Machine Learning Monte Carlo Approaches and Statistical Physics Notions to Characterize Bacterial Species in Human Microbiota
Abstract
:1. Introduction
2. State of the Art
3. Methods
3.1. Database
3.2. Statistical Analyses
3.2.1. Average Occurrences
3.2.2. Relative Distances
3.2.3. Inside–Outside Distances
3.3. Monte Carlo Numerical Simulations
3.3.1. Machine Learning
3.3.2. Microcanonical Simulation
3.3.3. Canonical Simulation
3.3.4. Monte Carlo Statistical Analyses
4. Results and Discussion
4.1. Average Occurrence
4.2. Statistical Distance Notions
4.3. Monte Carlo Simulations
4.4. Species Rank Correlations
4.5. Overall Ranking
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, C.; Jackson, S.A. Machine Learning and Complex Biological Data. Genome Biol. 2019, 20, 76. [Google Scholar] [CrossRef] [PubMed]
- Valdes, A.M.; Walter, J.; Segal, E.; Spector, T.D. Role of the Gut Microbiota in Nutrition and Health. BMJ 2018, 361, k2179. [Google Scholar] [CrossRef] [PubMed]
- Hou, K.; Wu, Z.-X.; Chen, X.-Y.; Wang, J.-Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in Health and Diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Rooks, M.G.; Garrett, W.S. Gut Microbiota, Metabolites and Host Immunity. Nat. Rev. Immunol. 2016, 16, 341–352. [Google Scholar] [CrossRef]
- Maciel-Fiuza, M.F.; Muller, G.C.; Campos, D.M.S.; do Socorro Silva Costa, P.; Peruzzo, J.; Bonamigo, R.R.; Veit, T.; Vianna, F.S.L. Role of Gut Microbiota in Infectious and Inflammatory Diseases. Front. Microbiol. 2023, 14, 1098386. [Google Scholar] [CrossRef]
- Milani, C.; Ticinesi, A.; Gerritsen, J.; Nouvenne, A.; Andrea Lugli, G.; Mancabelli, L.; Turroni, F.; Duranti, S.; Mangifesta, M.; Viappiani, A.; et al. Gut Microbiota Composition and Clostridium Difficile Infection in Hospitalized Elderly Individuals: A Metagenomic Study. Sci. Rep. 2016, 6, 25945. [Google Scholar] [CrossRef]
- Mancabelli, L.; Milani, C.; Lugli, G.A.; Turroni, F.; Mangifesta, M.; Viappiani, A.; Ticinesi, A.; Nouvenne, A.; Meschi, T.; Van Sinderen, D.; et al. Unveiling the Gut Microbiota Composition and Functionality Associated with Constipation through Metagenomic Analyses. Sci. Rep. 2017, 7, 9879. [Google Scholar] [CrossRef]
- Wensel, C.R.; Pluznick, J.L.; Salzberg, S.L.; Sears, C.L. Next-Generation Sequencing: Insights to Advance Clinical Investigations of the Microbiome. J. Clin. Investig. 2022, 132, e154944. [Google Scholar] [CrossRef]
- Gao, B.; Chi, L.; Zhu, Y.; Shi, X.; Tu, P.; Li, B.; Yin, J.; Gao, N.; Shen, W.; Schnabl, B. An Introduction to next Generation Sequencing Bioinformatic Analysis in Gut Microbiome Studies. Biomolecules 2021, 11, 530. [Google Scholar] [CrossRef]
- Robert, C.P.; Casella, G. Monte Carlo Statistical Methods, 2nd ed.; Springer texts in statistics; Springer New York: New York, NY, USA, 2004; ISBN 9781475741452/1475741456. [Google Scholar]
- Manly, B.F.J. Randomization, Bootstrap and Monte Carlo Methods in Biology; Chapman and Hall/CRC: Boca Raton, FL, USA, 2018; ISBN 9781315273075. [Google Scholar]
- Montepietra, D.; Bellingeri, M.; Ross, A.M.; Scotognella, F.; Cassi, D. Modelling Photosystem i as a Complex Interacting Network: Modelling the Photosynthetic System i as Complex Interacting Network. J. R. Soc. Interface 2020, 17, 20200813. [Google Scholar] [CrossRef]
- Soldaat, L.L.; Pannekoek, J.; Verweij, R.J.T.; van Turnhout, C.A.M.; van Strien, A.J. A Monte Carlo Method to Account for Sampling Error in Multi-Species Indicators. Ecol. Indic. 2017, 81, 340–347. [Google Scholar] [CrossRef]
- Newman, M.E.J.; Ziff, R.M. Efficient Monte Carlo Algorithm and High-Precision Results for Percolation. Phys. Rev. Lett. 2000, 85, 4104–4107. [Google Scholar] [CrossRef] [PubMed]
