Next Issue
Volume 6, March
Previous Issue
Volume 5, September
 
 

Instruments, Volume 5, Issue 4 (December 2021) – 10 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
9 pages, 1695 KiB  
Article
An LGAD-Based Full Active Target for the PIONEER Experiment
by Simone Michele Mazza
Instruments 2021, 5(4), 40; https://doi.org/10.3390/instruments5040040 - 20 Dec 2021
Cited by 6 | Viewed by 3081
Abstract
PIONEER is a next-generation experiment to measure the charged pion branching ratios to electrons vs. muons Re/μ=Γπ+e+ν(γ)Γπ+μ+ν(γ) and pion [...] Read more.
PIONEER is a next-generation experiment to measure the charged pion branching ratios to electrons vs. muons Re/μ=Γπ+e+ν(γ)Γπ+μ+ν(γ) and pion beta decay (Pib) π+π0eν. The pion to muon decay (πμe) has four orders of magnitude higher probability than the pion to electron decay (πeν). To achieve the necessary branching-ratio precision it is crucial to suppress the πμe energy spectrum that overlaps with the low energy tail of πeν. A high granularity active target (ATAR) is being designed to suppress the muon decay background sufficiently so that this tail can be directly measured. In addition, ATAR will provide detailed 4D tracking information to separate the energy deposits of the pion decay products in both position and time. This will suppress other significant systematic uncertainties (pulse pile-up, decay in flight of slow pions) to <0.01%, allowing the overall uncertainty in to be reduced to O (0.01%). The chosen technology for the ATAR is Low Gain Avalanche Detector (LGAD). These are thin silicon detectors (down to 50 μm in thickness or less) with moderate internal signal amplification and great time resolution. To achieve a 100% active region several emerging technologies are being evaluated, such as AC-LGADs and TI-LGADs. A dynamic range from MiP (positron) to several MeV (pion/muon) of deposited charge is expected, the detection and separation of close-by hits in such a wide dynamic range will be a main challenge. Furthermore, the compactness and the requirement of low inactive material of the ATAR present challenges for the readout system, forcing the amplifier chip and digitizer to be positioned away from the active region. Full article
(This article belongs to the Special Issue Timing Detectors)
Show Figures

Figure 1

11 pages, 28997 KiB  
Article
Fabrication and First Full Characterisation of Timing Properties of 3D Diamond Detectors
by Lucio Anderlini, Marco Bellini, Chiara Corsi, Stefano Lagomarsino, Chiara Lucarelli, Giovanni Passaleva, Silvio Sciortino and Michele Veltri
Instruments 2021, 5(4), 39; https://doi.org/10.3390/instruments5040039 - 19 Dec 2021
Cited by 3 | Viewed by 2577
Abstract
Tracking detectors at future high luminosity hadron colliders are expected to be able to stand unprecedented levels of radiation as well as to efficiently reconstruct a huge number of tracks and primary vertices. To face the challenges posed by the radiation damage, new [...] Read more.
Tracking detectors at future high luminosity hadron colliders are expected to be able to stand unprecedented levels of radiation as well as to efficiently reconstruct a huge number of tracks and primary vertices. To face the challenges posed by the radiation damage, new extremely radiation hard materials and sensor designs will be needed, while the track and vertex reconstruction problem can be significantly mitigated by the introduction of detectors with excellent timing capabilities. Indeed, the time coordinate provides extremely powerful information to disentangle overlapping tracks and hits in the harsh hadronic collision environment. Diamond 3D pixel sensors optimised for timing applications provide an appealing solution to the above problems as the 3D geometry enhances the already outstanding radiation hardness and allows to exploit the excellent timing properties of diamond. We report here the first full timing characterisation of 3D diamond sensors fabricated by electrode laser graphitisation in Florence. Results from a 270MeV pion beam test of a first prototype and from tests with a β source on a recently fabricated 55×55μm2 pitch sensor are discussed. First results on sensor simulation are also presented. Full article
(This article belongs to the Special Issue Timing Detectors)
Show Figures

