Isolation and Purification, Structural Characterization and Antioxidant Activities of a Novel Hetero-Polysaccharide from Steam Exploded Wheat Germ
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Steam Explosion Process
2.3. Extraction and Purification of Polysaccharide
2.4. Chemical Analysis
2.5. Homogeneity and Molecular Weight Determination
2.6. Monosaccharide Composition Determination
2.7. Periodate Oxidation-Smith Degradation
2.8. Methylation Analysis
2.9. Infrared Spectrum Analysis
2.10. NMR Spectrum Analysis
2.11. Congo Red Test
2.12. Thermal Analysis
2.13. Antioxidant Activities Evaluation
2.14. Statistical Analysis
3. Results and Discussion
3.1. Isolation and Purification
3.2. Chemical Composition
3.3. Homogeneity and Average Molecular Weight
3.4. Monosaccharide Composition
3.5. Periodate Oxidation-Smith Degradation
3.6. Methylation Analysis
3.7. FT-IR Spectrum
3.8. NMR Spectroscopy
3.9. Conformational Structure
3.10. Thermal Analysis
3.11. Antioxidant Activities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rizzello, C.G.; Nionelli, L.; Coda, R.; De Angelis, M.; Gobbetti, M. Effect of sourdough fermentation on stabilisation, and chemical and nutritional characteristics of wheat germ. Food Chem. 2010, 119, 1079–1089. [Google Scholar] [CrossRef]
- Mueller, T.; Voigt, W. Fermented wheat germ extract-nutritional supplement or anticancer drug? Nutr. J. 2011, 10, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozdogan, A.; Gunes, R.; Palabiyik, I. Investigating release kinetics of phenolics from defatted wheat germ incorporated chewing gums. J. Sci. Food Agric. 2019, 99, 6333–6341. [Google Scholar] [CrossRef] [PubMed]
- Sudha, M.L.; Srivastava, A.K.; Leelavathi, K. Studies on pasting and structural characteristics of thermally treated wheat germ. Eur. Food Res. Technol. 2006, 225, 351–357. [Google Scholar] [CrossRef]
- Yun, L.; Wu, T.; Liu, R.; Li, K.; Zhang, M. Structural Variation and Microrheological Properties of a Homogeneous Polysaccharide from Wheat Germ. J. Agric. Food Chem. 2018, 66, 2977–2987. [Google Scholar] [CrossRef]
- Liu, C.Y.; Sun, Y.Y.; Jia, Y.Q.; Geng, X.Q.; Pan, L.C.; Jiang, W.; Xie, B.Y.; Zhu, Z.Y. Effect of steam explosion pretreatment on the structure and bioactivity of Ampelopsis grossedentata polysaccharides. Int. J. Biol. Macromol. 2021, 185, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Alvira, P.; Tomas-Pejo, E.; Ballesteros, M.; Negro, M.J. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 2010, 101, 4851–4861. [Google Scholar] [CrossRef]
- Chadni, M.; Grimi, N.; Bals, O.; Ziegler-Devin, I.; Brosse, N. Steam explosion process for the selective extraction of hemicelluloses polymers from spruce sawdust. Ind. Crop. Prod. 2019, 141, 111757. [Google Scholar] [CrossRef]
- Wang, L.; Xu, H.; Yuan, F.; Fan, R.; Gao, Y. Preparation and physicochemical properties of soluble dietary fiber from orange peel assisted by steam explosion and dilute acid soaking. Food Chem. 2015, 185, 90–98. [Google Scholar] [CrossRef]
- Sui, W.; Xie, X.; Liu, R.; Wu, T.; Zhang, M. Effect of wheat bran modification by steam explosion on structural characteristics and rheological properties of wheat flour dough. Food Hydrocoll. 2018, 84, 571–580. [Google Scholar] [CrossRef]
