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Abstract: This paper addresses the team orienteering problem (TOP) with vehicles equipped with
electric batteries under dynamic travel conditions influenced by weather and traffic, which impact
travel times between nodes and hence might have a critical effect on the battery capacity to cover the
planned route. The study incorporates a novel approach for solving the dynamic TOP, comparing
two solution methodologies: a merging heuristic and a reinforcement learning (RL) algorithm. The
heuristic combines routes using calculated savings and a biased-randomized strategy, while the RL
model leverages a transformer-based encoder—decoder architecture to sequentially construct solutions.
We perform computational experiments on 50 problem instances, each subjected to 200 dynamic
conditions, for a total of 10,000 problems solved. The results demonstrate that while the deterministic
heuristic provides an upper bound for rewards, the RL model consistently yields robust solutions
with lower variability under dynamic conditions. However, the dynamic heuristic, with a 20 s
time limit for solving each instance, outperformed the RL model by 3.35% on average. The study
highlights the trade-offs between solution quality, computational resources, and time when dealing
with dynamic environments in the TOP.

Keywords: team orienteering problem; battery management; electric vehicle; reinforcement learning

1. Introduction

With the rise of electric vehicles (EVs) and unmanned aerial vehicles (UAVs), vehicle
routing challenges have gained new relevance in modern disaster, security, and last-mile
logistic planning [1,2]. The growing popularity of EVs has initiated a transformative shift
in the automotive, vehicle, and logistics industry, providing a sustainable alternative
to traditional internal combustion engine vehicles. EVs have the potential to reduce
transportation costs and minimize environmental impact. In logistics, EVs must navigate
complex delivery routes while managing their limited battery life and the necessity for
frequent recharging, which introduces an additional layer of complexity to routing, visiting
points, and delivering goods. Including battery constraints and charging cycles in modeling
is essential for the practical deployment of these vehicles, whether they are delivering
goods in urban areas, conducting aerial surveillance, or responding to emergencies [3]. For
instance, in urban logistics, the challenge is optimizing the delivery schedule and ensuring
that vehicles can complete their routes without interruptions. This problem becomes even
more complex when multiple vehicles have different energy requirements [4].
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In these scenarios, it is critical to optimize the coverage of regions within a limited
time frame [5]. The primary challenge lies in determining optimal paths that prioritize
the most relevant areas while considering the energy constraints of the vehicles. This
becomes particularly complex when the power infrastructure is compromised and charging
opportunities are limited [6]. These challenges can be modeled as team orienteering
problems (TOPs), where the EV fleet needs to deliver goods to specific points in the area,
starting at the depot. The TOP is a well-established combinatorial optimization problem,
extending the classical orienteering problem [7] by introducing multiple agents or vehicles.
Each team member attempts to visit candidate nodes within a prescribed time limit. Visiting
a node for the first time allows the collection of a reward, and the goal is to maximize the
overall team score. The problem is NP-hard even in its single-agent form, and it becomes
even more difficult to solve when multiple agents are involved [8]. In real-life scenarios,
these vehicles face several challenges due to dynamic conditions, such as those associated
with weather status, traffic status, and travel times [9].

In scenarios where real-time routing plans are required, the ability to continuously
re-optimize routes as new data become available is key. For example, if a traffic accident
occurs or extreme weather conditions arise, the planned routes for EVs or UAVs may
need to be adjusted on the fly. The TOP, combined with agile optimization techniques,
provides a robust framework for handling these dynamic conditions, ensuring that the
vehicles can continue to operate efficiently despite the changing environment [10]. By taking
advantage of the power of parallel computing and biased randomization techniques, agile
optimization algorithms can concisely explore a vast solution space, identifying routes that
meet immediate operational needs and optimize energy usage and overall efficiency. This
paper explores a dynamic TOP where vehicles must travel from an origin to a destination to
maximize the number of nodes visited within the constraints of battery life. The objective
is to optimize the route planning such that vehicles can collect as much reward as possible
before their batteries are depleted. Figure 1 shows a dynamic scenario where an EV must
travel from an origin to a destination, visiting as many nodes as possible within battery life
constraints. The green circles represent visited nodes, while the pink circles are non-visited
nodes. The travel time between nodes is influenced by dynamic factors such as weather
conditions and road congestion, indicated by ‘Tdynamic’ in the figure.

Tdynamic

Destination

Non-collected nodes

Figure 1. TOP with multiple vehicles considering battery constraints and variable travel times.

