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Abstract: The increasing pollution of water bodies, due to the constant release of highly toxic and
non-biodegradable organic pollutants, requires innovative solutions for environmental remediation
and wastewater treatment. In this study, the effectiveness of different Advanced Oxidation Processes
(AOPs) for the purification of water contaminated with Rhodamine B (RhB) dye at a concentration
of 5 mg/L were investigated and compared. Using the classical ozonation strategy as a benchmark
treatment, the research showed over 99% degradation of RhB within 4 min in a laboratory-scale
batch setup with a capacity of 0.2 L. In contrast, a “chemical-free” process exploiting ultrasound (US)
technology achieved a 72% degradation rate within 60 min. Further experiments were conducted
using a pilot-scale rotor-stator hydrodynamic cavitation (HC) reactor on a 15 L solution leading to
33% of RhB removal in the presence of hydrogen peroxide (H2O2) at 75 mg/L. However, the use
of an innovative cavitational reactor, which hybridizes HC with cold plasma, showed remarkable
efficiency and achieved 97% degradation of RhB in just 5 min when treating a 5 L solution at an
inlet pressure of 20 bar in a loop configuration. In addition, a degradation rate of 58% was observed
in a flow-through configuration, emphasising the robustness and scalability of the HC/electrical
discharge (ED) plasma technology. These results underline the potential of hybrid HC/ED plasma
technology as an intensified and scalable process for the purification of water, as it offers a catalyst-
and oxidant-free protocol.

Keywords: hydrodynamic cavitation; ultrasound; cold plasma; electrical discharge; water purification;
advanced oxidation processes; hybrid cavitational treatment; rhodamine B; sustainable water treatment

1. Introduction

The growing presence of contaminants of emerging concern (CECs) and dyes in
various water sources represents a significant environmental issue, posing serious risks to
both human health and aquatic ecosystems. According to the European Union [1], textile
and dye industries are one of the main contributors (~20%) to global water pollution. The
inefficient disposal or treatment of industrial textile wastewater, especially from dyeing and
finishing processes, leads to a continuous release of hazardous heavy metals (e.g., metal
complex acid dyes and metal-containing dyes) and harmful CECs such as dyes into lakes
and rivers [2]. Due to their high chemical stability, rhodamine (Rh) compounds are the most
frequently used dyes in textile industries. Due to its extensive use, global Rh production
is projected to reach a value of $232.5 million during the 2022–2027 forecast period [3].
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Among the Rh dyes family, Rhodamine B (RhB) (Figure S1), also known as Basic Violet 10,
is the most important xanthene dye used in textiles for dyeing cotton and leather, as well
as being used in the paper, plastic, and cosmetics industries, as it is highly water soluble,
non-volatile, and stable [4]. RhB is also extensively exploited in biological applications such
as fluorescence imaging due to its remarkable photo-properties, including photostability
and high brightness [5].

However, the discharge of RhB-polluted effluents into water bodies causes harmful
effects on aquatic fauna such as tissue necrosis, respiratory and reproductive damages, or
cancer [6]. In addition, when RhB enters the human body, it induces oxidative stress on
cells and tissues, leading to irritation of the respiratory system, eyes, and skin, [7] as well
as potential genetic mutations. [8]. Advanced oxidation processes (AOP) offer potential
for the treatment of refractory dyes in wastewater; however, the development of efficient
systems specifically for the degradation of dyes remains a major challenge [9].

Several physical processes such as membrane filtration [10], activated charcoal ad-
sorption [11], and coagulation [12] are already used for the removal of dyes from industry
effluents. Nevertheless, the above-mentioned technologies only transfer the pollutant from
water to another solid or liquid waste (non-destructive) [13]. Therefore, the development
of new technological, chemical-free processes for the degradation of RhB in industrial
wastewater from the textile industry (end-of-pipe water treatment) is crucial. AOPs have
emerged as promising technologies for the removal of dyes from contaminated water
bodies by the generation of oxidizing radicals (·OH, ·OOH, ·O, etc.) [14]. However, the
most commonly studied AOPs such as Fenton, ozonation, or H2O2 require an extensive use
of chemicals, strict operating conditions, and safety drawbacks. Therefore, in this study we
compared conventional ozonation treatment with different scalable and “chemicals-free”
cavitational AOPs such as ultrasound (US) and hydrodynamic cavitation (HC) at both labo-
ratory and pilot scales and either alone or in the presence of external oxidizing compounds.
Additionally, an innovative hybrid HC/ED plasma pilot-scale reactor was exploited for
the sustainable intensification of RhB degradation processes. All the experiments were
carried out dissolving RhB in tap water (composition reported in Table S1) to simulate a
hypothetical treatment of dye-contaminated water.

2. Materials and Methods
2.1. Chemicals

All chemical have been provided by Merck-Sigma-Aldrich, Milan (Italy).

2.2. RhB Quantitative Analysis

The concentration of RhB in all the treated samples was spectrophotometrically mea-
sured using a UV-vis spectrophotometer (Agilent Cary 60 UV-vis) at 554 nm. The calibration
curve (Figure S2) was calculated from standard RhB solutions (4, 3, 2, 1, 0.5, and 0.1 mg/mL)
by proper dilutions in 2 mL volumetric flasks starting from a stock solution of 5 mg/mL.
All the samples were prepared using tap water.

2.3. Lab-Scale O3-Assisted RhB Degradation

Preliminary RhB degradation experiments were carried out using O3 as an oxidizing
compound by using a 15 W O3 generator (CQ-8025, Tianchang Changqing Mechanical
and Electrical Trading Co., Ltd., Tianchang, China). For all the batch treatments, a porous
ceramic septum connected to the O3 generator was submerged in the RhB-contaminated
solutions (Figure 1a) with a starting concentration of 5 mg/L (0.2 L and 0.5 L) into an
Erlenmeyer flask. The input O3 amount was 6.12 g/h at a flow rate of 6 L/h [15]. O3-
treated samples were collected every 30 s or 1 min.
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Figure 1. Schematics of each equipment used for the RhB degradation experiments. (a) lab-scale O3,
(b) lab-scale US, (c) rotor-stator HC, (d) hybrid HC/ED plasma.

2.4. Lab-Scale US-Assisted RhB Degradation

US-assisted RhB degradation treatments were carried out in a stainless-steel ultrasonic
bath equipped with three piezo transducers. The output power of the US generator
(Weber Ultrasonics AG, Karlsbad, Germany) was 200 W at a frequency of 500 kHz. All
the experiments were carried out on 0.2 L RhB tap-water solutions (5 mg/L) placed in an
Erlenmeyer 0.5 L flask submerged in the deionized water contained in the US bath (3 L),
as shown in Figure 1b. The US density ratio was 62.5 W/L. The temperature was kept
constant at 25 ± 2 ◦C by using a heat exchanger submerged in the US bath and connected
to the tap-water line. Samples were collected every 5, 10, or 15 min of sonication time. The
same protocol was used for the hybrid US/H2O2 treatments, carried out with 1:100 and
1:200 RhB:H2O2 mole ratios (H2O2 loadings of 37.5 and 75 mg/L, respectively).

2.5. Rotor-Stator HC-Assisted RhB Degradation at Pilot Scale

The HC-assisted pilot-scale RhB degradation tests were carried out in the commercially
available ROTOCAV (E-PIC S.r.l., Italy) rotor-stator device connected to a 20 L stainless-steel
reservoir tank and a rotative pump (Bronzoni Motori Elettrici Srl, Italy) for the recirculation
of the contaminated solution (Figures 1c and S3). HC is generated by forcing contaminated
water through its rotating cylinder equipped with a 4-kW electric engine. A chiller unit
(DLSB-5/10, Zhengzhou Keda Machinery and Instrument Equipment Co., Ltd., Zhenghou,
Henan, China) set at −10 ◦C was linked to the heat exchanger placed inside the reservoir
tank. Two different tests were performed in 15 L of a 5 mg/L RhB solution at a flow rate of
3000 L/h for a total time of 60 min (n◦ of passes = 200). The first experiment was carried
out without the addition of an external oxidizing compound, while the second test was
performed in the presence of H2O2 with a RhB:H2O2 molar ratio of 1:200. Treated samples
were collected every 5, 10, or 15 min.

2.6. Hybrid HC/ED Plasma-Assisted Degradation of RhB

The hybrid pilot-scale HC/ED plasma reactor used for the degradation of RhB
(Figures 1d and S4) was described in detail in a previous work [16]. Hydrodynamic cavita-
tion was ensured using a 4-holed (4 mm for each hole) orifice plate and a 3.3 kW triplex
plunger pump (SPECK Pumpen Verkaufsgesellschaft GmbH, Neunkirchen am Sand, Ger-
many). The orifice plate is located at the top of a quartz cylinder discharge chamber
characterized by a length of 200 mm and a diameter of 8 mm). The ED plasma was ignited
by applying a 0.6 A alternating current (AC) with a voltage of 15 kV at a frequency of
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48 kHz between two electrodes located at the ends of the quartz cylinder (distance of
200 mm).

In detail, the HC/ED plasma reactor uses the propagation of the electrical discharge
in bubbles or vapor. No electrical discharge plasma can be generated without cavitation
bubbles [16]. The degradation experiments were carried out in 5 L RhB solutions with
a fixed starting concentration of 5 mg/L. Three sets of experiments were carried out at
different inlet pressure values (10, 15 and 20 bar). The temperature of the treated water
was kept constant at 27 ± 2 ◦C by using a chiller unit (DLSB-5/10, Zhengzhou Keda
Machinery, and Instrument Equipment Co., Ltd., Zhenghou, Henan, China) set at −10 ◦C
and connected to the heat exchanger of a 30 L stainless-steel reservoir tank. Samples were
collected either in flow-through configuration or after 1, 2, 5, and 10 min of recirculation
time. Additional operating parameters are reported in the following table (Table 1).

Table 1. Main operating parameters of the HC/ED plasma degradation treatments.

Inlet Pressure
(bar) Flow Rate (L/h) τR (min) 1 tR (min) 2 n◦ of Passes 2

10 250 0.0024 0.02 12.50
15 300 0.0020 0.02 15.00
20 330 0.0018 0.02 16.50

1 Residence time for flow-through configuration; 2 Residence time and number of passes for 10 min
loop configuration.

3. Results

To better compare the efficiency of each considered AOP (O3-, US, and HC-assisted), a
fixed RhB concentration of 5 mg/L was chosen, as this is the standard C0 in most reported
studies [3]. Moreover, a tap-water solution was used as benchmark RhB to avoid the
common practice of using distilled water for AOP research.

3.1. Lab-Scale O3-Assisted RhB Degradation

Due to (i) decreased costs associated with the production of O3, (ii) environmental
advantages over chlorine-based degradation treatment, (iii) the possibility of treating
wastewater contaminated by recalcitrant organic compounds such as dyes, and (iv) the
reduction of sludges in WWTPs, the popularity of O3-based AOPs has grown in recent
years [17,18].

The high oxidation potential of O3 (2.08 V) makes the ozonation process very effective
in the degradation of CECs and dyes such as RhB [19].

However, ozonation suffers from some drawbacks:

• Limited mass transfer in water because of O3 low solubility and stability in water [20];
• Necessity for on-site production with typical low efficiencies (4–6 wt.% from air and

6–12 wt.% from pure oxygen) because of difficult storage and transportation [21];
• Low mineralization of pollutants [22].

During the O3-assisted degradation treatments, the organic pollutants can be directly
oxidized by the O3 molecule (direct method) or by the hydroxyl radicals generated after
the decomposition of O3 with contaminants (radical method) [23]. Generally, in acidic
water solutions the direct method predominates while in alkaline environments the radical
methods prevail [24]. In an intermediate pH range (6–8), both mechanisms can take place.

Aiming to preliminarily investigate the degradation of RhB at lab-scale, two ozonation
treatments were performed on two different tap-water RhB solutions (0.2 L and 0.5 L) with
the same starting concentration of contaminant (5 mg/L) and characterized by a pH value
of 8. The O3 was directly bubbled in the contaminated solutions at a fixed O3 input rate
(6.12 mg/h) and dosage rate (6 L/h). When treating the 0.2 L solution, quantitative RhB
degradation (>99%) was achieved after only 4 min of treatment time, while at the end
of the scale-up experiment, which was performed with a volume of 0.5 L, a maximum
degradation rate of 92% was achieved (Final RhB concentration: 0.09 mg/L) (Figure 2).
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A fast O3-assisted RhB degradation was also achieved by Cuiping et al. [25] during the
treatment carried out on a 100 mL RhB solution characterized by an initial concentration (C0)
of 100 mg/L. After prior optimization of the ozone dosage (1.8 L/h) at a fixed 5 g/h input
rate, the authors achieved a dye degradation of 92.2% after 20 min in an acidic environment
(pH = 3), with a consequent constant rate of 0.5214 min−1. Additional tests were performed
in a pH range of 4–10, but no noticeable effects on the extent of degradation rates were
observed; even in alkaline conditions, the final degradation rates (~90%) were similar to
that achieved at a pH of 3. A similar degradation test was carried out by Zawadzki et al. [26]
for the degradation of RhB dissolved in 0.5 L of water (C0 = 20 mg/L) at a corrected pH
value of 6 with a fixed O3 input rate and a dosage of 60 mg/h and 0.6 L/h, respectively. In
such operative conditions, the authors observed a maximum RhB degradation of 75% after
30 min with a constant rate value of 0.0459 min−1. To increase the dye degradation, the
same authors performed a hybrid O3/UV aiming to accelerate the O3 decomposition and
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intensify the hydroxyl radical (·OH) production. The coupling of UV to O3 successfully
allowed it to increase the RhB degradation from 75% to 90% and the constant rate from
0.0459 to 0.0726 min−1.

In general, our RhB preliminary degradation tests, together with the results published
in the literature, have shown that ozone is an excellent and efficient oxidizing agent for
the purification of RhB-contaminated water sources. However, for the treatment of large
volumes and high RhB concentrations, ozonation alone may be less efficient, and its
hybridization with other AOPs should be considered for the intensification of degradation
processes to promote an efficient scaling up at industrial levels. In addition, O3-based
plants for water treatment require complex equipment and control systems (mainly due to
the corrosiveness of O3) resulting in high operating and maintenance costs [27].

3.2. Lab-Scale US-Assisted RhB Degradation

Recently, cavitational technologies such as US (acoustic cavitation) emerged as effec-
tive candidates for the sustainable purification of both industrial effluents and naturally
polluted water sources [28]. In contrast to conventional AOPs such as Fenton, ozonation,
and photoelectro- and UV-catalysis (which require large amounts of chemicals), cavita-
tional treatments are generally considered “green” processes for industrial-scale applica-
tions [29,30]. With respect to acoustic cavitation, the propagation of US waves (acoustic
waves in the 20–800 kHz range) in water through compression and rarefaction cycles allows
the generation of mainly ·OH, which can attack and degrade organic contaminants. In
detail, when the negative pressure reached during the rarefaction cycle locally falls below
the vapor pressure of water, vapor and dissolved gas cavities (i.e., cavitation bubbles)
are formed. In the following compression cycle, the cavitation bubbles continue to grow,
producing larger acoustic cavities. When the critical cavities reach an unstable size, they
implode violently and generate high-pressure (>1000 bar) and high-temperature (thou-
sand Kelvins) areas (i.e., hot spots) and shock waves. As a consequence, highly reactive
free radicals are formed [31,32]. By varying the frequency of US waves, both physical
and chemical effects can be produced. Generally, at low frequencies (20–100 kHz range),
physical effects (e.g., increased turbulence in water) are predominant, while at higher
frequencies (200–500 kHz range), the chemical effects (highly reactive radicals production)
dominate because of the generation of a large number of cavities [33] characterized by
a shorter lifetime, which enables more ·OH migration from the cavities and results in a
higher proportion of radical reactions in the bulk solution [34,35]. For this reason, in this
work, different RhB degradation experiments were performed under the effect of US at a
frequency of 500 kHz with a power of 200 W. An initial US-only test was carried out on a
0.2 L RhB tap-water solution with a fixed initial RhB concentration of 5 mg/L (pH = 8) for a
total treatment time of 60 min. To promote cavitational effects only (and avoid possible ther-
mal degradation effects), a heat exchanger was used to keep the temperature of the water
contained in the US-bath at a constant value of 25 ± 2 ◦C. As shown in Figure 4, 60 min of
US alone allowed a RhB degradation of 72%. The constant rate of the degradation treatment
was calculated by the linearization of the pseudo first-order kinetic law (Equation (1)),
and it was 0.0216 min−1 (Figure S5). During the treatment, the power consumption was
measured and was 0.150 kWh. Due to the prolonged treatment time required by US alone,
two additional US-assisted degradation tests were conducted with H2O2 as an external
oxidizing agent, supplementing the hydroxyl radicals (·OH) generated by US. In fact,
under hybrid US/H2O2 treatments, US irradiation can dissociate H2O2 molecules into two
·OH molecules, increasing their concentration into the contaminated water. In addition,
undissociated H2O2 can act as a secondary source of oxidizing compounds [36]. Therefore,
two hybrid US/H2O2 treatments were carried out with two different RhB:H2O2 ratios
(1:100 and 1:200) under the US-only operative conditions (0.2 L RhB tap-water solution
with a fixed initial RhB concentration of 5 mg/L at a pH of 8). The addition of the external
oxidizing compound generally led to an increase of the degradation rate achieved under
US alone (72%). In detail, after 60 min of US/H2O2 treatment performed with RhB:H2O2
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ratios of 1:100 and 1:200, the achieved degradation rates were 82% and 90%, respectively,
with an increase of constant rates up to 0.0283 min−1 and 0.0364 min−1 (Figures 4 and S4).
The detailed degradation rate values as functions of all treatment times are reported in
Appendix A (Table A1).
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The prolonged treatment time required for the RhB degradation under 500 kHz US can
be ascribed to the low turbulence of treated solutions observed due the high-frequency US
exploited (prevalent chemical effects). Despite the ·OH oxidation potential (2.80 V) being
higher than that of O3 (2.01 V), both the higher oxidant quantity and the extreme turbu-
lence (Figure S6) achieved during the O3-assisted degradation tests described in Section 3.1
allowed for a faster RhB degradation than that of US alone and US/H2O2 (Table 2). In
addition, the comparison of the O3-assisted (Figure 3) and US-assisted degradation dimen-
sionless profiles (Ct/Co) highlights two possible different degradation mechanisms. As
described in Section 3.1, during O3-assisted degradation treatments the combination of
direct and radical degradation mechanisms can take place, while under US the radical
mechanism is predominant.

Table 2. Main operating parameters of the HC/ED plasma degradation treatments.

AOP
Technology RhB:H2O2

Volume Treated
(L) k (min−1) Degradation

Rate (%)

O3 - 0.2 1.0161 >99
O3 - 0.5 0.6447 92

US alone - 0.2 0.0216 72
US/H2O2 1:100 0.2 0.0283 82
US/H2O2 1:200 0.2 0.0364 90

An increase in mass transfer under the 500 kHz US-assisted treatment could be
achieved operating in a loop system with the recirculation of the contaminated solution.
Unfortunately, the design of the US system used in this work cannot be adapted to perform
experiments in loop configurations. So, to achieve a compromise between US physical and
chemical effects, an additional test was carried out reducing the US frequency to 120 kHz
at a fixed power of 200 W under the same operative conditions of the previous US-assisted
experiments. However, even after 60 min of treatments, no RhB degradation was achieved.
Despite US-based cavitational technologies having already been scaled up to pilot-scale
levels for the efficient pretreatment of waste biomasses [37]; the highest US frequency
generally deployed into such systems is 120 kHz, which did not allow the degradation of
RhB in this work.
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For the sake of comparison, several authors performed US-assisted RhB degradation
treatments exploiting similar lab-scale US systems. Xu et al. [38] carried out several RhB
degradation tests investigating the effect of the US power at a fixed frequency of 35 kHz in
a US bath, using a stirrer to enhance the mass transfer. The combination of US and stirring
allowed the authors to achieve a maximum RhB degradation rate of 86% after 40 min of
sonication at 300 W on a 250 mL RhB solution characterized by an initial concentration
of 20 mg/L. In addition to US bath systems, similar cavitational effects can be achieved
by using a US probe (horn) dipped directly into the contaminated solution as carried out
by Ye et al. [39]. The authors treated a 250 mL RhB solution (C0 = 10 mg/L), dipping the
US probe to a depth of 3 cm linked to a US generator set at a frequency of 20 kHz and
at a power of 800 W. After the correction of the RhB solution pH at a value of 3, and at
the end of the sonication treatment carried out for 100 min, the authors achieved a maxi-
mum degradation rate of 42%. With respect to US/H2O2 technologies, Mehrdad et al. [40]
confirmed the benefits of such hybrid approaches (i.e., acceleration of degradation rate), in-
creasing the constant rate observed under the effect of H2O2 alone from 1.73 ± 0.02 × 10−4

up to 7.64 ± 0.02 × 10−3 min−1, and exploiting the hybrid US/H2O2 approach during the
degradation of a 200 mL RhB solution (C0 = 60 mg/L) using a US probe working at a
frequency of 24 kHz. The presented results partially demonstrated the possibility of RhB
dye degradation avoiding the use of oxidizing chemical compounds; however, to increase
both the degradation and constant rates of US alone-assisted efficiencies, an external oxi-
dizing compound should be added anyway with a limitation of the sustainability of the
US treatments. In addition, the scalability at both pilot and industrial scales of US systems,
designed specifically for the degradation of organic contaminants (i.e., high frequency,
power, and mass transfer), still represents a challenge in recent years due to their typical
low energy transfer efficiencies (10–40%) and a rapid decrease of cavitation intensity with
distance from the ultrasonic transducer [41]. Limitations of US cavitational technologies
from a scalability point of view will be challenged and described in the next section. Herein,
it is important to point out that cavitation can also be generated in the hydraulic systems
through which water flows (hydrodynamic cavitation; HC). In the case of HC, another
physical AOP, pressure variations in the flowing liquid are generated by the passage of the
fluid through constrictions such as orifice plates (single or multiple holes), Venturi tubes,
or throttling valves [42]. In detail, HC takes place when the loca pressure drops (according
to Bernoulli’s principle) below its corresponding vapor pressure at the constriction, with
resulting formation of water vapor cavities (i.e., cavitation bubbles).

3.3. Rotor-Stator HC-Assisted RhB Degradation at Pilot Scale

As with US-generated cavities, because of the energy released during the implosion of
HC cavities at the end of their lifecycle, mainly ·OH and ·H are generated by homolytic
splitting of water molecule chemical bonds [43]. The same water pressure drop can be
achieved in rotor-stator cavitational reactors between a spinning rotor and a fixed stator, as
shown in Figure 5.
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In detail, the fluid is propelled by the rotor and its direction matches to the rotational
direction. The flow punches the back edge of the gap and forms a separation region with
low pressure, and the cavities are formed when the rotational speed reaches the critical
value [44]. Considering that HC systems are less expensive and more efficient in terms
of energy transfer than US (specifically at pilot and industrial scale) [45], they have been
widely used for wastewater purification in recent years [46]. For this reason, two different
RhB degradation tests were carried out in the commercially available ROTOCAV (E-PIC
S.r.l) rotor-stator HC reactor to investigate the possible scalability of HC-assisted water
treatment at pilot scale. The first degradation treatment was performed by exploiting HC
only cavitational effect on a 15 L RhB solution with an initial concentration of 5 mg/L. After
60 min of HC alone degradation treatment in recirculation approach (n◦ of passes = 200),
the highest RhB degradation achieved was only 13% and the calculated constant rate value
was 0.0024 min−1 as shown in Figure 6. The low degradation observed during the described
treatment shows the limits of HC alone technology in the field of wastewater treatment. In
fact, the efficiency of rotating HC reactors in treating water is strongly affected by several
geometric and operative parameters [46] such as the following:

• Gap between the stator and the rotor;
• Diameter and geometry of both the rotor and stator;
• Presence of dimples, indentations, or vanes on rotor;
• Rotational speed;
• Power of electric motor.
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Due to the generally low pollutant degradation under HC treatment alone, a new trend
in cavitation-based treatments in recent years has been the integration or hybridization
of the treatment with other advanced oxidation processes (AOPs) or their combined use
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with chemical oxidizing agents [47]. Based on the efficient combination of US and H2O2
with a RhB:H2O2 mole ratio of 1:200 observed in Section 3.2, and especially to avoid the
production of large volumes of wastewater, the same operative conditions (RhB:H2O2
1:200) were directly transposed on the pilot-scale HC system. The hybridization of HC and
H2O2 allowed for increases in both the HC-only RhB degradation (13%) and the constant
rate (0.0024 min−1) up to 33% and 0.0066 min−1, respectively (Figure 6). The detailed
degradation rate values as functions of all treatment times are reported in Appendix A
(Table A2).

For both HC alone and HC/H2O2 the total normalized energy consumption (HC
system + pump + chiller unit) during the treatment was 1.38 kWh/m3 (3.85 kWh). Con-
sidering an average cost of 0.062 €/kWh for electricity supply in Italy [48], the cost of
rotor-stator HC-assisted treatment alone is around 0.09 €/m3. In addition, the energy
efficiency calculated for 60 min of treatment (according to Equation (2)) of HC alone was
2.39 mg/kWh, while for the HC/H2O2 it was 4.65 mg/kWh.

Energy e f f iciency =
mg o f degraded RhB

kWh
(2)

Although the HC system used can treat larger volumes than the previously used US
unit, it showed a lower efficiency in the degradation of RhB dye. In detail, the geometry
of the rotor-stator system deployed in this work was designed specifically for the pre-
treatment of biomasses for methane production, for the extraction of food supplements and
as a homogenizer for foodstuffs [49], and to produce biodiesel [50], and it was tested for
water purification for the first time. However, for sake of comparison, Mishra et al. [51]
tested an HC system equipped with a circular venturi constriction to treat a 4 L RhB
solution with an initial dye concentration of 10 mg/L and a pH of 2.5, working with an
inlet pressure of 4.9 bar at a fixed temperature of 40 ◦C. Under such operative conditions,
the authors achieved a maximum RhB degradation of 65% after 120 min. To enhance the
efficiency of the HC reactor, the authors subsequently performed a hybrid HC/Fenton
(FeSO4:H2O2 in the ratio of 1:5) degradation test under the same operative conditions,
achieving a complete dye degradation after 120 min. An innovative swirling-jet cavitational
system was exploited under both HC alone and hybrid HC/H2O2 (with a H2O2 loading
of 100 mg/L) by Wang et al. [52] for treating a 25 L RhB solution with 10 mg/L initial
concentration. Both treatments were carried out working with an inlet pressure of 60 bar.
Under acidic conditions (pH = 3), the HC alone test allowed the authors to achieve an
RhB degradation of about 65% after 180 min, while the HC/H2O2 guaranteed 99% dye
removal. However, an increase in the starting pH of treated solutions to 7 and 10 decreased
the degradation to about 75% and 64%, respectively, reflecting the efficiency decrease of
the majority of AOPs carried out on RhB [3]. The presented experimental data, together
with the literature, demonstrated the possibility of degradation of RhB by means of HC
treatments; however, to increase their degradation efficiency (or to reduce the HC treatment
time), an external oxidizing agent should be added. From a research point of view, the RhB
degradation by means of AOPs is generally enhanced by an acidic pH of dye-contaminated
solutions. Nevertheless, to effectively implement HC reactors to existing water treatment
facilities, the correction of the starting pH could represent a bottleneck.

3.4. Pilot-Scale HC/ED-Assisted RhB Degradation

In very recent years, cold (or non-thermal) plasma technology has been recognized as
a promising AOP for both soil and water remediation due to (i) its high efficiency in the
degradation of CECs and recalcitrant water pollutants, (ii) minimal secondary pollution,
(iii) relative low energy consumption, and (iv) short treatment times required [53]. In
general, cold plasma can be generated by applying an electrical discharge (ED) to gases
such as Ar, N2, O2, air, or even water vapor, with a consequent production of highly
reactive species such as radicals (·OH, ·O, or H), electrons, O3, and ions by means of
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electrons impacted with gas/vapor molecules (impact ionization mechanism), as simplified
by Equations (3)–(7) [54].

O2 + e− → ·O + ·O + e− (3)

O2 + O → O3 (4)

O2 + e− → O− + ·O (5)

N2 + e− → N+
2 + 2e− (6)

H2O + e− → ·H + ·OH+e− (7)

Generally, ED-based plasma systems are composed of two electrodes connected to
a power source and a working gas. In such systems, three different reactor designs can
be exploited for the generation of highly reactive radicals responsible for the pollutant’s
degradation: a discharge in (i) gas phase, (ii) liquid phase, or (iii) hybrid gas–liquid
phase [55,56]. In the gas phase geometry, ED plasma is generated in gas injected above the
polluted water surface, while in the liquid phase approach, ED plasma is directly generated
within the water. However, such ED reactors are characterized by low mass transfer of
generated radicals, limiting the degradation rate of contaminants. To increase the migration
of radicals towards the bulk water, ED plasma can be generated and propagated in the
gas directly injected in the contaminated water solution or in water vapor bubbles (hybrid
gas-liquid phase) [57]. Therefore, in the present work, a new and innovative hybrid ED
plasma-based technology was exploited to generate ED plasma in the hybrid gas-liquid
phase by coupling HC with ED cold plasma for the intensification of the water-remediation
process. As demonstrated by Abramov et al. [58], ED can be efficiently propagated between
the HC cavities to allow the generation of plasma both in their gas/vapor phase and at
their gas-bulk liquid interface with consequent generation of oxidizing (·OH, ·O, and O3)
and reducing species (·H), thereby increasing the overall mass and energy transfer. In this
work, a similar hybrid HC/ED plasma reactor (described in Section 2.5 and schematically
illustrated in Figure 7) was exploited for the degradation of RhB due to the interesting and
promising results achieved in previous works in which several CECs such as tetracyclines
(TC) [16], metronidazole (MNZ) [59], furosemide (FUR) [60], and APIs contained in a real
industrial effluent [61] were efficiently degraded in short treatment times without the need
of external oxidizing compounds.
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Specifically, the plasma-assisted HC/ED degradation tests were all carried out using
a 5 L RhB solution (C0 = 5 mg/L), investigating the effect of the inlet pressure (10, 15,
and 20 bar) and collecting samples either in flow-through or loop configurations. For
comparison, an additional test was carried out under the effect of HC alone. As shown in
Table 3, both HC alone and hybrid HC/ED plasma approaches achieved interesting results
in flow-through with the highest degradation of 58% working with an inlet pressure of
20 bar under hybrid HC/ED plasma. As expected, the dye degradation decreased as the
operating pressure was reduced to 15 bar (52%) and 10 bar (39%).

Table 3. Results of degradation tests performed in flow-through under both HC alone and hybrid
HC/ED plasma.

Technology Inlet Pressure
(bar) Flow Rate (L/h) τR (min) Degradation Rate in

Flow-Through (%)

Hybrid HC/ED 10 250 0.0024 39
Hybrid HC/ED 15 300 0.0020 52
Hybrid HC/ED 20 330 0.0018 58

HC alone 20 330 0.0018 28

The lowest degradation was observed under HC alone (28%), demonstrating the
effective synergism of HC and ED plasma during the hybrid experiments. However,
the degradation achieved under HC alone (28%) was comparable to those achieved after
20 min of US alone, US/H2O2 1:100 (27%), US/ H2O2 1:200 (28%), and 45 min of rotor-stator
HC/H2O2 (25%), revealing the higher efficiency of the hybrid reactor (in flow-through)
even under the non-hybrid approach.

Substantial increases in RhB degradation were observed during the treatments carried
out in loop configuration. As shown by the dimensionless profiles (Ct/Co) reported in
Figure 8, a quantitative dye degradation (97%) was achieved under hybrid HC/ED plasma
after only 5 min of treatment carried out at 20 bar (Figure 9). To reach a similar degradation
value (98%), the experiment performed at 15 bar required 10 min of treatment while a
further decrease of inlet pressure (to 10 bar) allowed it to achieve a maximum degradation
of 94% after 10 min. The detailed degradation rate values as functions of all treatment times
are reported in Appendix A (Table A3).
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Figure 9. Picture of RhB solutions sampled during the HC/ED plasma treatment performed with
an inlet pressure of 20 bar. 0: starting solution, F: flow-through treatment, 1: 1 min loop treatment,
2: 2 min loop treatment, 5: 5 min loop treatment, 10: 10 min loop treatment.

During the non-hybrid loop treatment (HC alone), the degradation did not increase
(Figure S7) compared to that observed under flow conditions (27%), reflecting the same
results achieved in the previous works [16,59] in which the sonochemical dosimetry re-
vealed the formation of a constant concentration of oxidizing compounds under such
operative conditions. In addition to an increase of the degradation rate, the rise in inlet
pressure during HC/ED plasma experiments also resulted in an increase of the constant
rates as reported in Table 4, achieving the highest constant rate of 0.6598 min−1 working
at 20 bar. The linearization of experimental data, according to the pseudo-first order law
(Equation (1)) and the UV-vis spectra are reported in Figures S8 and S9.

Table 4. Constant rate values of degradation tests performed at 10,15, and 20 bar in loop configuration
under hybrid HC/ED plasma.

Inlet Pressure (bar) k (min−1) R2

10 0.2983 0.9712
15 0.5256 0.9807
20 0.6598 0.9730

Furthermore, the normalized energy consumption (kWh/m3) and the 10-min treat-
ment energy efficiencies (mg/kWh) of each HC/ED plasma-assisted test were calculated
and reported in Table 5. Although the best results in terms of degradation and constant
rates were achieved operating with an inlet pressure of 20 bar, under such operative con-
ditions the HC/ED plasma reactor revealed the highest normalized energy consumption
(8.79 kWh/m3) and consequent lowest energy efficiency (9.94 mg/kWh). In fact, from an en-
ergy consumption point of view, the best results were achieved at 10 bar, with a normalized
energy consumption of 7.14 kWh/m3 and an energy efficiency of 13.82 mg/kWh. Despite
the energy consumptions (7.14, 7.33, and 8.79 kWh/m3 at 10, 15, and 20 bar, respectively)
and treatments costs (0.44, 0.45, and 0.55 €/m3 at 10, 15, and 20 bar, respectively) of the hy-
brid HC/ED plasma reactor were greater than that of the rotor-stator HC system described
in Section 3.3 (1.38 kWh/m3 and 0.09 €/m3), the energy efficiencies of the 10-min HC/ED
plasma treatments (13.82, 13.11, and 9.94 mg/kWh at 10, 15, and 20 bar, respectively) were
conspicuously higher than those of the 60-min rotor-stator HC alone and the rotor-stator
HC/H2O2 experiments (2.39 and 4.65 mg/kWh, respectively).
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Table 5. Energy consumption and energy efficiency of HC/ED plasma-assisted RhB degradation
experiments.

Inlet Pressure
(bar)

Energy
Consumption

(kWh)

Normalized
Energy

Consumption
(kWh/m3)

Treatment
Cost

(€/m3)

Energy
Efficiency

(mg/kWh) 1

10 2.0 7.14 0.44 13.82
15 2.2 7.33 0.45 13.11
20 2.9 8.79 0.55 9.94

1 Calculated for 10 min of treatment.

For comparison, a similar combined (and not hybrid) HC + plasma reactor (sequential
plasma generation and subsequent HC) allowed Nie et al. [62] to achieve a maximum
RhB degradation rate of 97% treating a 5 L solution (C0 = 5 mg/L) at a pH of 3, with an
inlet pressure of 20 bar after 120 min of treatment assisted by the injection of O2 at a flow
rate of 50 mL/min for the plasma ignition. According to the authors, the overall energy
consumption of the treatment was 234.6 kW/m3. In recent years, US cavitational treatments
have also been coupled with cold plasma for the degradation of RhB. Komarov et al. [63]
reported a hybrid recirculating reactor composed of a US probe (horn) placed above a
needle-shaped high-voltage electrode for degradation treatments to allow the propagation
of pulsed ED between the generated cavities. The authors treated a 2.5 L solution of RhB
with an initial concentration of 10 mg/L, and under the optimized operative condition
(pH = 5; US power = 210 W; ED voltage = 25 kV; Flow rate = 60 L/h) achieved a 26% RhB
degradation in 12 min of treatment. The same US/ED plasma system was used in a batch
configuration by Xu et al. [64] in the presence of ferrous chloride (FeCl2) and injected argon
(8 L/min) for the US/ED plasma/Fenton-assisted degradation of the same dye. Working
under a US frequency of 20 kHz at a power of 120 W, an ED voltage of 40 kV, and a FeCl2
loading of 5 mg/L, the authors treated a 2 L RhB solution (C0 = 5 mg/L) at a pH of 4,
achieving a degradation efficiency of 77% in 12 min.

Regarding the presented results of the HC/ED plasma-assisted treatments, this tech-
nology has been shown to be more efficient than O3 (given the 10-fold higher volume
treated), US, and rotor-stator HC. It demonstrates superior performance in handling larger
volumes, requires shorter treatment times, improves energy efficiency, and intensifies the
process, all while eliminating the need for external oxidizing agents and gas injections for
plasma ignition.

3.5. RhB Degradation: PROS and CONS of Screened AOPs

To better compare the effectiveness of the four degradative approaches studied in this
article for rhodamine B, the PROS and CONS of each technological approach have been
highlighted in Table 6. Although the HC/ED approach was found to be the best performer,
detailed investigations about degradation mechanism and by-product formation are still
required in the near future, as well as further investigation of potential HC/ED plasma
industrial-scale use on more severe pollutant concentrations.

Table 6. PROS and CONS of screened AOPs for RhB degradation.

Technology Pros Cons

Lab-scale O3

- Fast degradation kinetics
- Organic pollutant mineralization
- No sludge production
- Some plants already scaled-up at industrial
level
- High mass transfer
- Possible simultaneous sterilization

- Batch treatments
- High capital and operating maintenance costs at
industrial level
- Low plant and worker safety
- Low O3 solubility in water
- Energy cost
- Possible formation of hazardous by-products
- In site O3 production required
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Table 6. Cont.

Technology Pros Cons

Lab-scale US

- Lower energy consumption than rotor-stator
HC and hybrid HC/ED plasma
- Simple system design
- Safe for workers
- Easy operations

- Low mass transfer (due to the high US
frequencies required)
- Batch treatments
- Low degradation kinetics
- Low scalability at industrial level for
wastewater treatment
- External chemicals required for mineralization
of organic pollutants (combined/hybrid process)

Rotor-stator HC

- Pilot scale
- Moderately low treatment cost
- Easily scalable at industrial level
- Simple system design
- Flow or loop treatments
- Safe for workers
- Easy operations

- Low energy efficiency
- Low degradation kinetics
- Detailed studies are still required to develop
high-efficient rotor-stator devices for wastewater
treatment
- External chemicals are required to enhance HC
treatments

Hybrid HC/ED plasma

- Pilot scale
- Fast degradation kinetics
- High energy efficiency
- High efficiency already in flow-through
- No sludge production
- No external chemicals required
- In-situ formation of different oxidizing
chemicals [16]
- pH independence [16]
- Possible ED-induced pyrolysis of pollutants
- Simple design
- Easy operation
- Higher efficiency than existing cold-plasma
only technologies

- Moderate-high treatment cost
- Detailed investigations about degradation
mechanism and by-product formation are still
required
- Possible prior removal of suspended solids
required (due to the orifice plate restrictions)
- Maintenance of electrodes and hydraulic
section (due to working under pressure rather
than suction)

4. Conclusions

In this study, different AOP technologies were compared with the aim of developing
a sustainable and chemical-free wastewater treatment process for the purification of tap
water ad-hoc contaminated by the RhB dye. The benchmark O3-based treatment revealed a
robust efficiency in the quantitative RhB degradation (>99%) after only 4 min of treatment
time carried out at laboratory scale (0.2 L) in batch configuration.

In the US-assisted experiments, a maximum dye degradation of 72% was achieved
after an extended treatment time of 60 min under the effect of US alone. However, relatively
high hydrogen peroxide (H2O2) loadings of 37.5 and 75 mg/L were required to increase
RhB degradation to 82% and 90%, respectively. Due to the limited scalability of the US
process, an easily industrially scalable rotor-stator hydrodynamic cavitation (HC) unit
was tested on larger volumes (15 L) of contaminated solutions in a loop configuration
(recirculation). Nevertheless, because of the specific geometry of the rotor-stator system
(primarily designed for biomass pretreatment), only 33% RhB degradation was achieved in
the presence of H2O2 (75 mg/L) after 60 min.

In contrast, the hybrid HC/ED plasma technology achieved very rapid (5 min), nearly
complete (97%), chemical-free, and energy-efficient RhB degradation in a 5 L solution at
an inlet pressure of 20 bar in a loop configuration. It is noteworthy that significant RhB
degradation rates (>39%) were also observed in a flow-through configuration.

In summary, the HC/ED plasma-assisted degradation experiments demonstrated the
effective combination of hydrodynamic cavitation with cold plasma, which offers scalability
and intensification of existing cavitational technologies for the purification of wastewater.
The comparative analysis of various AOPs for treating water contaminated with simulated
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RhB dye has offered valuable insights into their efficiency and scalability, particularly in
terms of expanding cavitational processes to an industrial level.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pr12102128/s1, Figure S1. Chemical structure of Rhodamine B
(RhB). Table S1. Tap water composition. Figure S2. RhB calibration curve; Figure S3. ROTOCAV (E-
PIC S.r.l., Italy) rotor-stator device; Figure S4. Hybrid HC/ED plasma reactor; Figure S5. Pseudo first-
order linearization of experimental data of lab-scale US-assisted degradation treatments; Figure S6.
Ozone bubbling into the RhB solution; Figure S7. Ct/Co dimensionless profile of treatment carried
out inside the hybrid HC/ED plasma reactor by switching off the ED (HC alone); Figure S8. Pseudo
first-order linearization of experimental data of HC/ED plasma-assisted degradation treatments.
Figure S9. UV-vis spectra of HC/ED plasma-assisted degradation treatments carried out with an
inlet pressure of (a) 10 bar, (b) 15 bar, and (c) 20 bar.
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Appendix A

Table A1. Degradation rate values of lab-scale US and US/H2O2 treatments.

Degradation Rate (%)

Treatment Time
(min) US Alone US/H2O2 1:100

(RhB: H2O2)
US/H2O2 1:200
(RhB: H2O2)

5 7 6 4
10 12 11 11
20 27 27 28
30 45 44 52
45 60 67 75
60 72 82 90

Table A2. Degradation rate values of pilot-scale rotor-stator HC-assisted degradation treatments.

Degradation Rate (%)

Treatment Time (min) HC Alone HC/H2O2 1:200 (RhB: H2O2)

5 1 2
10 2 5
20 5 11
30 8 17
45 11 25
60 13 33

https://www.mdpi.com/article/10.3390/pr12102128/s1
https://www.mdpi.com/article/10.3390/pr12102128/s1


Processes 2024, 12, 2128 17 of 19

Table A3. Degradation rate values of HC/ED plasma-assisted degradation treatments in loop
configuration.

Degradation Rate (%)

Treatment Time (min) 10 bar 15 bar 20 bar

1 40 53 64
2 56 76 84
5 79 93 97
10 94 98 98
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