- Sevag, M.; Maiweg, L. The respiration mechanism of pneumococcus. III. J. Exp. Med. 1934, 60, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Dong, Q.; Yao, J.; Fang, J.N.; Ding, K. Structural characterization and immunological activity of two cold-water extractable polysaccharides from Cistanche deserticola Y. C. Ma. Carbohydr. Res. 2007, 342, 1343–1349. [Google Scholar] [CrossRef]
- Cuesta, G.; Suarez, N.; Bessio, M.I.; Ferreira, F.; Massaldi, H. Quantitative determination of pneumococcal capsular polysaccharide serotype 14 using a modification of phenol–sulfuric acid method. J. Microbiol. Methods 2003, 52, 69–73. [Google Scholar] [CrossRef]
- Shibata, N.; Okawa, Y. Chemical structure of beta-galactofuranose-containing polysaccharide and O-linked oligosaccharides obtained from the cell wall of pathogenic dematiaceous fungus Fonsecaea pedrosoi. Glycobiology 2011, 21, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Blumenkrantz, N.; Asboe-Hansen, G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973, 54, 484–489. [Google Scholar] [CrossRef]
- Jin, X.; Wang, Q.; Yang, X.; Guo, M.; Li, W.; Shi, J.; Adu-Frimpong, M.; Xu, X.; Deng, W.; Yu, J. Chemical characterisation and hypolipidaemic effects of two purified Pleurotus eryngii polysaccharides. Int. J. Food Sci. Tech. 2018, 53, 2298–2307. [Google Scholar] [CrossRef]
- Shen, C.-Y.; Jiang, J.-G.; Li, M.-Q.; Zheng, C.-Y.; Zhu, W. Structural characterization and immunomodulatory activity of novel polysaccharides from Citrus aurantium Linn. variant amara Engl. J. Funct. Foods 2017, 35, 352–362. [Google Scholar] [CrossRef]
- Dong, Q. Structural characterization of the water-extractable polysaccharides from Sophora subprostrata roots. Carbohydr. Polym. 2003, 54, 13–19. [Google Scholar] [CrossRef]
- Li, F.; Pak, S.; Zhao, J.; Wei, Y.; Zhang, Y.; Li, Q. Structural Characterization of a Neutral Polysaccharide from Cucurbia moschata and Its Uptake Behaviors in Caco-2 Cells. Foods 2021, 10, 2357. [Google Scholar] [CrossRef]
- Nie, C.; Zhu, P.; Wang, M.; Ma, S.; Wei, Z. Optimization of water-soluble polysaccharides from stem lettuce by response surface methodology and study on its characterization and bioactivities. Int. J. Biol. Macromol. 2017, 105, 912–923. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, R.; Wang, Y.; An, X.; Liu, N.; Song, M.; Yang, Y.; Yin, N.; Qi, J. Characterization and antioxidant activity of wheat bran polysaccharides modified by Saccharomyces cerevisiae and Bacillus subtilis fermentation. J. Cereal Sci. 2021, 97, 103157. [Google Scholar] [CrossRef]
- Fan, Y.; Lin, M.; Luo, A. Extraction, characterization and antioxidant activities of an acidic polysaccharide from Dendrobium devonianum. J. Food Meas. Charact. 2022, 16, 867–879. [Google Scholar] [CrossRef]
- Shi, L. Bioactivities, isolation and purification methods of polysaccharides from natural products: A review. Int. J. Biol. Macromol. 2016, 92, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.-p.; Wang, J.; Li, Q.; Zhang, Q.-l.; You, R.-x.; Cheng, Y.; Luo, L.; Zhang, Y. Structural differences and conformational characterization of five bioactive polysaccharides from Lentinus edodes. Food Res. Int. 2014, 62, 223–232. [Google Scholar] [CrossRef]
- Zou, P.; Yang, X.; Yuan, Y.; Jing, C.; Cao, J.; Wang, Y.; Zhang, L.; Zhang, C.; Li, Y. Purification and characterization of a fucoidan from the brown algae Macrocystis pyrifera and the activity of enhancing salt-stress tolerance of wheat seedlings. Int. J. Biol. Macromol. 2021, 180, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.C.; Jiang, B.K.; Zheng, W.H.; Zhang, S.Y.; Li, J.J.; Fan, Z.Y. Preparation, characterization and anti-diabetic activity of polysaccharides from adlay seed. Int. J. Biol. Macromol. 2019, 139, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Deveci, E.; Cayan, F.; Tel-Cayan, G.; Duru, M.E. Structural characterization and determination of biological activities for different polysaccharides extracted from tree mushroom species. J. Food Biochem. 2019, 43, e12965. [Google Scholar] [CrossRef]
- He, Y.; Peng, H.; Zhang, H.; Liu, Y.; Sun, H. Structural characteristics and immunopotentiation activity of two polysaccharides from the petal of Crocus sativus. Int. J. Biol. Macromol. 2021, 180, 129–142. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, Q.; Jiang, H.; Ma, C.; David Wang, H.M.; Wang, J.; Kang, W.Y. A novel polysaccharide from Malus halliana Koehne with coagulant activity. Carbohydr. Res. 2019, 485, 107813. [Google Scholar] [CrossRef]
- Guo, X.; Kang, J.; Xu, Z.; Guo, Q.; Zhang, L.; Ning, H.; Cui, S. Triple-helix polysaccharides: Formation mechanisms and analytical methods. Carbohyd. Polym. 2021, 262, 117962. [Google Scholar] [CrossRef]
- Mao, C.-F.; Hsu, M.-C.; Hwang, W.-H. Physicochemical characterization of grifolan: Thixotropic properties and complex formation with Congo Red. Carbohydr. Polym. 2007, 68, 502–510. [Google Scholar] [CrossRef]
- Falch, B.H.; Espevik, T.; Ryan, L.; Stokke, B.T. The cytokine stimulating activity of (1→3)-β-D-glucans is dependent on the triple helix conformation. Carbohydr. Res. 2000, 329, 587–596. [Google Scholar] [CrossRef]
- Iqbal, M.S.; Massey, S.; Akbar, J.; Ashraf, C.M.; Masih, R. Thermal analysis of some natural polysaccharide materials by isoconversional method. Food Chem. 2013, 140, 178–182. [Google Scholar] [CrossRef]
- Zhang, W.; Zeng, G.; Pan, Y.; Chen, W.; Huang, W.; Chen, H.; Li, Y. Properties of soluble dietary fiber-polysaccharide from papaya peel obtained through alkaline or ultrasound-assisted alkaline extraction. Carbohydr. Polym. 2017, 172, 102–112. [Google Scholar] [CrossRef]
- Shang, X.-L.; Liu, C.-Y.; Dong, H.-Y.; Peng, H.-H.; Zhu, Z.-Y. Extraction, purification, structural characterization, and antioxidant activity of polysaccharides from wheat bran. J. Mol. Struct. 2021, 1233, 130096. [Google Scholar] [CrossRef]
- Wang, J.; Cao, Y.; Wang, C.; Sun, B. Wheat bran xylooligosaccharides improve blood lipid metabolism and antioxidant status in rats fed a high-fat diet. Carbohydr. Polym. 2011, 86, 1192–1197. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, W.; Wen, P.; Shen, M.; Li, H.; Ren, Y.; Xiao, Y.; Song, Q.; Chen, Y.; Yu, Q.; et al. Two water-soluble polysaccharides from mung bean skin: Physicochemical characterization, antioxidant and antibacterial activities. Food Hydrocoll. 2020, 100, 105412. [Google Scholar] [CrossRef]