To address this dynamic version of the TOP with electric batteries, this paper proposes
two approaches: one based on a biased-randomized heuristic [11] and the other using
reinforcement learning (RL) [12]. The selection of reinforcement learning is primarily
due to its possible suitability for dynamic problems like the TOP, where travel times
fluctuate. RL allows the solving agent to adaptively learn and optimize routes under
these changing conditions, potentially improving solution adaptability and quality over
deterministic methods. Moreover, one of the paper’s main objectives was to evaluate the
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performance of RL in comparison to more established approaches. The heuristic provides
a solution by optimizing routes based on predefined rules, while the neural network in
the RL approach is trained separately to learn and refine decisions in response to dynamic
conditions. Both methods are independently tested and compared in terms of their ability
to adapt to changes such as varying battery levels and travel conditions. Hence, the main
contribution of this paper is the development and comparison of two approaches, heuristic-
based and RL-based, for solving a TOP involving EVs with dynamic rewards. This dual
approach allows us to evaluate the strengths and weaknesses of each method in making
adaptive decisions in a rapidly changing environment. The remainder of this paper is
structured as follows: Section 2 offers an analysis of the different EV categories, their
integration into existing transportation systems, current advancements in the field, as well
as factors influencing battery performance, including capacity, materials, and charging
times. Section 3 summarizes the related work on algorithms designed for solving TOPs.
Section 4 formally defines the specific problem. Section 5 presents the dataset used for
the study. Section 6 outlines the simulation experiments and the RL algorithm applied.
Section 7 details and interprets our computational findings. Finally, Section 8 concludes
with a summary of the main findings and recommendations for future research.

2. Sustainable Logistics and EVs

Sustainable transportation has been included in the United Nations Sustainable
Development Goal 11 (https://sdgs.un.org/topics/sustainable-transport, accessed on
29 September 2024). The transportation sector influences society development through
its economic, social, and environmental impacts [13]. Additionally, it contributes heav-
ily to gas emissions and fuel consumption. According to data collected by the Euro-
pean Commission (https://ec.europa.eu/eurostat/web/main/data/database, accessed
on 29 September 2024), the transportation sector consumed around 31% of the total energy
consumed in 2022 in the European countries, while the industry sector consumed around
25% in the same year. The transportation sector released 23% of energy-related emissions in
2019 [14]. In recent decades, sustainable transportation has become a topic for researchers
investigating logistics and chain management, new fuels and vehicles, public transporta-
tion improvements, and sustainable transport alternatives [13]. These research efforts aim
to optimize energy consumption in transportation and reduce gas emissions. As a result,
a variety of concepts have been defined, such as ride-sharing and car-sharing, and new
transportation options have been introduced to the market. EVs form one of these options
aiming to reduce gas emissions as well as noise in cities [15]. In these vehicles, the con-
ventional internal combustion engine is replaced by another one utilizing electricity from
a rechargeable battery to drive the vehicle [16]. EVs are pictured as innovative symbols
for decarbonizing transportation with new business opportunities and models [17]. The
introduction of EVs improves air quality in terms of reducing greenhouse gas emissions
and decreasing operation costs [16]. Hence, a sustainable urban environment is being
developed in cities.

Several EVs types are found in the market: hybrid electric vehicles (HEVs), plug-in
hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric
vehicles (FCEVs). Multiple energy generation and conversion technologies are utilized
in HEVs [18]. HEVs use an internal combustion engine or an electrical motor to drive the
vehicle depending on the driving condition regulated by a control system. The coupling
configuration of the internal combustion engine and the electric motor could be series,
parallel, or series—parallel, as illustrated by Cao et al. [19]. Batteries in these vehicles
are utilized to store electricity used to drive the electric motors. Real-time optimization
methods are utilized to control the energy flow, including charging and discharging of
the batteries. The greatest challenge in this type of EVs is the management of multiple
energy sources [18]. Another type of hybrid electric vehicle is the PHEV. Similar to HEVs,
PHEVs combine internal combustion engine and an electrical motor. Batteries in PHEVs
might not only be charged during the drive, but they can be charged directly from the grid


https://sdgs.un.org/topics/sustainable-transport
https://ec.europa.eu/eurostat/web/main/data/database

Batteries 2024, 10, 411

4of 15

network [20]. BEVs utilize only electricity to drive the vehicle motor (electrical motor) [21],
and the battery increases both vehicle weight and price. The driving range of BEVs depends
on their batteries, which forms one of the main challenges compared to other EVs [18]. In
contrast to BEVs, FCEVs have powerful input and long driving range [22]. FCEVs are EVs
fueled by hydrogen that is used to generate the electricity [23]. Thus, FCEVs are supplied
with hydrogen fuel tank that forms one of the challenges associated with this vehicle type
(safety concerns). According to Pramuanjaroenkij and Kakag [23], fuel cell technology is
the future of transportation, with many ongoing studies.

Batteries in EVs vary in their technology, resulting in different charging speeds, driv-
ing range, and safety issues. The first kind of batteries are lead-acid batteries [16,18],
consisting of a lead electrode and electrolyte. They have low gravimetric energy den-
sity (30-50 Wh/kg) and can be used for small vehicles [18]. Later, nickel-based batteries
were invented [16,18], with a higher gravimetric energy density, e.g., 60-80 Wh/kg for
a nickel-cadmium battery and around 140 Wh/kg for a nickel-hydrogen battery. In ad-
dition, this type of battery has a long life cycle and can be recharged many times. Many
HEVs are supplied with nickel-based batteries. Lithium-ion batteries were invented in
the second half of the last century [18] and are used in energy storage systems. They are
characterized by a high gravimetric energy density (118-250 Wh/kg) and longer battery
life. Different lithium-ion batteries types are found in the market [24]. Additionally, these
batteries types varies in their cost and charging time. Various safety design guidelines
for high-energy-density batteries have been explored [25]. Advances in battery chemistry,
recycling, charging infrastructure, and cost reduction are continuous. The research con-
cerning battery chemistry reflects the invention of various battery types. Since some types
of EVs are being charged with electricity, charging infrastructure have been studied [16].
The location of charging outlets has become an issue for drivers using EVs. Related to
this issue, recharging speed is another ambiguous aspect. The charging speed depends
on the battery type, e.g., lithium-ion batteries are recharged relatively quickly. Another
approach is replacing batteries in station instead of recharging them [26]. This approach
demands that the issues presented by battery interchangeability, brand compatibility, and
battery ownership be resolved, which will not be an easy task. Despite these challenges, the
exchange of batteries provides a solution for long charging times and the need to upgrade
household installations to adapt to fast charging. EVs are characterized by their driving
range, which depends upon driving behavior, battery type [18], as well as the surrounding
environment defined by the weather conditions, infrastructure, and traffic [27,28]. In this
context, the state of charge indicates the maximum driving range according to the charge
level of the batteries.

The use of EVs raises significant issues related to power distribution grid, environment,
and safety. In the pursuit of sustainable development, optimization of battery operation
and safety were investigated [29]. The charging of batteries in PHEVs and BEVs causes
increased power demand and voltage drops [30]. Innovative approaches target supporting
the power distribution grid, such as vehicle-to-grid technology. In these approaches, EVs
discharge power saved in their batteries to the grid [31]. Concerning the environment,
batteries consist of toxic materials and require proper disposal procedures. Additionally,
thermal runaways are a concern that might lead to fires or explosions. Heating and cooling
techniques for batteries were also studied [24]. Thermal management systems for batteries
are crucial for controlling heating and cooling performance and the stability of batteries.

3. Related Work on Team Orienteering Problems

Traditional approaches to solve TOPs have primarily focused on deterministic and
stochastic versions that assume that the environment is either entirely predictable or
subject to random variations. However, real-world applications often involve dynamic
changes, such as fluctuating weather conditions, varying traffic congestion, and evolving
battery status, particularly relevant in the context of EVs [32]. These factors complicate
the decision-making process, making it necessary to incorporate real-time data and adap-
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tive algorithms into the solution methodology [33]. Recent research has explored various
methodologies to optimize vehicle routing in dynamic and stochastic environments. For
instance, recent studies have demonstrated the effectiveness of RL in navigating dynamic
orienteering challenges, showing that RL-based approaches can outperform traditional
heuristic methods in uncertain scenarios [34,35]. To address the complexity of dynamic
TOPs, Panadero et al. [36] have investigated the use of RL combined with simheuristics
to tackle dynamic and stochastic TOP scenarios, where variables such as battery life and
travel times are unpredictable. Other studies have explored the use of deep reinforce-
ment learning (DRL) for multi-vehicle TOP scenarios, demonstrating how DRL can adapt
to real-time changes in operational environments [37]. Additionally, some studies have
applied RL in a multi-stage TOP, emphasizing scenarios where both rewards and con-
straints evolve over time and offering insights into long-term planning and decision-making
under uncertainty [38].

The dynamic TOP becomes particularly challenging when applied to EVs, which
face constraints such as battery life and charging station availability. Effective routing
in this context must take these dynamic factors into account to optimize both the travel
route and the battery management system (BMS). Studies have highlighted the importance
of advanced BMS to improve EV performance and longevity [39,40]. Further research
has demonstrated the application of RL in this area, showing how RL can optimize load
node selection and route planning under dynamic conditions [41]. Despite significant
advances, challenges remain in fully addressing the dynamic TOP using RL. The high
computational complexity of these problems, together with the difficulty of obtaining
high-quality solutions in short computing times—especially under dynamic and stochastic
conditions—continues to drive research toward more efficient algorithms [42].

4. Modeling the TOP with Dynamic Travel Times

The TOP is a classical NP-hard problem where a set of nodes and vehicles are given,
and the main goal is to maximize the sum of the reward collected from visiting each node.
A maximum travel time is allowed for each vehicle, which means that not all nodes can be
visited. This travel time can be limited by various factors, such as the battery capacity of
EVs. Moreover, each vehicle has to exit from the initial depot and end its route at the final
one. In a formal way, let G = (N, E) be a directed graph, where N = {1,2,...,n} U {o0,d}
represents the set of nodes, with 0 and d denoting the origin and destination depots,
respectively. The set of directed edges is given by E = {(i,]) | i,j € N}, which represents
the possible paths between nodes. Each node i € N has an associated reward r; for visiting
that node, with the rewards at the origin and destination depots, r, and ry, set to zero. Let
V be the set of all vehicles. A binary decision variable, Xijy, takes the value of 1 if vehicle v
travels from node i to node j and 0 otherwise. Then, the mathematical model for TOP with
dynamic travel times is formulated as follows:

max Z Z xi]-vr]- (1)

veVijeN

Equation (1) defines the objective function, which aims to maximize the total reward
collected from the visited nodes. The following constraints apply:

Z Xojv <1 YoeV (2)
jEN
Z Xidp = Z Xojv YoeV 3)
ieEN jEN
Xijy < Z Xojv Vo eV 4)
jEN
Y X+ Y Xajp=0 YoeV (5)

ieEN JEN
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Equation (2) ensures that a vehicle departs the origin at most once. Equations (2) and (3)
state that if a vehicle departs from the origin depot, it must eventually arrive at the desti-
nation depot. Meanwhile, Equation (4) ensures that a vehicle can visit other nodes only if
it leaves the origin depot, and Equation (5) enforces that no vehicle can revisit the origin
depot or depart from the destination depot, ensuring that the route starts at the origin and
ends at the destination. Additional constraints are described next:

Y ) xjp<1 VjeN\{d} (6)

veVieN
Y xijp=Y %iw VieN\{od}veV )
ieEN ieEN
Vio— Yo +1< (1—x)IN|  VijeNoveV (®)

Equation (6) ensures that each node is visited at most once, while Equation (7) states
that if a vehicle arrives at a node, it must also depart from that node. Moreover, in
Equation (8) the variables y;, are introduced, which represent the order of the node i in the
route of vehicle v. This restriction ensures that there are no subtours. A last set of equations
is introduced next:

Y. xipf(i,j) <L  YoeV )
ijEN

Yin 20, Vie NveV (10)
Xjjp € {0,1}  Vi,jeN,veV 11)

Equation (9) ensures that the travel time for each vehicle does not exceed the max-
imum allowable travel time L. Here, f(i,]) represents the travel time between nodes
i and j, which is dynamic and varies according to the specific conditions of the edge.
Equations (10) and (11) enforce the nature of the variables.

5. A Numerical Case Study

Consider a TOP with dynamic travel times, which are influenced by weather and
traffic conditions. The positions of the nodes are known, as are the deterministic travel
times. Since this is a case study, we are supposing that these travel times can increase by up
to 12.5%, depending on the dynamic conditions between each pair of nodes. For illustrative
purposes, let us assume that the travel time can be modeled using a linear regression. In
practical applications, actual travel data could indeed be leveraged to provide more precise
predictions. However, implementing such a model was beyond the scope of this study,
which focused on evaluating the two different methods: heuristics and RL models. The
weather and traffic values range from 0 to 1, depending on their influence on the travel
time increase. Hence, we will assume that the ‘real’ travel time between nodes i and j is
given by f(i,):

In this case, t;; represents the deterministic travel time between nodes i and j, w;;
represents the weather conditions, and h;; represents the traffic conditions between the pair
of nodes. A value of 0 indicates favorable weather or traffic conditions, while 1 represents
the worst conditions. It is assumed that weather and traffic conditions contribute equally to
the travel time increase (each with the coefficient 0.0625). Each node has a reward that also
varies between 0 and 1, and the x and y coordinates of each node are randomly generated
within the range [0, 1]. Additionally, the maximum travel time allowed for each vehicle
is randomly generated, but the minimum allowed travel time is set to be 1.125 times the
travel time between the two depots. This function, f, is used solely for calculating travel
times and can be more complex to better reflect real-world conditions. However, the exact
nature of this function remains unknown to the solving algorithm. In this study, 50 different
problem instances have been defined. These problem instances differ in node location
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(x and y coordinates), vehicle maximum travel time, and node rewards. A total of 20 nodes
are found in each instance, and these nodes can be visited by one of two vehicles to collect
rewards from them. Likewise, the dynamic conditions (weather and traffic) have been
varied 200 times for each instance. It is important to recall that each problem instance
is defined by a specific set of nodes, rewards, and depot locations, and then it is solved
200 times, each one under different dynamic conditions (which means different travel
times between node pairs due to changing factors). The reported reward for each instance
represents the average reward collected across these 200 different dynamic condition.

6. Solving Approaches

The heuristic approach is inspired by the method proposed by Panadero et al. [8]. It
is a merging heuristic, where an initial dummy solution is created, consisting of simple
routes from the origin depot to a node and then to the destination depot, and routes are
then combined based on calculated savings. The savings s; ; for each pair of nodes i and j
are computed as follows:

sij = a(coj+ Cimr1 —ij) + (L—a)(ri+71)) (12)

In this equation, Co,j represents the travel cost from the initial depot to node j, ¢; ;41
represents the cost of traveling from node i to the destination depot, and c; ; represents the
travel cost between nodes i and j. Additionally, r; and r; denote the rewards associated
with nodes i and j, respectively. The merging process incorporates a biased-randomized
strategy [11], meaning that merges are not performed in a purely greedy way, but rather
in a randomized manner that aligns with the heuristic’s logic. Specifically, a geometric
distribution is applied for the biased-randomization, with a parameter  that varies ran-
domly between 0.1 and 0.3. This heuristic, in conjunction with the methodology shown in
Figure 2, is used to solve the dynamic TOP.

Deterministic
Eliminating Uncertainty Optimization
Problem

Optimization |
Problem |

» Update solutions

,,,,,,,,,,, _No
[ list

,,,,,,,,,, ? Do we have time?

| A I T Yes
| r—-—— — — = = - - - - = = — v
- ( - .’
| ] < R
| a Heuristic
| [ E component
& . (R
| No . — —
| L

oot cimalation isi i I New deterministic
Fast simulation € A Promising solution? 4—{ Deterministic ’(7 e e
| component | Yes _ simulation Dynamic elements

Iterative simulation Elite solutions <«——
_ component J

Best solution

Figure 2. Schema of the heuristic utilized to solve the TOP.

Since the heuristic is randomized, a maximum time limit is set for solving each instance.
The routes are merged based on their savings; instead of always choosing the best merge, it
is performed in a randomized way. The merges are stored in a list and sorted based on their
savings, and a probability is assigned to each one of them following a geometric distribution
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with parameter . This parameter varies between 0.1 and 0.3, as we found it provides the
best solutions. Then, the routes are chosen based on that probability and merged. This
allows the algorithm to find better solutions as it tries to escape local optima. With sufficient
remaining time, the heuristic addresses the deterministic problem in a biased-randomized
manner. If the resulting solution is promising, it is deterministically simulated several
times across various dynamic environments. This component simulates dynamic elements
such as traffic and weather conditions, which impact travel times, to test the robustness of
the solution given by the heuristic. If the solution becomes infeasible under the dynamic
conditions, its reward is set to zero. Otherwise, the solution and its associated mean
reward are stored in a solution list. If the result is not promising or the short deterministic
simulation is finished, the process continues iteratively until the maximum allowed time is
reached. Once it is reached, the top 10 solutions from the solution list are tested in dynamic
environments with a higher number of deterministic simulations. The final solution is
selected from this elite group based on which performs best during these extensive tests.

The RL method, however, takes a different approach. It is built on the transformer
architecture introduced by Vaswani [43], which has recently gained significant attention
for solving NP-hard problems. The method follows an encoder-decoder structure, where
the encoder processes variable-length input data and the decoder generates the solution.
Regarding the choice of a transformer-based encoder-decoder architecture, this architecture
was chosen for its ability to process input data with variable sequence lengths, making it
particularly well-suited to problems like the TOP, where each problem instance can contain
a different number of nodes. For a more detailed explanation, refer to Berto et al. [44],
which presents state-of-the-art benchmarks, ideas, and techniques for modeling NP-hard
problems such as the TOP using RL. In this case, the RL algorithm follows a constructive
approach, and the flowchart of its process is shown in Figure 3.

Load problem > Update state <

l

Get context

' |

Graph embedding

Decoder

' l

Encoder

Select next node

No

Yes T T~
Return solution . All routes? =

<__ Route finished? >

T s

Figure 3. Schema of the RL algorithm.

First, the problem data (the position and reward of each node) are loaded into the
algorithm. These data are then embedded using a linear network, with the resulting
outputs passed to the encoder, which follows the architecture of the transformer encoder.
The solution is constructed sequentially, route by route, and node by node. To determine
the next node to visit, the algorithm updates the current state of the problem—such as
the vehicle’s location, the nodes available for visitation, and the current battery level.
This updated state, which includes information about the graph, the vehicle’s current
position, the nodes already visited, and the remaining battery capacity, serves as the context
provided to the model. Based on this context, the model decides which node to visit next.
This process continues until the vehicle reaches the destination depot, at which point the
algorithm moves on to the next route, repeating the process until all routes are completed.
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For training this algorithm, the reward maximization serves as the objective function,
guiding the agent’s learning process to prioritize routes that provide the highest possible
reward while respecting the maximum travel time. Notice that the solution generated by
the RL algorithm is represented as a permutation 7t = (711, 71, . . .) of a subset of nodes,
where the final depot can be visited more than once, but not all nodes are required to be
included in the route. Policy-gradient methods learn the policy through gradient-based
optimization techniques. In this framework, a stochastic policy p(7t|s) is defined to select
a solution 7t based on a given problem s. This policy is factorized and parameterized by
6 as follows:

z

po(rls) = [ [ po(rels, mi-1) (13)
t=1
For training the model’s policy, Williams [45] introduced a policy gradient estimator
using Monte Carlo sampling, under the assumption that rewards are independent of 6.
This approach is known as the REINFORCE algorithm:

VoL (0]s) = E,,(r/5)[R(71) Vg log pe(7[s)] (14)

However, a significant drawback of this method is its high variance, which can make
model training less efficient and more unstable. To mitigate this issue, a baseline value
b(s) is incorporated into Equation (14), reducing variance and thereby improving training
stability and overall performance:

VoL(6]s) = Ep,(r)s) [(R(7) = b(s)) Vi log py(7]s)] (15)

The baseline used in our case is the one proposed by Lee and Ahn [38], where problem
instances and their equivalent variations, generated through augmentations, are utilized to
improve the model’s ability to generalize more effectively. The training phase is divided
into epochs, with each epoch consisting of 2000 training steps and a batch size of 256. At
the end of each epoch, the model is evaluated on 100,000 randomly generated instances
to assess its performance, and if the mean reward from the validation set exceeds that of
the current best model, a t-test with « = 0.05 is performed to confirm if the new model is
statistically superior. If the new model is found to be better, it is saved and used as the new
baseline. The goal of the training process is for the model to continually compete against
its best previous version. For the training hyperparameters, a learning rate of 5 x 107>
was used, along with the Adam optimizer [46]. Although we experimented with higher
learning rate values, the model either failed to converge or did not behave as expected
during training. The training was executed on a workstation equipped with 32 GB of RAM
and an NVIDIA 4060 GPU.

7. Computational Experiments

This section illustrates the experiment results after testing the algorithm described
in Section 6. According to Section 5, 50 problem instances are solved, and 200 different
dynamic conditions form problems for each instance, resulting in total 10,000 problems
solved. The heuristic used to solve the TOP was allocated 2 s and 20 s for each instance to
achieve the best result. This means that the heuristic solves each instance during 2 and 20s,
respectively. Since the heuristic is randomized, this ensures that a broader set of solutions
is obtained, of which the best is returned. Those running times were chosen to show how
the solution improves when letting the heuristic run for more time; moreover, the RL
method takes about 0.5 s to obtain the solution, meaning that it is possible to compare
computational efficiency between different solving methods. Allowing more than 20 s
for the heuristic was also tested, but it did not improve performance. Additionally, the
deterministic version was also solved to evaluate the impact of incorporating dynamic
conditions. This version of the heuristic also runs for 2 s before returning the solution.
A reward of 0 is given when the solution under dynamic conditions becomes infeasible.
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Four different experiments have been run: ‘deterministic’ refers to the heuristic under
deterministic conditions; ‘dynamic heu. (20 s)’ indicates the heuristic solving the problems
under dynamic conditions with a time limit of 20 s for each instance; ‘dynamic heu. (2 s)’
refers the heuristic under dynamic conditions and solving the problems within 2 s; and
‘dynamic RL’ refers to using RL to solve the problems under dynamic conditions. Notice that
the deterministic heuristic approach is applied to a static version of the problem, whereas
both the dynamic heuristic and the RL model solve the problem under dynamic conditions.
Therefore, it is expected that the deterministic heuristic provides higher rewards, as it does
not have to adjust to the uncertainties present in the dynamic scenario. We included the
deterministic results intentionally to serve as a benchmark, helping to illustrate the impact
that dynamic elements have on overall performance. Both the dynamic heuristic and the RL
approach attempt to solve the problem without full knowledge of the dynamic conditions,
which can vary significantly in real-world scenarios, especially when travel times are high
enough. While better results could be achieved, this would require an estimation of the
dynamic conditions beforehand.

The 50 problem instances are generated randomly: both the position of the nodes and
their reward, as well as the maximum travel time allowed for each vehicle. Figure 4 shows
the results obtained after running the four experiments. It is observed that the highest
reward was collected by vehicles in the deterministic experiment. Both the mean and the
median are the highest in this experiment compared to the other three experiments. By
taking a closer look at the experiments under dynamic conditions, it is clear that the mean
of the collected rewards in the dynamic RL and dynamic heu. (20 s) experiments are close
and greater than those collected in dynamic heu. (2 s). The median of rewards collected
in the dynamic RL experiment is the greatest. Additionally, lower variability of collected
reward values is noticed in the dynamic RL experiment. This variability can be presented
by the inter-quartile distance in Figure 4. The lower variability indicates greater solution
reliability and ability to find consistent solutions. The greater variability in solutions found
by the heuristic indicates the difficulty in finding reliable solutions.

10
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| |  L______ A [
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24
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Deterministic Dynamic Heu. (20s)  Dynamic Heu. (2s) Dynamic RL

Figure 4. Distribution of results obtained in the defined four experiments.

A deeper investigation of the result is presented in Table 1. Table 1 compare between
the four experiments by recording the mean of found solutions per a problem instance. The
average collected reward for 21 problem instances out of the 50 instances are tabulated.
These means are related to the 200 different defined dynamic condition combinations
in a problem instance. Similar to the observation in Figure 4, the dynamic heu. (20 s)
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experiments showed clearly better performance due to the greater exploration time com-
pared to dynamic heu. (2 s). On average, it outperformed the dynamic RL experiment by
3.35%. Those 21 problem instances presented in Table 1 were chosen randomly from the
50 instances solved. The main goal is to show how the heuristic and RL model behave in
different scenarios.

Table 1. Comparison of mean results for each problem across four solution approaches: the determin-
istic heuristic, the dynamic heuristic using 20 s, the dynamic heuristic using 2 s, and the RL model.

Problem  Deterministic  Dynamic Heu. (20s) = Dynamic Heu. (2s)  Dynamic RL

0 4.2553 3.1504 2.1379 3.5322
1 8.7905 8.1820 4.6382 5.4216
2 4.0850 2.6747 1.8263 2.8274
3 6.4999 6.3844 3.2809 4.8508
4 8.3060 6.5841 6.4133 6.4047
5 5.8537 3.8344 3.7612 3.1818
6 9.0080 9.0080 9.0080 7.7950
7 11.1873 10.7949 10.7949 8.4732
8 6.6231 5.1850 5.1850 4.9351
9 4.7175 2.0463 2.0240 3.4620
10 9.2883 5.3923 0.0000 6.1189
11 6.6812 0.0694 0.1005 3.8277
12 5.3447 3.1942 3.1942 3.3079
13 8.8668 8.8668 8.8668 7.1570
14 2.7068 1.5510 1.5510 2.0699
15 5.3801 5.0151 5.0151 4.3966
16 7.0243 3.3182 3.2398 4.1747
17 4.0835 24231 24231 2.9224
18 5.8006 2.0723 2.0723 3.8718
19 7.7680 4.4660 3.0630 5.0875
20 4.7668 4.4149 3.5105 3.9444
A\.Ig 7.1&‘393 5.2;100 4.6.513 5.0;700

The solution found for the deterministic version of the problem instances is considered
as the upper bound. With introduced dynamic conditions, the vehicle travel time increases
and reduces the possibility to collect all rewards as in the deterministic version of the
problem. Depending on the severity of the weather and traffic conditions, the collected
rewards are affected and reduced accordingly. In some problem instances, such as instance
6 and 13 in Table 1, the heuristic was successful in finding the greatest reward under the
dynamic conditions, while the RL model was not able to find. In other instances, such as
instances 1 and 9, the RL model was successful in solutions with rewards greater than those
found by the heuristic under the dynamic conditions. In Figure 5, the training validation
reward of the RL model is illustrated. As expected, the model shows a rapid improvement
during the initial epochs. However, the rate of improvement significantly decreases in later
epochs. The red dots show the epochs when the model improves, at which point the new
baseline is saved.
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Figure 5. Validation reward at each epoch in the training phase.

It is also important to highlight the time required to train the model. In this case,
training for 200 epochs took approximately 16 h. Additionally, a significant amount
of training data is needed, which can be challenging to generate, particularly for more
complex problems that simulate intricate real-world conditions and are hard to validate.
The scalability of the RL model also requires attention, as varying the number of nodes
from those used during training may result in sub-optimal performance. According to the
results, the training of the RL model is challenging and demands resources. Once the RL
model is trained, it provides promising and reliable solutions. The solution reliability is
presented by the lower variability compared to the other approaches (Figure 4).

8. Conclusions

This paper presents a dual approach to solve the dynamic TOP with EVs, constrained
by battery driving range and impacted by real-time dynamic conditions. To address this
challenge, we propose two independent methodologies: a heuristic-based approach for
rapid solution generation and a reinforcement learning approach for adaptive decision-
making. By applying these distinct methods, we are able to explore the strengths and
weaknesses of each in scenarios where dynamic factors like road congestion, battery status,
and travel times fluctuate continuously.

The heuristic approach efficiently produces initial solutions, particularly in relatively
stable environments, providing a fast and practical option for route planning. In contrast,
the reinforcement learning approach excels in more dynamic environments, learning to
adapt decisions as conditions evolve, and consistently achieving higher-quality solutions
by optimizing both the number of nodes visited and energy efficiency. The computational
experiments reveal that while the heuristic approach performs well under deterministic
conditions, it might lack the flexibility needed to adapt in highly variable scenarios. The
reinforcement learning approach, however, demonstrates its capacity to incorporate dy-
namic elements, offering robust and reliable solutions even under significant uncertainty.
Although RL experiment showed a great performance in this study in solving the TOP, the
training of the RL model is computationally demanding.

In this study, the RL approach is used to solve TOP as an example of a last-mile
delivery problem, involving dynamic components. The dynamic travel time represents
one of real-time aspects encountered in optimization problems in addition to stochastic
uncertainty. The RL approach showed the ability to handle the dynamic conditions and
recommended solutions after training the RL model to handle such problems. Similar
applications could be found in other last-mile delivery problems, especially those reflecting
real-time and real-world problems.
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Our future work will focus on introducing uncertainty along with the dynamic con-
ditions to the TOP problem, especially in regard to battery management and duration.
Additionally, investigating approaches for speeding up training of the reinforcement learn-
ing model is also a line to consider. The scalability of the solving approach is an issue to
further investigate and evaluate in future works. In real-life problems, the batteries life
variability is one of aspects to be considered. Accordingly, the future work can expand the
problem definition and consider batteries life as well.
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The following abbreviations are used in this manuscript:

BEV battery electric vehicle

DRL deep reinforcement learning
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FCEV  fuel cell electric vehicles

HEV  hybrid electric vehicle

PHEV  plug-in hybrid electric vehicle
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