- Nizam, N.I.; Ochoa, M.; Smith, J.T.; Gao, S.; Intes, X. Monte Carlo-Based Data Generation for Efficient Deep Learning Reconstruction of Macroscopic Diffuse Optical Tomography and Topography Applications. J. Biomed. Opt. 2022, 27, 083016. [Google Scholar] [CrossRef] [PubMed]
- Huang, K. Statistical Mechanics, 2nd ed.; Wiley India Pvt. Limited: Hoboken, NJ, USA, 2008. [Google Scholar]
- O’reilly, C.; Mills, S.; Rea, M.C.; Lavelle, A.; Ghosh, S.; Hill, C.; Ross, R.P. Interplay between Inflammatory Bowel Disease Therapeutics and the Gut Microbiome Reveals Opportunities for Novel Treatment Approaches. Microbiome Res. Rep. 2023, 2, 35. [Google Scholar] [CrossRef]
- Ruiz-Saavedra, S.; Zapico, A.; González, S.; Salazar, N.; de los Reyes-Gavilán, C.G. Role of the Intestinal Microbiota and Diet in the Onset and Progression of Colorectal and Breast Cancers and the Interconnection between Both Types of Tumours. Microbiome Res. Rep. 2024, 3, 6. [Google Scholar] [CrossRef]
- Chen, A.T.; Wu, X.; Ye, G.; Li, W. Editorial: Machine Learning and Deep Learning Applications in Pathogenic Microbiome Research. Front. Cell Infect. Microbiol. 2024, 14, 1429197. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, X.; He, X.; Jin, Y.; Cao, Y.; Zhan, X.; Griffin, C.H.; Gragnoli, C.; Wu, R. A Behavioral Model for Mapping the Genetic Architecture of Gut-Microbiota Networks. Gut Microbes 2021, 13, 1820847. [Google Scholar] [CrossRef]
- Mancabelli, L.; Milani, C.; De Biase, R.; Bocchio, F.; Fontana, F.; Lugli, G.A.; Alessandri, G.; Tarracchini, C.; Viappiani, A.; De Conto, F.; et al. Taxonomic and Metabolic Development of the Human Gut Microbiome across Life Stages: A Worldwide Metagenomic Investigation. mSystems 2024, 9, e0129423. [Google Scholar] [CrossRef]
- Milani, C.; Lugli, G.A.; Fontana, F.; Mancabelli, L.; Alessandri, G.; Longhi, G.; Anzalone, R.; Viappiani, A.; Turroni, F.; van Sinderen, D.; et al. METAnnotatorX2: A Comprehensive Tool for Deep and Shallow Metagenomic Data Set Analyses. mSystems 2021, 6, e0058321. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 Guidelines on Physical Activity and Sedentary Behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Lugli, G.A.; Mancabelli, L.; Milani, C.; Fontana, F.; Tarracchini, C.; Alessandri, G.; van Sinderen, D.; Turroni, F.; Ventura, M. Comprehensive Insights from Composition to Functional Microbe-Based Biodiversity of the Infant Human Gut Microbiota. NPJ Biofilms Microbiomes 2023, 9, 25. [Google Scholar] [CrossRef] [PubMed]
- Jordan, M.I.; Mitchell, T.M. Machine Learning: Trends, Perspectives, and Prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, R.Y.; Kroese, D.P. The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2004; ISBN 978-0-387-20815-5. [Google Scholar]
- Barbu, A.; Zhu, S.-C. Monte Carlo Methods; Textbook; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Pearson, K. VII. Note on Regression and Inheritance in the Case of Two Parents. Proc. R. Soc. Lond. 1895, 58, 240–242. [Google Scholar] [CrossRef]
- Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, Stability and Resilience of the Human Gut Microbiota. Nature 2012, 489, 220–230. [Google Scholar] [CrossRef]
- Consortium, H.M.P. Structure, Function and Diversity of the Healthy Human Microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef]
- Watson, P.F.; Petrie, A. Method Agreement Analysis: A Review of Correct Methodology. Theriogenology 2010, 73, 1167–1179. [Google Scholar] [CrossRef]
- Ranganathan, P.; Pramesh, C.; Aggarwal, R. Common Pitfalls in Statistical Analysis: Measures of Agreement. Perspect. Clin. Res. 2017, 8, 187–191. [Google Scholar] [CrossRef]