Figure 1

21 pages, 5622 KiB  
Article
Towards High-Repetition-Rate Fast Neutron Sources Using Novel Enabling Technologies
by Franziska Treffert, Chandra B. Curry, Todd Ditmire, Griffin D. Glenn, Hernan J. Quevedo, Markus Roth, Christopher Schoenwaelder, Marc Zimmer, Siegfried H. Glenzer and Maxence Gauthier
Instruments 2021, 5(4), 38; https://doi.org/10.3390/instruments5040038 - 3 Dec 2021
Cited by 8 | Viewed by 4505 | Correction
Abstract
High-flux, high-repetition-rate neutron sources are of interest in studying neutron-induced damage processes in materials relevant to fusion, ultimately guiding designs for future fusion reactors. Existing and upcoming petawatt laser systems show great potential to fulfill this need. Here, we present a platform for [...] Read more.
High-flux, high-repetition-rate neutron sources are of interest in studying neutron-induced damage processes in materials relevant to fusion, ultimately guiding designs for future fusion reactors. Existing and upcoming petawatt laser systems show great potential to fulfill this need. Here, we present a platform for producing laser-driven neutron beams based on a high-repetition-rate cryogenic liquid jet target and an adaptable stacked lithium and beryllium converter. Selected ion and neutron diagnostics enable monitoring of the key parameters of both beams. A first single-shot proof-of-principle experiment successfully implemented the presented platform at the Texas Petawatt Laser facility, achieving efficient generation of a forward-directed neutron beam. This work lays the foundation for future high-repetition-rate experiments towards pulsed, high-flux, fast neutron sources for radiation-induced effect studies relevant for fusion science and applications that require neutron beams with short pulse duration. Full article
Show Figures

Figure 1

16 pages, 6174 KiB  
Article
Analysis of a Dynamic Calibration Target for Through-Wall and Through-Rubble Motion Sensing Doppler Radar
by Ram M. Narayanan, Michael J. Harner, John R. Jendzurski and Nicholas G. Paulter
Instruments 2021, 5(4), 37; https://doi.org/10.3390/instruments5040037 - 3 Dec 2021
Viewed by 2381
Abstract
Through-wall and through-barrier motion-sensing systems are becoming increasingly important tools to locate humans concealed behind barriers and under rubble. The sensing performance of these systems is best determined with appropriately designed calibration targets, which are ones that can emulate human motion. The effectiveness [...] Read more.
Through-wall and through-barrier motion-sensing systems are becoming increasingly important tools to locate humans concealed behind barriers and under rubble. The sensing performance of these systems is best determined with appropriately designed calibration targets, which are ones that can emulate human motion. The effectiveness of various dynamic calibration targets that emulate human respiration, heart rate, and other body motions were analyzed. Moreover, these targets should be amenable to field deployment and not manifest angular or orientation dependences. The three targets examined in this thesis possess spherical polyhedral geometries. Spherical geometries were selected due to their isotropic radar cross-sectional characteristics, which provide for consistent radar returns independent of the orientation of the radar transceiver relative to the test target. The aspect-independence of a sphere allows for more accurate and repeatable calibration of a radar than using a nonspherical calibration artifact. In addition, the radar cross section (RCS) for scattering spheres is well known and can be calculated using far-field approximations. For Doppler radar testing, it is desired to apply these calibration advantages to a dynamically expanding-and-contracting sphere-like device that can emulate motions of the human body. Monostatic RCS simulations at 3.6 GHz were documented for each geometry. The results provide a visual way of representing the effectiveness of each design as a dynamic calibration target for human detection purposes. Full article
Show Figures

Figure 1

13 pages, 2189 KiB  
Article
Strap-On Magnets: A Framework for Rapid Prototyping of Magnets and Beam Lines
by Volker Ziemann
Instruments 2021, 5(4), 36; https://doi.org/10.3390/instruments5040036 - 1 Dec 2021
Viewed by 1972
Abstract
We describe a framework to assemble permanent-magnet cubes in 3D-printed frames to construct dipole, quadrupole, and solenoid magnets, whose field, in the absence of iron, can be calculated analytically in three spatial dimensions. Rotating closely spaced dipoles and quadrupoles in opposite directions allows [...] Read more.
We describe a framework to assemble permanent-magnet cubes in 3D-printed frames to construct dipole, quadrupole, and solenoid magnets, whose field, in the absence of iron, can be calculated analytically in three spatial dimensions. Rotating closely spaced dipoles and quadrupoles in opposite directions allows us to adjust the integrated strength of a multipole. The contributions of unwanted harmonics were calculated and found to be moderate. We then combined multiple magnets to construct beam-line modules: a chicane, a triplet cell, and a solenoid focusing system. Full article
Show Figures

Figure 1

12 pages, 4184 KiB  
Article
First Proof-of-Concept Prototype of an Additive Manufactured Radio Frequency Quadrupole
by Toms Torims, Guntis Pikurs, Samira Gruber, Maurizio Vretenar, Andris Ratkus, Maurizio Vedani, Elena López and Frank Brückner
Instruments 2021, 5(4), 35; https://doi.org/10.3390/instruments5040035 - 29 Nov 2021
Cited by 12 | Viewed by 3049
Abstract
Continuous developments in additive manufacturing (AM) technology are opening up opportunities in novel machining, and improving design alternatives for modern particle accelerator components. One of the most critical, complex, and delicate accelerator elements to manufacture and assemble is the radio frequency quadrupole (RFQ) [...] Read more.
Continuous developments in additive manufacturing (AM) technology are opening up opportunities in novel machining, and improving design alternatives for modern particle accelerator components. One of the most critical, complex, and delicate accelerator elements to manufacture and assemble is the radio frequency quadrupole (RFQ) linear accelerator, which is used as an injector for all large modern proton and ion accelerator systems. For this reason, the RFQ has been selected by a wide European collaboration participating in the AM developments of the I.FAST (Innovation Fostering in Accelerator Science and Technology) Horizon 2020 project. The RFQ is as an excellent candidate to show how sophisticated pure copper accelerator components can be manufactured by AM and how their functionalities can be boosted by this evolving technology. To show the feasibility of the AM process, a prototype RFQ section has been designed, corresponding to one-quarter of a 750 MHz 4-vane RFQ, which was optimised for production with state-of-the-art laser powder bed fusion (L-PBF) technology, and then manufactured in pure copper. To the best of the authors’ knowledge, this is the first RFQ section manufactured in the world by AM. Subsequently, geometrical precision and surface roughness of the prototype were measured. The results obtained are encouraging and confirm the feasibility of AM manufactured high-tech accelerator components. It has been also confirmed that the RFQ geometry, particularly the critical electrode modulation and the complex cooling channels, can be successfully realised thanks to the opportunities provided by the AM technology. Further prototypes will aim to improve surface roughness and to test vacuum properties. In parallel, laboratory measurements will start to test and improve the voltage holding properties of AM manufactured electrode samples. Full article
(This article belongs to the Special Issue Recent Advance in Particle Accelerator Instrumentation)
Show Figures

Figure 1

11 pages, 5053 KiB  
Article
Preliminary Design of the Support Structure for a Rotating Carbon-Ion Transfer Line for Medical Applications
by Diego Perini, Luca Dassa, Luca Piacentini and Stefano Uberti
Instruments 2021, 5(4), 34; https://doi.org/10.3390/instruments5040034 - 27 Nov 2021
Cited by 4 | Viewed by 2166
Abstract
The development of new bent superconducting magnets together with the optimization of the support structure open the way to a considerable reduction in the weight and complexity of rotating gantries for medical applications. The magnets, which define the transfer line to deliver carbon [...] Read more.
The development of new bent superconducting magnets together with the optimization of the support structure open the way to a considerable reduction in the weight and complexity of rotating gantries for medical applications. The magnets, which define the transfer line to deliver carbon ions to the patients from different angles, are supported by a rotating structure that should be as rigid and as lightweight as possible. Relative displacements of the magnets due to deformations cause incorrect beam position and consequent errors in hitting the target tissues. This paper describes a possible rotating structure which is considerably lighter than the previous designs. A method to compensate part of the deformation by complementary rotations of the driving motor is proposed. The influence of the construction tolerances and deformations of the supports is also analyzed and alignment and adjustment possibilities are discussed. Full article
Show Figures

Figure 1

9 pages, 724 KiB  
Article
Relativistic versus Nonrelativistic Approaches to a Low Perveance High Quality Matched Beam for a High Efficiency Ka-Band Klystron
by Mostafa Behtouei, Bruno Spataro, Luigi Faillace, Martina Carillo, Alberto Leggieri, Luigi Palumbo and Mauro Migliorati
Instruments 2021, 5(4), 33; https://doi.org/10.3390/instruments5040033 - 10 Nov 2021
Cited by 3 | Viewed by 2553
Abstract
Advanced technical solution for the design of a low perveance electron gun with a high quality beam dedicated to high power Ka-band klystrons is presented in this paper. The proposed electron gun can be used to feed linear accelerating structures at 36 GHz [...] Read more.
Advanced technical solution for the design of a low perveance electron gun with a high quality beam dedicated to high power Ka-band klystrons is presented in this paper. The proposed electron gun can be used to feed linear accelerating structures at 36 GHz with an estimated input power of 20 MW, thus achieving an effective accelerating electric field in the (100–150) MV/m range. Additionally, in the framework of the Compact Light XLS project, a short Ka-band accelerating structure providing an integrated voltage of at least 15 MV, has been proposed for bunch-phase linearization. For the klystron, a very small beam dimension is needed and the presented electron gun responds to this requirement. An estimate of the rotational velocity at beam edge indicates that the diamagnetic field due to rotational currents are small compared to the longitudinal volume. A detailed analysis of how this has been achieved, including compression of the beam, rotation in the magnetic field, and analysis of the subsequently generated diamagnetic field has been discussed. Full article
(This article belongs to the Special Issue Recent Advance in Particle Accelerator Instrumentation)
Show Figures

