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Abstract: Integrated fixed-film activated sludge (IFAS) technology greatly enhances nitrogen removal
effectiveness and treatment capacity in municipal wastewater treatment plants, addressing the issue
of limited land availability. Hence, this method is appropriate for treating household wastewater
from office buildings. The research was conducted at the wastewater treatment plant in an office
building in Ho Chi Minh City, Vietnam. Experiments were conducted to ascertain the most favorable
working conditions, including hydraulic retention time (HRT), alkalinity dosage, and dissolved
oxygen (DO). According to the study, the IFAS system had the highest nitrogen removal effectiveness
when operated at a hydraulic retention time (HRT) of 7 h, an alkalinity dose of 7.14 mgCaCO3/mgN-
NH4

+, and a dissolved oxygen (DO) value of 6 mg/L. The nitrification efficiency ranges from 89.2%
to 98.8%. The N-NO3

− concentration post-treatment is within the range of 27–45 mgN-NO3
−/L,

which is lower than the allowable discharge limit of 60 mg/L as per Vietnam’s wastewater discharge
requirements. The research findings have enhanced the efficiency of the office building management
process, thereby promoting the sustainable growth of society.

Keywords: integrated fixed-film activated sludge (IFAS); domestic wastewater; office building;
simultaneous nitrification and denitrification (SND)

1. Introduction

The environment is experiencing significant impacts due to the proliferation of office
buildings and the continuous growth of society. The degradation of Earth’s ecosystems
results from altering natural areas caused by urban sprawl. In addition, the release of
untreated residential wastewater from office buildings poses a substantial environmental
hazard [1]. Consequently, various environmental problems have arisen, including height-
ened usage of energy and water, as well as the production of pollutants such as chemical
oxygen demand (COD), ammonia nitrogen, sulfur dioxide, and nitrogen oxides [2]. There-
fore, treating household wastewater from office buildings is considered a crucial activity in
sustainable urban development aimed at reducing the environmental consequences of the
growing number of office buildings.

Several investigations have consistently found increased nitrogen levels in the wastew-
ater produced by office buildings [3–6]. This matter is highly significant as it has the
potential to contaminate groundwater [5] and threaten aquatic environments [6]. Nitrogen
compounds can inflict substantial harm on the environment, such as the reduction in
oxygen levels in water bodies or the process of eutrophication [7]. Effective treatment
methods are necessary to remove these increased nitrogen levels efficiently. Various tech-
nologies and strategies have been examined to treat wastewater effectively. Li et al. studied
the operational efficiency and membrane fouling of the A2/O-MBR process in reclaimed
water treatment [8]. They highlighted the significance of maintaining stable effluent water
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quality and the role of microbial diversity in effectively removing organics and facilitat-
ing the nitrification of ammonia nitrogen. Pedrouso et al. investigated the treatment of
digested blackwater in a reactor that uses a partial nitrification–anammox process with
alternating periods of starvation and reactivation [9]. Zhang et al. developed a method
that combines partial nitrification and denitrification with polishing anammox to remove
nitrogen from low-C/N residential wastewater. This approach resulted in a high efficiency
of nitrogen removal [10]. Huang et al. devised a method combining partial denitrification
with anaerobic ammonium oxidation (anammox) in a continuous flow anoxic/oxic biofilm
reactor, significantly increasing nitrogen removal efficiency [11]. In addition, Halicki et al.
presented evidence of successfully eliminating nitrogen and phosphorus compounds in
household wastewater through natural treatment systems, highlighting the capacity to
reduce nutrient levels in wastewater [12]. These studies demonstrate the potential of many
techniques to eliminate nitrogen from domestic wastewater efficiently. Nevertheless, every
system possesses specific constraints. Given the extensive use of the continuous flow
process, it is imperative to examine the efficacy and reliability of the innovative technology
before its actual implementation. However, information was scarce, particularly about
nitrogen removal’s initial and long-term effectiveness in treating real domestic wastewater
in office buildings.

The integrated fixed-film activated sludge (IFAS) process has numerous benefits in
eliminating nitrogen from wastewater. According to Waqas et al., it has been demonstrated
that this method may produce a clearance rate of over 90% for combined chemical oxygen
demand and ammonia [13]. Additionally, it improves the settling qualities of sludge and
enhances operational stability. The technique also facilitates the simultaneous occurrence of
nitrification and denitrification, resulting in reduced amounts of chemical oxygen demand,
ammonium nitrate, and total nitrogen in the effluent [14]. Furthermore, the IFAS process can
effectively remove nitrogen from sewage, exhibiting impressive nitrogen removal rates [15].
Consequently, the IFAS process is appropriate for implementation in wastewater treatment
facilities in office buildings. Nevertheless, the specific elements that influence the efficacy
of nitrogen removal in office buildings using this technique are not fully understood.

Therefore, this study assessed the variables that impact the nitrogen removal process
in the domestic wastewater of an office building in Vietnam using IFAS technology. The
discussion concerns crucial operational factors such as hydraulic retention time (HRT),
dissolved oxygen (DO) concentration, and alkali dosage. The results analyze the primary
aspects influencing system stability and provide a strategy to guarantee stable operation,
contributing to the sustainable development of society.

2. Materials and Methods
2.1. Plant Description

This research was conducted at a domestic wastewater treatment facility in an office
building in Ho Chi Minh City, Vietnam. The plant has a daily capacity of 40 m3/day.
Figure 1 displays the diagram of the wastewater treatment process. Following the con-
centration in the equalization tank, the wastewater is fed into an aerobic tank containing
carrier material (Figure 2). After the aerobic interaction between the wastewater and mi-
croorganisms, the wastewater flows automatically to an anoxic tank, a secondary clarifier,
and a disinfection tank before being injected into the city’s public drainage network. The
system was consistently functioning without any issues, and the post-treatment pollution
components comply with the discharge requirements set by the Vietnamese Government.
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Figure 2. The carrier materials used in the research.

2.2. The Carrier Materials

The carrier materials for this study are constructed using polypropylene (PP), as
shown in Figure 2. Polypropylene is chemically stable, corrosion-resistant, stable to acid
and alkali, cheap, and of a high strength. The diameter is 105 mm, porosity is 90–92%,
specific surface area is 150–180 m2/m3, and volume is 23–33 L/m3.

2.3. Seed Sludge and Domestic Wastewater

The inoculated sludge was obtained from the return ditch of the second settling tank
of a domestic wastewater treatment plant, where the sludge maintained a high activity
with an SV30 of about 20~30% and a yellowish-brown color. The water for the experiment
was obtained from the fine-grating effluent of a domestic wastewater treatment plant at the
office building. The quality of the influent water is shown in Table 1.

Table 1. Characteristics of influent wastewater.

Parameters Unit Values

pH - 6.6–7.7
SS mg/L 34–80

COD mgO2/L 144–432
N-organic mg/L 9–15
N-NH4

+ mg/L 49–90
N-NO2

− mg/L 0.2–8.0
Alkalinity mgCaCO3/L 160–480

2.4. Factors Affecting Treatment Effectiveness
2.4.1. Hydraulic Retention Time (HRT)

Hydraulic retention time (HRT) is an essential parameter for determining the capacity
of a wastewater treatment plant and has significant implications for cost reduction. Re-
ducing the HRT can significantly lower the plant’s overall cost, provided the discharge
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parameters are met. Nevertheless, the choice of HRT will vary depending on the concentra-
tion of contaminants in each area [16].

This study was conducted for 11 days, with HRTs of 7 h, 5.8 h, 4.7 h, and 3.9 h, re-
spectively. Each retention time is studied for a duration of three days. The minimum
hydraulic retention period is 3.9 h (at a flow rate of 3 m3/h) and was only investigated
for 2 days. When the hydraulic retention time is altered while keeping the total treatment
flow the same throughout the day, the result is an increase in the hourly load, while the
load during the day and night remains unchanged. The quantity of alkalinity supple-
ment chemicals introduced is 11.5 kg/day, corresponding to an alkalinity consumption
of 7.14 mgCaCO3/mgN-NH4

+. This amount is sufficient to fully convert the measured
quantity of ammonia in the wastewater. The dissolved oxygen concentration is consistently
maintained at around 6 mgO2/L.

2.4.2. Alkalinity

Alkalinity is a critical factor influencing nitrification, where ammonium (N-NH4
+) is

converted to nitrate (N-NO3
−). Scientists have linked alkalinity to nitrification/denitrification

for decades, although little is known about its effect on effluent nitrogen content. The robust
association between alkalinity and effluent nitrogen concentration illustrates the potential for
utilizing alkalinity as a reliable indicator in nitrification/denitrification processes [17]. The
alkalinity requirement is determined based on the bicarbonate needed to counteract the acidity
produced during nitrification. Theoretical calculations suggest that an alkalinity consumption
of 7.14 mgCaCO3/mgN-NH4

+ is enough to convert all the ammonia entering wastewater
into nitrate fully [17,18]. Therefore, the amount of alkalinity required to remove ammonia
through nitrification can be calculated using the following formula:

Alk required = N-NH4
+

influent × 7.14 mg/L alkalinity to nitrify

where Alk required is the alkalinity requirement, and mg/L, N-NH4
+

influent is the influent
(raw) ammonia, mg/L.

This study examined the influence of different amounts of alkaline dosage on the
effectiveness of ammonia therapy. The alkaline dosages tested were 7.45 mg of CaCO3/mg
of N-NH4

+, 7.14 mg of CaCO3/mg of N-NH4
+, and 6.83 mg of CaCO3/mg of N-NH4

+.
The duration of the study is 9 days in total. The DO concentration is 6 mgO2/L, and the
HRT is 7 h.

2.4.3. Dissolved Oxygen (DO)

Dissolved oxygen (DO) is vital to biological nutrient removal (BNR). Traditional
nitrification and denitrification require 1–7 mgO2/L dissolved oxygen (DO). In anoxic–
aerobic conditions, the optimal DO demand is 1–4 mgO2/L compared to 6–7 mgO2/L in
fully aerobic conditions [19].

The investigation was carried out using a hydraulic retention time (HRT) of 7 h and
an alkaline intake of 7.14 mg of CaCO3/mg of N-NH4

+. The study examined three DO
levels: 6 mgO2/L, 4 mgO2/L, and 2 mgO2/L. The goal was to identify the optimal DO
concentration required to treat the office building’s wastewater efficiently.

2.5. Sampling and Analysis

Using a HACH HQ30D multiparameter sensor (HACH Instruments, Loveland, CO,
USA), pH and dissolved oxygen were measured on-site and analyzed six times daily
(08:00, 10:00, 12:00, 14:00, 16:00, and 18:00) with varying dissolved oxygen values, and four
times daily (06:00, 10:00, 14:00, and 18:00) with differing hydraulic retention durations
over multiple days. The concentrations of N-NH4

+ and N-NO3
− were quantified using a

spectrophotometer (APHA 4500 NH3 G for N-NH4
+ and EPA 352.1 for N-NO3

−). Titration
was employed to quantify alkalinity (APHA 2320 B) [20].
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3. Results
3.1. Effects of HRT on Treatment Efficiency

The impact of hydraulic retention time (HRT) on nitrogen removal efficiency in do-
mestic wastewater treatment has been thoroughly researched. The findings indicate that
alterations in HRT have a substantial influence on the effectiveness of different treatment
systems. Typically, a longer HRT improves nitrogen removal efficiency by providing suffi-
cient time for crucial microbial processes, such as nitrification and denitrification, to occur
more effectively. Studies suggest that prolonging HRT can enhance nitrogen removal effi-
ciencies. Janyasupab and Jampeetong observed that extending HRT to 5 days significantly
enhanced nitrate nitrogen (N-NO3

−) removal, especially in biochar-based systems, due to
extended contact time with denitrifying bacteria [21]. Ren et al. noted that extending the
hydraulic retention time (HRT) from 4 to 5 h substantially increased the effluent nitrate
concentration, indicating insufficient nitrification at lower retention durations [22].

The N-NH4
+ concentration remained below the permissible discharge level (12 mg/L)

throughout the 3-day operation, with treatment efficiency ranging from 85% to 91%.
This was achieved with an HRT of 7 h (Q = 1.67 m3/h, Lorganic = 0.55–0.88 kg/m3·day,
Lammonia = 0.20–0.29 kg/m3·day). This finding was analogous to the research by Singh
et al. [23]. However, despite a drop in the N-NH4

+ concentration after treatment, the effec-
tiveness of the N-NH4

+ treatment does not fulfill the requirements for discharge based on
the remaining HRT values. Therefore, it may be inferred that if the hourly operating flow is
increased (resulting in a decrease in HRT) beyond the calculated flow rate of 1.67 m3/h, the
treatment efficiency fails to meet the criteria for wastewater disposal. Hence, it is illogical
to reduce the duration of daily operations at the treatment station by augmenting the rate
of treatment per hour. In addition, the research findings indicate that the treatment process
will not yield the intended outcome if there is an increase in the N-NH4

+ concentration in
the incoming wastewater [24–26]. Overloaded treatment systems reduce nutrient removal
effectiveness, causing nitrite and ammonia buildup, which harms the environment and
humans. Nutrients that are not removed can pollute groundwater and surface water [27].

Figure 3 demonstrated that the combined concentration of N-NH4
+ and N-NO3

− in the
treated wastewater (31–72 mg/L) is lower than the influent wastewater’s N-NH4

+ concen-
tration (57–93 mg/L). As a result, nitrification and denitrification occurred simultaneously
in the aerobic-activated sludge tank [28]. This is very suitable for wastewater treatment
systems in urban areas with limited land [29]. In addition, the simultaneous occurrence
of these two processes also significantly affects other parameters in the treated wastewa-
ter [30]. Nitrification requires high dissolved oxygen and reduces pH by forming nitric acid,
while denitrification increases pH [31]. Nitrification reduces ammonia concentrations, but
it can lead to nitrite accumulation if not complete [32]. If denitrification fails, nitrates will
accumulate and harm the ecosystem [33]. Denitrification reduces COD and BOD by using
organic material as a substrate [34]. HRT must be optimized to provide adequate time for
both processes and adjust aerobic and anoxic oxygen concentrations to avoid hindering
either process. Nevertheless, when the operating flow (reducing HRT) is increased, the
contact time between denitrifying and nitrate-reducing bacteria decreases, and high nitrite
accumulation inhibits the denitrification process. Consequently, the efficiency of the nitrate
reduction process also decreases with the operating stages. Additionally, lack of nutrient
control increases operating costs due to the need for more chemicals and energy. It is crucial
to effectively control nutrient loading rates to prevent system overload or inhibition [35].
This can be regulated by optimizing the tank dimensions and redesigning the aerobic and
anoxic zones to enable HRT modification.
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3.2. Effect of Alkalinity on Treatment Efficiency

Variations in influent ammonia content directly affect wastewater treatment system
alkalinity demand, as the nitrification process uses considerable alkalinity to neutralize the
acid created during ammonia to nitrate conversion [36]. An increased ammonia concentra-
tion leads to increased H+ generation, lowering alkalinity and pH, necessitating alkalinity
supplementation to maintain appropriate pH for nitrifying bacteria [37,38]. Conversely,
low ammonia concentrations deprive nitrifying bacteria of substrate, limiting nitrogen
removal efficiency [39]. As hydrogen ion generation decreases with ammonia concentration,
alkalinity replenishment decreases.

Numerous nitrogen-eliminating biological and chemical processes necessitate alka-
linity, particularly biological nitrogen removal (BNR) systems. Yang et al. illustrated that
adding bicarbonate (HCO3

−) significantly improved nitrogen removal rates in an anammox
process, increasing from 5.2 to 11.8 kg of nitrogen removed per day with sufficient alkalinity
enhancement [40]. Similarly, Hu et al. found that alkalinity was substantially correlated
with the treatment success of the MBR system. Enhancing alkalinity may improve the
removal rate of COD and ammonia nitrogen [41]. Furthermore, Ji et al. highlighted that a
synergistic approach combining partial denitrification and anammox processes achieved
a nitrogen removal efficiency of 95.6% under optimal alkalinity conditions, showcasing
the importance of maintaining appropriate alkalinity levels for maximizing nitrogen re-
moval [42].

Figure 4 demonstrates that the ammonia in the wastewater is virtually entirely eliminated
if the amount of alkalinity (NaHCO3) is 7.45 mgCaCO3/mgN-NH4

+ and 7.14 mgCaCO3/mgN-
NH4

+. N-NH4
+ conversion to N-NO3

− efficiency declines over time and fails to meet the
discharge standards for an alkaline consumption of 6.83 mgCaCO3/mgN-NH4

+ (N-NH4
+

effluent = 12–31 mg/L). Therefore, the calculated alkalinity dose must be added to convert
N-NH4

+ into N-NO3
−. In addition, adding additional alkalinity is unnecessary because the

treatment efficiency is the same, and the leftover N-NH4
+ content is still below the discharge

standard. Moreover, oxygen concentration, pH, retention time, influent water loading, and
nitrifying bacteria supplementation must be optimized to consistently remove ammonia under
reduced conversion efficiency.
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3.3. Effect of DO on Treatment Efficiency

A DO concentration above 6 mg/L can dramatically affect nitrification by suppressing
specific bacteria populations in this metabolic reaction. Nitrification is a two-step aerobic
process in which ammonia-oxidizing bacteria (AOB) oxidize ammonia to nitrite and then
nitrite to nitrate. Oxygen levels affect these microbial processes; therefore, high DO can
disturb them. Because high oxygen concentrations reduce denitrifying enzyme activity,
nitrogen removal is impeded [43]. Additionally, elevated DO levels influence nitrifying
bacterial community dynamics. AOB may outcompete NOB in high DO conditions, caus-
ing partial nitrification, where nitrite accumulates instead of being totally oxidized to
nitrate [44,45]. In addition, maintaining high DO concentrations for long periods of time
will consume a lot of electrical energy, which will affect the cost of wastewater treatment.
Due to nitrification processes, low DO levels might suppress the activity of nitrite-oxidizing
bacteria (NOB), increasing the nitrite content. Numerous studies have reported this oc-
currence, which suggests that the metabolic pathways prefer nitrite buildup over nitrate
(NO3

−) accumulation when oxygen levels are low [46]. Furthermore, in aquatic settings,
nitrite buildup can also upset microbial communities. The growth of denitrifying bacteria
may be impeded in low-oxygen settings because nitrite and its reactive nitrogen species,
like nitric oxide (NO), have dangerous properties [47]. Enhancing dissolved oxygen con-
centrations in process zones improves nitrogen removal [48,49]. Some studies suggest that
nitrification can still be effective at DO concentrations as low as 0.3 mg/L to 0.7 mg/L, par-
ticularly in systems designed for simultaneous nitrification–denitrification (SND). Jiménez
et al. found that maintaining DO levels within this range maximized SND activity, although
it also increased susceptibility to sludge bulking [30]. Therefore, optimizing dissolved
oxygen levels in treatment systems is crucial for balancing nitrification and denitrification
processes. Zhou et al. performed a comprehensive investigation in an Orbal oxidation
ditch, demonstrating that nitrogen removal effectiveness was significantly contingent upon
the extent of nitrification and denitrification, which were, in turn, affected by the aeration
tactics utilized [50].

Figure 5 indicates that the higher the dissolved oxygen concentration, the more effi-
cient the nitrification process. If the DO concentration is around 6 mgO2/L, the ammonia
content after treatment is less than the permitted discharge level. Zhang et al. [51] ex-
amined the variations in the concentrations of NH4

+, NO2
−, and NO3

− in the reactor
under varied levels of cathodic DO. The findings indicated that N-NH4

+ removal and
nitrification activity exhibited an increase in correlation with increasing DO concentrations.
In addition, Lei et al. [52] demonstrated that a low DO level can effectively suppress the
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proliferation of nitrite-oxidizing bacteria (NOB), resulting in nitrite accumulation. Simulta-
neously, when the DO concentration is low, the conversion rate of ammoniacal nitrogen is
comparatively sluggish.
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Figure 5. The effectiveness of the nitrification process at various DO values.

When the DO level was below 6 mgO2/L, the ammonia concentration post-treatment
from 8:00 to 12:00 was less than that from 14:00 to 18:00. This outcome occurs because, after
19:00, the wastewater produced by the office building is nearly insignificant, resulting in
prolonged retention of the wastewater in the aerobic activated sludge tank. Simultaneously,
the nitrification process persists, leading to a significantly reduced ammonia concentration
in samples collected during the morning hours of the subsequent day compared to those
obtained in the afternoon and evening of the same day.

Optimizing wastewater treatment systems’ simultaneous nitrification and denitrifica-
tion (SND) processes requires biofilms’ aerobic–anoxic balance. Several factors influence
this balance, including dissolved oxygen (DO) concentration [53,54], the chemical-oxygen-
demand-to-nitrogen (COD:N) ratio [55,56], biofilm thickness [57], and operational condi-
tions such as hydraulic retention time (HRT). Suspended sludge and attached biofilm work
together to remove organic carbon and improve biological nitrogen removal (BNR) in the
IFAS system [58]. IFAS biofilms with a unique multi-layer structure form aerobic and anoxic
zones to achieve simultaneous nitrification and denitrification (SND) by coexisting nitrifiers
and denitrifiers [13]. SND, which involves microbiological processes of nitrification and
denitrification in the same reactor, is promising for BNR [59]. Biofilm microorganisms are
layered along DO concentrations. Nitrifying bacteria, which need oxygen for metabolism,
live in biofilm’s upper layers where DO is higher. Denitrifying bacteria, which thrive in
anoxic circumstances, live deeper in the biofilm. This stratification allows both groups
to cohabit, enabling SND [60]. Gu et al. found that IFAS systems could remove 73% of
influent ammonia shock loads, showing a robust capacity for high ammonia levels [61].
Since biofilm provides a stable home for nitrifying bacteria, IFAS systems may oxidize
ammonia better than conventional systems. However, suboptimal carbon sources [62],
operational characteristics like DO levels and F:M ratios [63], and microbial community
dynamics [64] might reduce denitrification efficiency in IFAS systems. The concurrent
optimization of nitrification and denitrification can be accomplished through advanced
bioreactor designs [65], the precise regulation of environmental parameters [66], and the
application of specific microbial communities [67]. These strategies improve nitrogen
removal efficiency and promote sustainable wastewater treatment practices.
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It can be seen in Figure 6 that denitrification always occurs because the total concen-
tration of N-NH4

+ and N-NO3
− after treatment (32–49 mg/L) is always smaller than the

influent N-NH4
+ concentration (68–80 mg/L). Additionally, DO is maintained at about

2 mg/L, and the N-NO3
− reduction efficiency is better than that of the other two stages.

High yields of SND have been demonstrated by Xia et al. [68] and Machat et al. [58] when
dissolved oxygen concentrations are kept between 1 and 2 mgO2/L. Maintaining a high
dissolved oxygen concentration in the fixed-growth aerobic-activated sludge tank does
not considerably impact the denitrification process. During the study period, the N-NO3

−

concentration after treatment (9–45 mgN-NO3
−/L) is lower than the discharge requirement

(60 mgN-NO3
−/L). A dissolved oxygen content of roughly 6 mg O2/L is required for ade-

quate N-NH4
+ removal (the post-treatment N-NH4

+ and N-NO3
− concentrations do not

exceed the prescribed threshold). According to Sriwiriyarat et al. [69], a DO concentration
of 6 mgO2/L was required for SND to maintain efficient nitrification and supply extra
nitrous oxides for denitrification in IFAS.
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4. Conclusions

In this study, we highlighted the effect of important operating parameters, including
hydraulic retention time (HRT), alkalinity, and dissolved oxygen (DO) concentration,
by proving the efficiency of the integrated fixed-film activated sludge (IFAS) system for
nitrogen removal in a domestic wastewater treatment plant for an office building. With
post-treatment nitrate (N-NO3

−) concentrations between 27 and 45 mg N-NO3
−/L, well

below the discharge limit of 60 mg N-NO3
−/L, optimal conditions, including an HRT

of 7 h, an alkalinity dose of 7.14 mg CaCO3/mgN-NH4
+, and a DO concentration of

6 mgO2/L, resulted in nitrification efficiencies ranging from 89.2% to 98.8%. By use of
suspended sludge, biofilm carriers, and controlled DO levels, simultaneous nitrification and
denitrification was encouraged, generating microenvironments for both aerobic and anoxic
reactions within the reactor. The alkalinity supplied necessary buffering for the nitrification
process, hence preserving pH stability and improving nitrogen removal effectiveness.
By optimizing treatment techniques and lowering environmental effects, our results not
only support sustainable urban growth but also help urban wastewater management be
more cost-effective.
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