Strategy | Acronym | Formula | Meaning | |
---|---|---|---|---|
Average weighted occurrence | AWO | of indicates the relative abundance of species in sample ; is the total number of samples of group . | Weighted abundance of a species in a group. | |
Average binary occurrence | ABO | of indicates the presence of species in sample ; is the total number of samples of group . | Binary abundance of a species in a group, commonly called ‘species prevalence’. | |
Relative weighted distance | RWD | is the average weighted occurrence within group ; is the average weighted occurrence among all samples. | Relative deviation of the average weighted abundance of a species in the group from the overall mean. | |
Relative binary distance | RBD | is the average binary occurrence within group ; is the average binary occurrence among all samples. | Relative deviation of the average binary abundance of a species in the group from the overall mean. | |
Inside–outside weighted distance | IOWD | is the average weighted occurrence of species within group ; is the average weighted occurrence of species outside group . | Difference between the average weighted abundance of a species within and outside a group. | |
Inside–outside binary distance | IOBD | is the average occurrence of species within group ; is the average occurrence of species outside group . | Difference between the average binary abundance of a species within and outside a group. | |
Microcanonical Monte Carlo | MM | within group of the randomized matrix, is the average binary occurrence within group , is the Kronecker delta function for which , and the total number of simulations. | Evaluates the probability to have a species within a group by permuting its binary occurrence. | |
Canonical Monte Carlo | CM | within group of the randomized matrix, is the average binary occurrence within group , is the Kronecker delta function for which , and the total number of simulations. | Evaluates the probability to have a species within a group by sorting the binary occurrence at random. |
G1 | G2 | G3 | G4 | ||||
---|---|---|---|---|---|---|---|
Bifidobacterium longum | 0.73 | Bacteroides unknown_species | 0.98 | Blautia unknown_species | 0.99 | Blautia unknown_species | 0.98 |
Escherichia coli | 0.65 | Blautia unknown_species | 0.98 | Ruminococcus unknown_species | 0.98 | Ruminococcus unknown_species | 0.98 |
Blautia unknown_species | 0.61 | Ruminococcus unknown_species | 0.97 | Clostridium unknown_species | 0.97 | Eubacterium unknown_species | 0.96 |
Clostridium unknown_species | 0.61 | Clostridium unknown_species | 0.96 | Eubacterium unknown_species | 0.97 | Clostridium unknown_species | 0.96 |
Bacteroides unknown_species | 0.61 | Bacteroides uniformis | 0.94 | Roseburia unknown_species | 0.96 | Faecalibacterium unknown_species | 0.95 |
Ruminococcus unknown_species | 0.58 | Eubacterium unknown_species | 0.94 | Faecalibacterium prausnitzii | 0.96 | Roseburia unknown_species | 0.94 |
Bacteroides uniformis | 0.57 | Roseburia unknown_species | 0.93 | Faecalibacterium unknown_species | 0.96 | Faecalibacterium prausnitzii | 0.94 |
Blautia wexlerae | 0.57 | Faecalibacterium unknown_species | 0.92 | Eubacterium rectale | 0.93 | Enterocloster unknown_species | 0.9 |
Flavonifractor plautii | 0.54 | Faecalibacterium prausnitzii | 0.92 | Bacteroides unknown_species | 0.93 | Bacteroides uniformis | 0.88 |
Ruminococcus gnavus | 0.51 | Blautia wexlerae | 0.91 | Enterocloster unknown_species | 0.91 | Bacteroides unknown_species | 0.88 |
ABO | AWO | RBD | RWD | IOBD | IOWD | MM | CM |
---|---|---|---|---|---|---|---|
Bifidobacterium longum | Bifidobacterium longum | Methylobacterium unknown_species | Microbacterium oleivorans | Bifidobacterium breve | Bifidobacterium longum | Bifidobacterium longum | Bifidobacterium longum |
Escherichia coli | Escherichia coli | Cutibacterium avidum | Neisseria meningitidis | Bifidobacterium longum | Escherichia coli | Escherichia coli | Escherichia coli |
Blautia unknown_species | Bifidobacterium breve | Vibrio harveyi | Rhizobium daejeonense | Erysipelatoclostridium ramosum | Bifidobacterium breve | Ruminococcus gnavus | Ruminococcus gnavus |
Clostridium unknown_species | Bifidobacterium bifidum | Actinomyces urogenitalis | Rubrobacter unknown_species | Bifidobacterium bifidum | Bifidobacterium bifidum | Bifidobacterium unknown_species | Bifidobacterium unknown_species |
Bacteroides unknown_species | Bacteroides uniformis | Staphylococcus hominis | Scandinavium goeteborgense | Veillonella parvula | Bacteroides fragilis | Bifidobacterium breve | Bifidobacterium breve |
Ruminococcus unknown_species | Bacteroides fragilis | Nocardia nova | Serratia nematodiphila | Ruminococcus gnavus | Veillonella parvula | Bifidobacterium bifidum | Bifidobacterium bifidum |
Bacteroides uniformis | Phocaeicola dorei | Acinetobacter lwoffii | Acidovorax oryzae | Veillonella unknown_species | Ruminococcus gnavus | Bifidobacterium pseudocatenulatum | Erysipelatoclostridium ramosum |
Blautia wexlerae | Blautia wexlerae | Streptococcus peroris | Cloacibacterium normanense | Enterococcus faecalis | Enterococcus faecalis | Erysipelatoclostridium ramosum | Eggerthella lenta |
Flavonifractor plautii | Ruminococcus gnavus | Azoarcus communis | Frigoribacterium unknown_species | Clostridium innocuum | Bifidobacterium pseudocatenulatum | Eggerthella lenta | Veillonella parvula |
Ruminococcus gnavus | Bifidobacterium pseudocatenulatum | Acidovorax oryzae | Gleimia unknown_species | Veillonella atypica | Phocaeicola dorei | Veillonella parvula | Clostridium innocuum |
Bifidobacterium unknown_species | Prevotella copri | Mycolicibacterium elephantis | Herbaspirillum huttiense | Eggerthella lenta | Parabacteroides distasonis | Clostridium innocuum | Enterocloster bolteae |
Eubacterium unknown_species | Veillonella parvula | Serratia liquefaciens | Afipia broomeae | Klebsiella michiganensis | Erysipelatoclostridium ramosum | Enterocloster bolteae | Veillonella unknown_species |
Phocaeicola vulgatus | Parabacteroides distasonis | Micromonospora endophytica | Aggregatibacter kilianii | Hungatella effluvii | Klebsiella pneumoniae | Veillonella unknown_species | Coprococcus phoceensis |
Bacteroides thetaiotaomicron | Enterococcus faecalis | Myxococcus xanthus | Agreia unknown_species | Haemophilus unknown_species | Staphylococcus epidermidis | Streptococcus unknown_species | Haemophilus parainfluenzae |
Bifidobacterium breve | Phocaeicola vulgatus | Micrococcus yunnanensis | Lysobacter enzymogenes | Lactobacillus rhamnosus | Bifidobacterium dentium | Coprococcus phoceensis | Hungatella effluvii |
Faecalibacterium unknown_species | Faecalibacterium unknown_species | Ralstonia pickettii | Mannheimia unknown_species | Enterocloster bolteae | Enterobacter hormaechei | Haemophilus parainfluenzae | Intestinibacter bartlettii |
Roseburia unknown_species | Anaerostipes hadrus | Metakosakonia unknown_species | Massilia unknown_species | Veillonella infantium | Blautia wexlerae | Hungatella effluvii | Enterococcus faecalis |
Faecalibacterium prausnitzii | Collinsella aerofaciens | Neisseria flavescens | Achromobacter insuavis | Haemophilus parainfluenzae | Haemophilus haemolyticus | Intestinibacter bartlettii | Veillonella atypica |
Enterocloster unknown_species | Bifidobacterium adolescentis | Streptomyces albidochromogenes | