J.; Peng, Y.; Wu, E.; Lu, J.; Hou, J.; Zhang, H.; Zhang, R.; Fu, X. A new PET fluorescent sensor for Zn2+. J. Lumin. 2005, 114, 125. [Google Scholar] [CrossRef]
- Hoche, J.; Schulz, A.; Fietrich, L. The origin of the solvent dependence of fluorescence quantum yields in dipolar merocyanine dyes. Chem. Sci. 2019, 10, 11013. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, Y.; Abu-Farha, N.; Kanan, S. Synthesis and characterization of porous WO3–SnO2 nanomaterials: An infrared study of adsorbed pyridine and dimethyl methylphosphonate. Vib. Spectrosc. 2014, 75, 78–85. [Google Scholar] [CrossRef]
- Kanan, S.M.; Tripp, C.P. Synthesis, FTIR Studies and Sensor properties of WO3 powders. Curr. Opin. Solid State Mater. Sci. 2007, 11, 19–27. [Google Scholar] [CrossRef]
- Waghe, A.; Kanan, S.M.; Abu-Yousef, I.A.; Jensen, B.; Tripp, C.P. Infrared study of uv irradiated tungsten trioxide powders containing adsorbed dimethyl methyl phosphonate and trimethyl phosphate. Res. Chem. Int. 2006, 32, 613–623. [Google Scholar] [CrossRef]
- Kanan, S.M.; Lu, Z.; Cox, J.K.; Bernhardt, G.; Tripp, C.P. Identification of Surface Sites on Monoclinic WO3 Powders by Infrared Spectroscopy. Langmuir 2002, 18, 1707–1712. [Google Scholar] [CrossRef]
- Abla, F.; Elsayed, Y.; Abu Farha, N.; Obaideen, K.; Mohamed, A.A.; Lee, H.; Han, C.; Egilmez, M.; Kanan, S. Fabrication of high surface area tio2-moo3 nanocomposite as a photocatalyst for organic pollutants removal from water bodies. Catalysts 2023, 13, 362. [Google Scholar] [CrossRef]
- Sabri, M.A.; Al-Sayah, M.H.; Sen, S.; Ibrahim, T.H.; El-Kadri, O.M. Fluorescent aminal linked porous organic polymer for reversible iodine capture and sensing. Sci. Rep. 2020, 10, 15943. [Google Scholar] [CrossRef]
- Li, M.; Zhou, X.; Ding, W.; Guo, S.; Wu, N. Fluorescent aptamer-functionalized graphene oxide biosensor for label-free detection of mercury(II). Biosens. Bioelectron. 2013, 41, 889–893. [Google Scholar] [CrossRef] [PubMed]
- Brian, K.; Thorfinnur, G. Lanthanide luminescence sensing of copper and mercury ions using an iminodiacetate based Tb(III)-cyclen chemosensor. Tetrahedron Lett. 2010, 51, 5406–5410. [Google Scholar]
- Liu, J.; Vellaisamy, K.; Yang, G.; Leung, C.-H.; Ma, D.-L. Luminescent turn-on detection of Hg(II) via the quenching of an iridium(III) complex by Hg(II)-mediated silver nanoparticles. Sci. Rep. 2017, 7, 3620. [Google Scholar] [CrossRef] [PubMed]
- Zeynep, M.; Dilek, A.; Magdalena, M.; Muhammet, E.; Faruk, Y. Highly sensitive and reusable mercury (II) sensor based on fluorescence quenching of pyrene moiety in polyacrylamide-based cryogel. Sens. Actuators B Chem. 2017, 242, 362–368. [Google Scholar] [CrossRef]
- Huang, J.; Gao, X.; Jia, J.; Kim, J.; Li, Z. Graphene oxide-based amplified fluorescent biosensor for Hg(2+) detection through hybridization chain reactions. Anal. Chem. 2014, 86, 3209–3215. [Google Scholar] [CrossRef] [PubMed]
pH 5 | pH 7 | pH 10 | |
---|---|---|---|
Ksv Hg2+/Sensor A | 0.2114 | 0.1650 | 0.0631 |
Ksv Fe3+/Sensor A | 0.0544 | 0.0184 | 0.0428 |
Ksv Hg2+/Ksv Fe3+ | 3.89 | 8.97 | 1.47 |
V (mL) of 50 ppm Hg2+ Added | [Hg2+], ppm Spiked in the Final Solution | [Hg2+], ppm Adsorbed Luminescence Detection | %[Hg2+] Adsorbed Luminescence Detection | %[Hg2+] Adsorbed ICP-OES Detection |
---|---|---|---|---|
0.6 | 11.5 | 11.36 | 98.78 | 100 |
1.5 | 21.4 | 20.60 | 96.26 | 100 |
3.5 | 34.7 | 32.13 | 92.60 | 94.2 |
Sensing Platform | LoD | Working Media | Detection Time | Ref. |
---|---|---|---|---|
Sensor A | 50 ppb | 10:90 v:v methanol–water | <30 s | This study |
Aminal-linked POPs | --- | suspension in water | 30 min | [50] |
ss-DNA-GO | 0.92 nM | water | 5 min | [51] |
Iminodiacetate-based Tb(III) cyclen | 3.26 nM | water detects Cu2+ and Hg2+ | -- | [52] |
Iridium(III) complex-mediated AgNPs | 5 nM | water | Selective detection in short time | [53] |
Pyrene-based sensor | 2ppb | DMF–water | 96 h aging time | [54] |
DNA hairpin probe–GO | 0.3 nM | water | 40 min | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanan, S.; Shabnam, A.; Mohamed, A.A.; Abu-Yousef, I.A. Organic Luminescent Sensor for Mercury(II) and Iron(III) Ions in Aqueous Solutions. Chemosensors 2023, 11, 308. https://doi.org/10.3390/chemosensors11050308
Kanan S, Shabnam A, Mohamed AA, Abu-Yousef IA. Organic Luminescent Sensor for Mercury(II) and Iron(III) Ions in Aqueous Solutions. Chemosensors. 2023; 11(5):308. https://doi.org/10.3390/chemosensors11050308
Chicago/Turabian StyleKanan, Sofian, Aysha Shabnam, Ahmed A. Mohamed, and Imad A. Abu-Yousef. 2023. "Organic Luminescent Sensor for Mercury(II) and Iron(III) Ions in Aqueous Solutions" Chemosensors 11, no. 5: 308. https://doi.org/10.3390/chemosensors11050308
APA StyleKanan, S., Shabnam, A., Mohamed, A. A., & Abu-Yousef, I. A. (2023). Organic Luminescent Sensor for Mercury(II) and Iron(III) Ions in Aqueous Solutions. Chemosensors, 11(5), 308. https://doi.org/10.3390/chemosensors11050308