Figure 1

14 pages, 5022 KiB  
Article
Fabrication of a Hydrogenated Amorphous Silicon Detector in 3-D Geometry and Preliminary Test on Planar Prototypes
by Mauro Menichelli, Marco Bizzarri, Maurizio Boscardin, Mirco Caprai, Anna Paola Caricato, Giuseppe Antonio Pablo Cirrone, Michele Crivellari, Ilaria Cupparo, Giacomo Cuttone, Silvain Dunand, Livio Fanò, Omar Hammad Alì, Maria Ionica, Keida Kanxheri, Matthew Large, Giuseppe Maruccio, Anna Grazia Monteduro, Francesco Moscatelli, Arianna Morozzi, Andrea Papi, Daniele Passeri, Marco Petasecca, Silvia Rizzato, Alessandro Rossi, Andrea Scorzoni, Leonello Servoli, Cinzia Talamonti, Giovanni Verzellesi and Nicolas Wyrschadd Show full author list remove Hide full author list
Instruments 2021, 5(4), 32; https://doi.org/10.3390/instruments5040032 - 8 Oct 2021
Cited by 9 | Viewed by 3316
Abstract
Hydrogenated amorphous silicon (a-Si:H) can be produced by plasma-enhanced chemical vapor deposition (PECVD) of SiH4 (silane) mixed with hydrogen. The resulting material shows outstanding radiation hardness properties and can be deposited on a wide variety of substrates. Devices employing a-Si:H technologies have [...] Read more.
Hydrogenated amorphous silicon (a-Si:H) can be produced by plasma-enhanced chemical vapor deposition (PECVD) of SiH4 (silane) mixed with hydrogen. The resulting material shows outstanding radiation hardness properties and can be deposited on a wide variety of substrates. Devices employing a-Si:H technologies have been used to detect many different kinds of radiation, namely, minimum ionizing particles (MIPs), X-rays, neutrons, and ions, as well as low-energy protons and alphas. However, the detection of MIPs using planar a-Si:H diodes has proven difficult due to their unsatisfactory S/N ratio arising from a combination of high leakage current, high capacitance, and limited charge collection efficiency (50% at best for a 30 µm planar diode). To overcome these limitations, the 3D-SiAm collaboration proposes employing a 3D detector geometry. The use of vertical electrodes allows for a small collection distance to be maintained while preserving a large detector thickness for charge generation. The depletion voltage in this configuration can be kept below 400 V with a consequent reduction in the leakage current. In this paper, following a detailed description of the fabrication process, the results of the tests performed on the planar p-i-n structures made with ion implantation of the dopants and with carrier selective contacts are illustrated. Full article
Show Figures

Figure 1

250 pages, 84542 KiB  
Article
Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report
by A. Abed Abud, B. Abi, R. Acciarri, M. A. Acero, G. Adamov, D. Adams, M. Adinolfi, A. Aduszkiewicz, Z. Ahmad, J. Ahmed, T. Alion, S. Alonso Monsalve, M. Alrashed, C. Alt, A. Alton, P. Amedo, J. Anderson, C. Andreopoulos, M. P. Andrews, F. Andrianala, S. Andringa, N. Anfimov, A. Ankowski, M. Antonova, S. Antusch, A. Aranda-Fernandez, A. Ariga, L. O. Arnold, M. A. Arroyave, J. Asaadi, A. Aurisano, V. Aushev, D. Autiero, M. Ayala-Torres, F. Azfar, A. Back, H. Back, J. J. Back, C. Backhouse, P. Baesso, I. Bagaturia, L. Bagby, S. Balasubramanian, P. Baldi, B. Baller, B. Bambah, F. Barao, G. Barenboim, G. J. Barker, W. Barkhouse, C. Barnes, G. Barr, J. Barranco Monarca, N. Barros, J. L. Barrow, A. Basharina-Freshville, A. Bashyal, V. Basque, E. Belchior, J. B. R. Battat, F. Battisti, F. Bay, J. L. Bazo Alba, J. F. Beacom, E. Bechetoille, B. Behera, L. Bellantoni, G. Bellettini, V. Bellini, O. Beltramello, D. Belver, N. Benekos, F. Bento Neves, S. Berkman, P. Bernardini, R. M. Berner, H. Berns, S. Bertolucci, M. Betancourt, A. Betancur Rodríguez, M. Bhattacharjee, S. Bhuller, B. Bhuyan, S. Biagi, J. Bian, M. Biassoni, K. Biery, B. Bilki, M. Bishai, A. Bitadze, A. Blake, F. D. M. Blaszczyk, G. C. Blazey, E. Blucher, J. Boissevain, S. Bolognesi, T. Bolton, L. Bomben, M. Bonesini, M. Bongrand, F. Bonini, A. Booth, C. Booth, S. Bordoni, A. Borkum, T. Boschi, N. Bostan, P. Bour, C. Bourgeois, S. B. Boyd, D. Boyden, J. Bracinik, D. Braga, D. Brailsford, A. Brandt, J. Bremer, C. Brew, E. Brianne, S. J. Brice, C. Brizzolari, C. Bromberg, G. Brooijmans, J. Brooke, A. Bross, G. Brunetti, M. Brunetti, N. Buchanan, H. Budd, I. Cagnoli, D. Caiulo, P. Calafiura, J. Calcutt, M. Calin, S. Calvez, E. Calvo, A. Caminata, M. Campanelli, K. Cankocak, D. Caratelli, G. Carini, B. Carlus, P. Carniti, I. Caro Terrazas, H. Carranza, T. Carroll, J. F. Castaño Forero, A. Castillo, C. Castromonte, E. Catano-Mur, C. Cattadori, F. Cavalier, F. Cavanna, S. Centro, G. Cerati, A. Cervelli, A. Cervera Villanueva, M. Chalifour, A. Chappell, E. Chardonnet, N. Charitonidis, A. Chatterjee, S. Chattopadhyay, H. Chen, M. Chen, Y. Chen, Z. Chen, D. Cherdack, C. Chi, S. Childress, A. Chiriacescu, G. Chisnall, K. Cho, S. Choate, D. Chokheli, S. Choubey, A. Christensen, D. Christian, G. Christodoulou, A. Chukanov, E. Church, V. Cicero, P. Clarke, T. E. Coan, A. G. Cocco, J. A. B. Coelho, E. Conley, R. Conley, J. M. Conrad, M. Convery, S. Copello, L. Corwin, L. Cremaldi, L. Cremonesi, J. I. Crespo-Anadón, E. Cristaldo, R. Cross, A. Cudd, C. Cuesta, Y. Cui, D. Cussans, M. Dabrowski, O. Dalager, H. da Motta, L. Da Silva Peres, C. David, Q. David, G. S. Davies, S. Davini, J. Dawson, K. De, R. M. De Almeida, P. Debbins, I. De Bonis, M. P. Decowski, A. de Gouvêa, P. C. De Holanda, I. L. De Icaza Astiz, A. Deisting, P. De Jong, A. Delbart, D. Delepine, M. Delgado, A. Dell’Acqua, P. De Lurgio, J. R. T. de Mello Neto, D. M. DeMuth, S. Dennis, C. Densham, G. W. Deptuch, A. De Roeck, V. De Romeri, G. De Souza, R. Dharmapalan, F. Diaz, J. S. Díaz, S. Di Domizio, L. Di Giulio, P. Ding, L. Di Noto, C. Distefano, R. Diurba, M. Diwan, Z. Djurcic, N. Dokania, S. Dolan, M. J. Dolinski, L. Domine, D. Douglas, D. Douillet, G. Drake, F. Drielsma, D. Duchesneau, K. Duffy, P. Dunne, T. Durkin, H. Duyang, O. Dvornikov, D. A. Dwyer, A. S. Dyshkant, M. Eads, A. Earle, D. Edmunds, J. Eisch, L. Emberger, S. Emery, A. Ereditato, C. O. Escobar, G. Eurin, J. J. Evans, E. Ewart, A. C. Ezeribe, K. Fahey, A. Falcone, C. Farnese, Y. Farzan, J. Felix, M. Fernandes Carneiro da Silva, E. Fernandez-Martinez, P. Fernandez Menendez, F. Ferraro, L. Fields, F. Filthaut, A. Fiorentini, R. S. Fitzpatrick, W. Flanagan, B. Fleming, R. Flight, D. V. Forero, J. Fowler, W. Fox, J. Franc, K. Francis, D. Franco, J. Freeman, J. Freestone, J. Fried, A. Friedland, S. Fuess, I. Furic, A. P. Furmanski, A. Gabrielli, A. Gago, H. Gallagher, A. Gallas, A. Gallego-Ros, N. Gallice, V. Galymov, E. Gamberini, T. Gamble, R. Gandhi, R. Gandrajula, F. Gao, S. Gao, D. Garcia-Gamez, M. Á. García-Peris, S. Gardiner, D. Gastler, G. Ge, B. Gelli, A. Gendotti, S. Gent, Z. Ghorbani-Moghaddam, D. Gibin, I. Gil-Botella, S. Gilligan, C. Girerd, A. K. Giri, D. Gnani, O. Gogota, M. Gold, S. Gollapinni, K. Gollwitzer, R. A. Gomes, L. V. Gomez Bermeo, L. S. Gomez Fajardo, F. Gonnella, J. A. Gonzalez-Cuevas, D. Gonzalez-Diaz, M. Gonzalez-Lopez, M. C. Goodman, O. Goodwin, S. Goswami, C. Gotti, E. Goudzovski, C. Grace, M. Graham, R. Gran, E. Granados, P. Granger, A. Grant, C. Grant, D. Gratieri, P. Green, L. Greenler, J. Greer, W. C. Griffith, M. Groh, J. Grudzinski, K. Grzelak, W. Gu, V. Guarino, R. Guenette, E. Guerard, M. Guerzoni, A. Guglielmi, B. Guo, K. K. Guthikonda, R. Gutierrez, P. Guzowski, M. M. Guzzo, S. Gwon, A. Habig, H. Hadavand, R. Haenni, A. Hahn, J. Haiston, P. Hamacher-Baumann, T. Hamernik, P. Hamilton, J. Han, D. A. Harris, J. Hartnell, J. Harton, T. Hasegawa, C. Hasnip, R. Hatcher, K. W. Hatfield, A. Hatzikoutelis, C. Hayes, E. Hazen, A. Heavey, K. M. Heeger, J. Heise, K. Hennessy, S. Henry, M. A. Hernandez Morquecho, K. Herner, L. Hertel, J. Hewes, A. Higuera, T. Hill, S. J. Hillier, A. Himmel, J. Hoff, C. Hohl, A. Holin, E. Hoppe, G. A. Horton-Smith, M. Hostert, A. Hourlier, B. Howard, R. Howell, J. Huang, J. Huang, J. Hugon, G. Iles, N. Ilic, A. M. Iliescu, R. Illingworth, G. Ingratta, A. Ioannisian, L. Isenhower, R. Itay, A. Izmaylov, S. Jackson, V. Jain, E. James, B. Jargowsky, F. Jediny, D. Jena, Y. S. Jeong, C. Jesús-Valls, X. Ji, L. Jiang, S. Jiménez, A. Jipa, R. Johnson, N. Johnston, B. Jones, S. B. Jones, M. Judah, C. K. Jung, T. Junk, Y. Jwa, M. Kabirnezhad, A. Kaboth, I. Kadenko, I. Kakorin, F. Kamiya, N. Kaneshige, G. Karagiorgi, G. Karaman, A. Karcher, M. Karolak, Y. Karyotakis, S. Kasai, S. P. Kasetti, L. Kashur, N. Kazaryan, E. Kearns, P. Keener, K. J. Kelly, E. Kemp, O. Kemularia, W. Ketchum, S. H. Kettell, M. Khabibullin, A. Khotjantsev, A. Khvedelidze, D. Kim, B. King, B. Kirby, M. Kirby, J. Klein, K. Koehler, L. W. Koerner, S. Kohn, P. P. Koller, L. Kolupaeva, M. Kordosky, T. Kosc, U. Kose, V. A. Kostelecký, K. Kothekar, F. Krennrich, I. Kreslo, Y. Kudenko, V. A. Kudryavtsev, S. Kulagin, J. Kumar, P. Kumar, R. Kumar, P. Kunze, N. Kurita, C. Kuruppu, V. Kus, T. Kutter, A. Lambert, B. Land, K. Lande, C. E. Lane, K. Lang, T. Langford, J. Larkin, P. Lasorak, D. Last, C. Lastoria, A. Laundrie, G. Laurenti, A. Lawrence, I. Lazanu, R. LaZur, T. Le, S. Leardini, J. Learned, P. LeBrun, T. LeCompte, G. Lehmann Miotto, R. Lehnert, M. A. Leigui de Oliveira, M. Leitner, L. Li, S. W. Li, T. Li, Y. Li, H. Liao, C. S. Lin, Q. Lin, S. Lin, A. Lister, B. R. Littlejohn, J. Liu, S. Lockwitz, T. Loew, M. Lokajicek, I. Lomidze, K. Long, K. Loo, D. Lorca, T. Lord, J. M. LoSecco, W. C. Louis, X. G. Lu, K. B. Luk, X. Luo, N. Lurkin, T. Lux, V. P. Luzio, D. MacFarlane, A. A. Machado, P. Machado, C. T. Macias, J. R. Macier, A. Maddalena, A. Madera, P. Madigan, S. Magill, K. Mahn, A. Maio, A. Major, J. A. Maloney, G. Mandrioli, R. C. Mandujano, J. Maneira, L. Manenti, S. Manly, A. Mann, K. Manolopoulos, M. Manrique Plata, V. N. Manyam, L. Manzanillas, M. Marchan, A. Marchionni, W. Marciano, D. Marfatia, C. Mariani, J. Maricic, R. Marie, F. Marinho, A. D. Marino, D. Marsden, M. Marshak, C. M. Marshall, J. Marshall, J. Marteau, J. Martin-Albo, N. Martinez, D. A. Martinez Caicedo, S. Martynenko, K. Mason, A. Mastbaum, M. Masud, S. Matsuno, J. Matthews, C. Mauger, N. Mauri, K. Mavrokoridis, I. Mawby, R. Mazza, A. Mazzacane, E. Mazzucato, T. McAskill, E. McCluskey, N. McConkey, K. S. McFarland, C. McGrew, A. McNab, A. Mefodiev, P. Mehta, P. Melas, O. Mena, S. Menary, H. Mendez, D. P. Méndez, A. Menegolli, G. Meng, M. D. Messier, W. Metcalf, T. Mettler, M. Mewes, H. Meyer, T. Miao, G. Michna, T. Miedema, J. Migenda, V. Mikola, R. Milincic, W. Miller, J. Mills, C. Milne, O. Mineev, O. G. Miranda, S. Miryala, C. S. Mishra, S. R. Mishra, A. Mislivec, D. Mladenov, I. Mocioiu, K. Moffat, N. Moggi, R. Mohanta, T. A. Mohayai, N. Mokhov, J. Molina, L. Molina Bueno, A. Montanari, C. Montanari, D. Montanari, E. Montagna, L. M. Montano Zetina, J. Moon, M. Mooney, A. F. Moor, D. Moreno, C. Morris, C. Mossey, E. Motuk, C. A. Moura, J. Mousseau, W. Mu, L. Mualem, J. Mueller, M. Muether, S. Mufson, F. Muheim, A. Muir, M. Mulhearn, D. Munford, H. Muramatsu, S. Murphy, J. Musser, J. Nachtman, S. Nagu, M. Nalbandyan, R. Nandakumar, D. Naples, S. Narita, D. Navas-Nicolás, A. Navrer-Agasson, N. Nayak, M. Nebot-Guinot, K. Negishi, J. K. Nelson, J. Nesbit, M. Nessi, D. Newbold, M. Newcomer, D. Newhart, H. Newton, M. Niccolo, R. Nichol, F. Nicolas-Arnaldos, M. Nicoletta, E. Niner, K. Nishimura, A. Norman, A. Norrick, R. Northrop, P. Novella, J. A. Nowak, M. Oberling, J. P. Ochoa-Ricoux, A. Olivares Del Campo, A. Olivier, A. Olshevskiy, Y. Onel, Y. Onishchuk, J. Ott, L. Pagani, S. Pakvasa, G. Palacio, O. Palamara, S. Palestini, J. M. Paley, M. Pallavicini, C. Palomares, J. L. Palomino-Gallo, E. Pantic, V. Paolone, V. Papadimitriou, R. Papaleo, A. Papanestis, S. Paramesvaran, S. Parke, Z. Parsa, M. Parvu, S. Pascoli, L. Pasqualini, J. Pasternak, J. Pater, C. Patrick, L. Patrizii, R. B. Patterson, S. J. Patton, T. Patzak, A. Paudel, B. Paulos, L. Paulucci, Z. Pavlovic, G. Pawloski, D. Payne, V. Pec, S. J. M. Peeters, E. Pennacchio, A. Penzo, O. L. G. Peres, J. Perry, D. Pershey, G. Pessina, G. Petrillo, C. Petta, R. Petti, F. Piastra, L. Pickering, F. Pietropaolo, R. Plunkett, R. Poling, X. Pons, N. Poonthottathil, F. Poppi, S. Pordes, J. Porter, M. Potekhin, R. Potenza, B. V. K. S. Potukuchi, J. Pozimski, M. Pozzato, S. Prakash, T. Prakash, S. Prince, D. Pugnere, X. Qian, M. C. Queiroga Bazetto, J. L. Raaf, V. Radeka, J. Rademacker, B. Radics, A. Rafique, E. Raguzin, M. Rai, M. Rajaoalisoa, I. Rakhno, A. Rakotonandrasana, L. Rakotondravohitra, Y. A. Ramachers, R. Rameika, M. A. Ramirez Delgado, B. Ramson, A. Rappoldi, G. Raselli, P. Ratoff, S. Raut, R. F. Razakamiandra, J. S. Real, B. Rebel, M. Reggiani-Guzzo, T. Rehak, J. Reichenbacher, S. D. Reitzner, H. Rejeb Sfar, A. Renshaw, S. Rescia, F. Resnati, A. Reynolds, C. Riccio, G. Riccobene, L. C. J. Rice, J. Ricol, A. Rigamonti, Y. Rigaut, D. Rivera, L. Rochester, M. Roda, P. Rodrigues, M. J. Rodriguez Alonso, E. Rodriguez Bonilla, J. Rodriguez Rondon, S. Rosauro-Alcaraz, M. Rosenberg, P. Rosier, B. Roskovec, M. Rossella, J. Rout, P. Roy, S. Roy, A. Rubbia, C. Rubbia, F. C. Rubio, B. Russell, D. Ruterbories, R. Saakyan, S. Sacerdoti, T. Safford, R. Sahay, N. Sahu, P. Sala, N. Samios, O. Samoylov, M. C. Sanchez, D. A. Sanders, D. Sankey, S. Santana, M. Santos-Maldonado, N. Saoulidou, P. Sapienza, C. Sarasty, I. Sarcevic, G. Savage, V. Savinov, A. Scaramelli, A. Scarff, A. Scarpelli, T. Schaffer, H. Schellman, P. Schlabach, D. Schmitz, K. Scholberg, A. Schukraft, E. Segreto, J. Sensenig, I. Seong, A. Sergi, D. Sgalaberna, M. H. Shaevitz, S. Shafaq, M. Shamma, R. Sharankova, H. R. Sharma, R. Sharma, T. Shaw, C. Shepherd-Themistocleous, S. Shin, D. Shooltz, R. Shrock, L. Simard, F. Simon, N. Simos, J. Sinclair, G. Sinev, J. Singh, J. Singh, V. Singh, R. Sipos, F. W. Sippach, G. Sirri, A. Sitraka, K. Siyeon, K. Skarpaas VIII, A. Smith, E. Smith, P. Smith, J. Smolik, M. Smy, E. L. Snider, P. Snopok, M. Soares Nunes, H. Sobel, M. Soderberg, C. J. Solano Salinas, S. Söldner-Rembold, S. Soleti, N. Solomey, V. Solovov, W. E. Sondheim, M. Sorel, J. Soto-Oton, A. Sousa, K. Soustruznik, F. Spagliardi, M. Spanu, J. Spitz, N. J. C. Spooner, K. Spurgeon, R. Staley, M. Stancari, L. Stanco, R. Stanley, R. Stein, H. M. Steiner, J. Stewart, B. Stillwell, J. Stock, F. Stocker, T. Stokes, M. Strait, T. Strauss, S. Striganov, A. Stuart, J. G. Suarez, H. Sullivan, D. Summers, A. Surdo, V. Susic, L. Suter, C. M. Sutera, R. Svoboda, B. Szczerbinska, A. M. Szelc, R. Talaga, H. A. Tanaka, B. Tapia Oregui, A. Tapper, S. Tariq, E. Tatar, R. Tayloe, A. M. Teklu, M. Tenti, K. Terao, C. A. Ternes, F. Terranova, G. Testera, A. Thea, J. L. Thompson, C. Thorn, S. C. Timm, J. Todd, A. Tonazzo, D. Torbunov, M. Torti, M. Tortola, F. Tortorici, D. Totani, M. Toups, C. Touramanis, N. Tosi, R. Travaglini, J. Trevor, S. Trilov, W. H. Trzaska, Y. T. Tsai, Z. Tsamalaidze, K. V. Tsang, N. Tsverava, S. Tufanli, C. Tull, E. Tyley, M. Tzanov, M. A. Uchida, J. Urheim, T. Usher, S. Uzunyan, M. R. Vagins, P. Vahle, G. A. Valdiviesso, E. Valencia, P. Valerio, Z. Vallari, J. W. F. Valle, S. Vallecorsa, R. Van Berg, R. G. Van de Water, F. Varanini, D. Vargas, G. Varner, J. Vasel, S. Vasina, G. Vasseur, N. Vaughan, K. Vaziri, S. Ventura, A. Verdugo, S. Vergani, M. A. Vermeulen, M. Verzocchi, M. Vicenzi, H. Vieira de Souza, C. Vignoli, C. Vilela, B. Viren, T. Vrba, T. Wachala, A. V. Waldron, M. Wallbank, H. Wang, J. Wang, L. Wang, M. H. L. S. Wang, Y. Wang, Y. Wang, K. Warburton, D. Warner, M. Wascko, D. Waters, A. Watson, P. Weatherly, A. Weber, M. Weber, H. Wei, A. Weinstein, D. Wenman, M. Wetstein, A. White, L. H. Whitehead, D. Whittington, M. J. Wilking, C. Wilkinson, Z. Williams, F. Wilson, R. J. Wilson, J. Wolcott, T. Wongjirad, A. Wood, K. Wood, E. Worcester, M. Worcester, C. Wret, W. Wu, W. Wu, Y. Xiao, E. Yandel, G. Yang, K. Yang, S. Yang, T. Yang, A. Yankelevich, N. Yershov, K. Yonehara, T. Young, B. Yu, H. Yu, J. Yu, W. Yuan, R. Zaki, J. Zalesak, L. Zambelli, B. Zamorano, A. Zani, L. Zazueta, G. Zeit, G. P. Zeller, J. Zennamo, K. Zeug, C. Zhang, M. Zhao, E. Zhivun, G. Zhu, P. Zilberman, E. D. Zimmerman, M. Zito, S. Zucchelli, J. Zuklin, V. Zutshi, R. Zwaska and On behalf of the DUNE Collaborationadd Show full author list remove Hide full author list
Instruments 2021, 5(4), 31; https://doi.org/10.3390/instruments5040031 - 29 Sep 2021
Cited by 105 | Viewed by 15336
Abstract
The Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in [...] Read more.
The Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment consists of a near detector, sited close to the source of the beam, and a far detector, sited along the beam at a large distance. This document, the DUNE Near Detector Conceptual Design Report (CDR), describes the design of the DUNE near detector and the science program that drives the design and technology choices. The goals and requirements underlying the design, along with projected performance are given. It serves as a starting point for a more detailed design that will be described in future documents. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop