Role of Disulfide Bonds and Sulfhydryl Blocked by N-Ethylmaleimide on the Properties of Different Protein-Stabilized Emulsions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Muscle Samples and Other Materials
2.2. Preparation of Myofibrillar Protein
2.3. Preparation of Emulsions
2.4. Total and Reactive Sulfhydryl Groups
2.5. Surface Hydrophobicity
2.6. Emulsifying Properties
2.7. Viscosity of Emulsions
2.8. Light Microscopy
2.9. Statistical Analysis
3. Results and Discussion
3.1. Sulfhydryl and Disulfide Bond Contents in the Three Protein Emulsion
3.2. Surface Hydrophobicity and Emulsifying Properties
3.3. Comparison of Sulfhydryl Blocking Agent (NEM) on the Rheological Properties of Different Protein Emulsions
3.4. Microstructure of Emulsion Droplets
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lam, R.S.; Nickerson, M.T. Food proteins: A review on their emulsifying properties using a structure–function approach. Food Chem. 2013, 141, 975–984. [Google Scholar] [CrossRef]
- Sengupta, T.; Razumovsky, L.; Damodaran, S. Energetics of protein−interface interactions and its effect on protein adsorption. Langmuir 1999, 15, 6991–7001. [Google Scholar] [CrossRef]
- Damodaran, S.; Anand, K. Sulfhydryl−disulfide interchange-induced interparticle protein poly-merization in whey protein-stabilized emulsions and its relation to emulsion stability. J. Agric. Food Chem. 1997, 45, 3813–3820. [Google Scholar] [CrossRef]
- Dickinson, E.; Yasuki, M. Time-dependent polymerization of β-lactoglobulin through disulphide bonds at the oil-water interface in emulsions. Int. J. Biol. Macromol. 1991, 13, 26–30. [Google Scholar] [CrossRef]
- Wu, M.; Xiong, Y.L.; Chen, J. Role of disulphide linkages between protein-coated lipid droplets and the protein matrix in the rheological properties of porcine myofibrillar protein-peanut oil emulsion composite gels. Meat Sci. 2011, 88, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Hatahet, F.; Boyd, D.; Beckwith, J. Beckwith, Disulfide bond formation in prokaryotes: History, diversity and design. BBA-Biomembr. 2014, 1844, 1402–1414. [Google Scholar]
- Hogg, P.J. Disulfide bonds as switches for protein function. Trends Biochem. Sci. 2003, 28, 210–214. [Google Scholar] [CrossRef]
- Jone, K.W. Protein lipid Interactions in processed meats. Recipr. Meat Conf. 1984, 37, 52–57. [Google Scholar]
- Nishinari, K.; Fang, Y.; Guo, S.; Phillips, G.O. Soy proteins: A review on composition, aggregation and emulsification. Food Hydrocoll. 2014, 39, 301–318. [Google Scholar] [CrossRef]
- Totosaus, A.; Montejano, J.G.; Salazar, J.A.; Guerrero, I. A review of physical and chemical protein-gel induction. Int. J. Food Sci. Technol. 2010, 37, 589–601. [Google Scholar] [CrossRef]
- Visessanguan, W.; Ogawa, M.; Nakai, S.; An, H. Physicochemical changes and mechanism of heat-induced gelation of arrowtooth flounder myosin. J. Agric. Food Chem. 2000, 48, 1016–1023. [Google Scholar] [CrossRef]
- Wu, M.; Xiong, Y.L.; Chen, J.; Tang, X.Y.; Zhou, G.H. Rheological and microstructural properties of porcine myofibrillar protein-lipid emulsion composite gels. J. Food Sci. 2009, 74, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Gornall, A.G.; Bardawill, C.J.; David, M.M. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 1949, 177, 751–766. [Google Scholar] [CrossRef]
- Yongsawatdigul, J.; Park, J.W. Thermal denaturation and aggregation of threadfin bream actomyosin. Food Chem. 2003, 83, 409–416. [Google Scholar] [CrossRef]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Randall, R.J. Protein measurement with Folin phenol reagent. J. Biol. Chem. 1951, 193, 256–275. [Google Scholar] [CrossRef]
- Pearce, K.N.; Kinsella, J.E. Emulsifying properties of proteins: Evaluation of a turbidometric technique. J. Agric. Food Chem. 1978, 26, 716–723. [Google Scholar] [CrossRef]
- Guo, Q.; Mu, T.H. Emulsifying properties of sweet potato protein: Effect of protein concentration and oil volume fraction. Food Hydrocoll. 2011, 25, 98–106. [Google Scholar] [CrossRef]
- Maneephan, K.; Milena, C. Heat-induced changes in oil-in-water emulsions stabilized with soy protein isolate. Food Hydrocoll. 2009, 23, 2141–2148. [Google Scholar]
- Mine, Y. Laser light scattering study on the heat-induced ovalbumin aggregates related to its gelling property. J. Agric. Food Chem. 1996, 44, 2086–2090. [Google Scholar] [CrossRef]
- Bos, M.A.; Vliet, T.V. Interfacial rheological properties of adsorbed protein layers and surfactants: A review. Adv. Colloid Interfac. 2001, 91, 437–471. [Google Scholar] [CrossRef]
- Li, R.; He, Q.; Rong, L.; Lin, Y.; Jia, N.; Shao, J.; Liu, D. High homogenization speeds for preparing unstable myofibrillar protein–olive oil emulsions. J. Food Sci. 2019, 84, 1113–1121. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.M.; Sasaki, S.; Mcclements, D.J.; Decker, E.A. Mechanisms of the antioxidant activity of a high molecular weight fraction of whey. J. Agric. Food Chem. 2000, 48, 1473–1478. [Google Scholar] [CrossRef]
- Smyth, A.B.; Smith, D.M.; O’Neill, E. Disulfide bonds influence the heat-induced gel properties of chicken breast muscle myosin. J. Food Sci. 1998, 63, 584–587. [Google Scholar] [CrossRef]
- Mine, Y. Recent advances in egg protein functionality in the food system. World Poul. Sci. J. 2002, 58, 31–39. [Google Scholar] [CrossRef]
- Powrie, W.D.; Nakai, S. The chemistry of eggs and egg products. In Egg Science and Technology; Stadelman, W.J., Cotterill, O.J., Eds.; Avi Publishing Co.: Westport, CT, USA, 1986; Chapter 6. [Google Scholar]
- Nielsen, N.C. The structure and complexity of the 11S polypeptides in soybeans. J. Am. Oil. Chem. Soc. 1985, 62, 1680–1686. [Google Scholar] [CrossRef]
- Staswick, P.E.; Hermodson, M.A.; Nielsen, N.C. Identification of the cystines which link the acidic and basic components of the glycinin subunits. J. Biol. Chem. 1984, 259, 13431–13435. [Google Scholar] [CrossRef]
- Thanh, V.H.; Shibasaki, K. Major proteins of soybean seeds. Reversible and irreversible dissociation of beta.-conglycinin. J. Agric. Food Chem. 1979, 27, 805–809. [Google Scholar] [CrossRef]
- Schulz, G.E.; Schirmer, R.H. Prediction of secondary structure from the amino acid sequence. In Principles of Protein Structure; Springer: Berlin/Heidelberg, Germany, 1979; pp. 108–130. [Google Scholar]
- Kella, N.K.D.; Yang, S.T.; Kinsella, J.E. Effect of disulfide bond cleavage on structural and interfacial properties of whey proteins. J. Agric. Food Chem. 1989, 37, 1203–1210. [Google Scholar] [CrossRef]
- Li-Chan, E.; Nakai, S.; Wood, D.F. Hydrophobicity and solubility of meat proteins and their relationship to emulsifying properties. J. Food Sci. 1984, 49, 345–350. [Google Scholar] [CrossRef]
- Yao, J.J.; Tanteeratarm, K.; Wei, L.S. Effects of maturation and storage on solubility, emulsion stability and gelation properties of isolated soy proteins. J. Am. Oil. Chem. Soc. 1990, 67, 974–979. [Google Scholar] [CrossRef]
- Koshiyama, I. Purification and physical-chemical properties of 11S globulin in soybean seeds. Chem. Biol. Drug Des. 2010, 4, 167–176. [Google Scholar]
- Aoki, H.; Taneyama, O.; Orimo, N.; Kitagawa, I. Effect of lipophilization of soy protein on its emulsion stabilizing properties. J. Food Sci. 1981, 46, 1192–1195. [Google Scholar] [CrossRef]
- Zhang, S.B.; Lu, Q.Y. Characterizing the structural and surface properties of proteins isolated before and after enzymatic demulsification of the aqueous extract emulsion of peanut seeds. Food Hydrocoll. 2015, 47, 51–60. [Google Scholar] [CrossRef]
- Wagner, J.R.; Gueguen, J. Effects of dissociation, deamidation, and reducing treatment on structural and surface active properties of soy glycinin. J. Agric. Food Chem. 1995, 43, 1993–2000. [Google Scholar] [CrossRef]
- Mcclements, D.J.; Monahan, F.J.; Kinsella, J.E. Disulfide Bond Formation Affects Stability of Whey Protein Isolate Emulsions. J. Food Sci. 1993, 58, 1036–1039. [Google Scholar] [CrossRef]
- Boutin, C.; Giroux, H.J.; Paquin, P.; Britien, M. Characterization and acid-induced gelation of butter oil emulsions produced from heated whey protein dispersions. Int. Dairy J. 2007, 17, 696–703. [Google Scholar] [CrossRef]
- Liu, F.; Tang, C.H. Cold, gel-like whey protein emulsions by microfluidisation emulsification: Rheological properties and microstructures. Food Chem. 2011, 127, 1641–1647. [Google Scholar] [CrossRef]
- Hong, G.P.; Min, S.G.; Chin, K.B. Emulsion properties of pork myofibrillar protein in combination with microbial transglutaminase and calcium alginate under various pH conditions. Meat Sci. 2012, 90, 185–193. [Google Scholar] [CrossRef]
- Hoogenkamp, H. Protein performance in emulsion stability. Fleischwirtsch. Int. J. Meat Prod. Meat Process. 2011, 3, 54–59. [Google Scholar]
- Roesch, R.R.; Corredig, M. Characterization of Oil-in-Water Emulsions Prepared with Commercial Soy Protein Concentrate. J. Food Sci. 2002, 67, 2837–2842. [Google Scholar] [CrossRef]
Treatment | Time (Min) | |||||
---|---|---|---|---|---|---|
10 Min | 30 Min | 60 Min | 120 Min | 180 Min | ||
MP | Pre-emulsification | 0.95 ± 0.03 aA | 0.86 ± 0.01 bB | 0.77 ± 0.01 bcC | 0.70 ± 0.02 cD | 0.65 ± 0.01 cE |
Control | 0.98 ± 0.04 aA | 0.90 ± 0.02 aB | 0.84 ± 0.02 aC | 0.78 ± 0.03 aD | 0.714 ± 0.04 aE | |
1 mM NEM | 0.96 ± 0.01 aA | 0.88 ± 0.03 abB | 0.80 ± 0.04 bC | 0.74 ± 0.02 bD | 0.67 ± 0.03 bE | |
5 mM NEM | 0.90 ± 0.05 bA | 0.82 ± 0.01 cB | 0.74 ± 0.04 cdC | 0.61 ± 0.02 dD | 0.52 ± 0.03 dE | |
10 mM NEM | 0.89 ± 0.07 bA | 0.80 ± 0.05 cB | 0.77 ± 0.05 dC | 0.66 ± 0.03 eD | 0.49 ± 0.03 eE | |
EPI | Pre-emulsification | 0.85 ± 0.01 bA | 0.66 ± 0.02 cB | 0.45 ± 0.04 bC | 0.42 ± 0.02 cD | 0.41 ± 0.04 cE |
Control | 0.91 ± 0.01 aA | 0.77 ± 0.02 aB | 0.64 ± 0.06 aC | 0.53 ± 0.03 aD | 0.49 ± 0.02 aE | |
1 mM NEM | 0.89 ± 0.05 aA | 0.73 ± 0.07 bB | 0.62 ± 0.01 aC | 0.53 ± 0.02 bD | 0.46 ± 0.03 bE | |
5 mM NEM | 0.81 ± 0.05 cA | 0.64 ± 0.05 cB | 0.41 ± 0.01 cC | 0.37 ± 0.01 cD | 0.32 ± 0.01 cE | |
10 mM NEM | 0.78 ± 0.03 cA | 0.61 ± 0.04 dB | 0.39 ± 0.06 cC | 0.32 ± 0.01 dD | 0.27 ± 0.01 dE | |
SPI | Pre-emulsification | 0.74 ± 0.04 bA | 0.50 ± 0.05 bB | 0.45 ± 0.04 bC | 0.41 ± 0.01 bD | 0.40 ± 0.01 bE |
Control | 0.81 ± 0.01 aA | 0.70 ± 0.02 aB | 0.62 ± 0.01 aC | 0.56 ± 0.02 aD | 0.51 ± 0.01 aE | |
1 mM NEM | 0.80 ± 0.08 aA | 0.68 ± 0.06 aB | 0.60 ± 0.02 aC | 0.55 ± 0.02 aD | 0.48 ± 0.01 aE | |
5 mM NEM | 0.71 ± 0.03 bA | 0.47 ± 0.05 bB | 0.40 ± 0.01 cC | 0.37 ± 0.03 cD | 0.34 ± 0.01 cE | |
10 mM NEM | 0.70 ± 0.03 bA | 0.44 ± 0.03 bB | 0.38 ± 0.01 cC | 0.35 ± 0.01 cD | 0.32 ± 0.01 cE |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, M.; Li, Z.; Wei, R.; Luan, Y.; Hu, J.; Wang, Q.; Liu, R.; Ge, Q.; Yu, H. Role of Disulfide Bonds and Sulfhydryl Blocked by N-Ethylmaleimide on the Properties of Different Protein-Stabilized Emulsions. Foods 2021, 10, 3079. https://doi.org/10.3390/foods10123079
Wu M, Li Z, Wei R, Luan Y, Hu J, Wang Q, Liu R, Ge Q, Yu H. Role of Disulfide Bonds and Sulfhydryl Blocked by N-Ethylmaleimide on the Properties of Different Protein-Stabilized Emulsions. Foods. 2021; 10(12):3079. https://doi.org/10.3390/foods10123079
Chicago/Turabian StyleWu, Mangang, Zhikun Li, Ranran Wei, Yi Luan, Juan Hu, Qingling Wang, Rui Liu, Qingfeng Ge, and Hai Yu. 2021. "Role of Disulfide Bonds and Sulfhydryl Blocked by N-Ethylmaleimide on the Properties of Different Protein-Stabilized Emulsions" Foods 10, no. 12: 3079. https://doi.org/10.3390/foods10123079