- Hromadkova, Z.; Paulsen, B.S.; Polovka, M.; Kostalova, Z.; Ebringerova, A. Structural features of two heteroxylan polysaccharide fractions from wheat bran with anti-complementary and antioxidant activities. Carbohydr. Polym. 2013, 93, 22–30. [Google Scholar] [CrossRef]
Residues | Retention Time (min) | PMAAs | Type of Linkage | Molar Ratio (mol %) | Major Mass Fragments (m/z) |
---|---|---|---|---|---|
A | 29.25 | 1,4,5-tri-O-acetyl-2,3-di-O-methyl-Arabitol | 1,5-linked L-Araf | 18.56 | 43, 59, 71, 87, 101, 117, 129, 173, 189 |
E | 29.60 | 1,3,5-tri-O-acetyl-2,4-di-O-methyl-xylitol | 1,3-linked D-Xylp | 19.28 | 43, 59, 71, 87, 101, 117, 129, 189, 201, 233 |
C | 30.87 | 1,5-di-O-acetyl-2,3,4,6-tera-O-methyl-D-glucitol | T-D-Glcp | 20.05 | 43, 59, 71, 87, 101, 113, 117, 129, 145, 161, 162, 205 |
D | 32.54 | 1,5,6-tri-O-acetyl-2,3,4-tri-O-methyl-D-glucitol | 1,6-linked D-Glcp | 20.34 | 43, 59, 71, 87, 101, 117, 129, 145, 162, 173, 189,233 |
B | 33.24 | 1,4,5,6-tera-O-acetyl-2,3-di-O-methyl-D-glucitol | 1,4,6-linked D-Glcp | 21.77 | 43, 59, 71, 87, 101, 117, 129, 161, 173, 201, 217, 233, 261 |
Sugar Residue | Chemical Shift (ppm) | ||||||
---|---|---|---|---|---|---|---|
H1/C1 | H2/C2 | H3/C3 | H4/C4 | H5/C5 | H6/C6 | ||
A | →5)-α-L-Araf (1→ | 5.02/107.44 | 3.84/81.22 | 3.90/77.17 | 3.73/84.07 | 3.38/67.24 | - |
B | →4,6)-α-D-Glcp (1→ | 5.28/99.96 | 3.64/72.73 | 3.23/73.71 | 3.61/78.04 | 3.79/70.98 | 3.62/66.90 |
C | α-D-Glcp (1→ | 5.16/91.90 | 3.54/72.99 | 3.97/70.28 | 3.79/71.06 | 3.80/70.98 | 3.62/69.90 |
D | →6)-α-D-Glcp (1→ | 5.32/98.06 | 3.63/72.30 | 3.98/73.09 | 3.65/70.40 | 3.37/72.30 | 3.61/66.10 |
E | →3)-β-D-Xylp (1→ | 4.90/98.53 | 3.54/72.50 | 3.80/81.07 | 3.62/70.70 | 3.61/66.01 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, L.; Zhou, X.; Tian, X.; Li, R.; Sui, W.; Liu, R.; Wu, T.; Zhang, M. Isolation and Purification, Structural Characterization and Antioxidant Activities of a Novel Hetero-Polysaccharide from Steam Exploded Wheat Germ. Foods 2022, 11, 1245. https://doi.org/10.3390/foods11091245
Hu L, Zhou X, Tian X, Li R, Sui W, Liu R, Wu T, Zhang M. Isolation and Purification, Structural Characterization and Antioxidant Activities of a Novel Hetero-Polysaccharide from Steam Exploded Wheat Germ. Foods. 2022; 11(9):1245. https://doi.org/10.3390/foods11091245
Chicago/Turabian StyleHu, Lei, Xiaodan Zhou, Xue Tian, Ranran Li, Wenjie Sui, Rui Liu, Tao Wu, and Min Zhang. 2022. "Isolation and Purification, Structural Characterization and Antioxidant Activities of a Novel Hetero-Polysaccharide from Steam Exploded Wheat Germ" Foods 11, no. 9: 1245. https://doi.org/10.3390/foods11091245
APA StyleHu, L., Zhou, X., Tian, X., Li, R., Sui, W., Liu, R., Wu, T., & Zhang, M. (2022). Isolation and Purification, Structural Characterization and Antioxidant Activities of a Novel Hetero-Polysaccharide from Steam Exploded Wheat Germ. Foods, 11(9), 1245. https://doi.org/10.3390/foods11091245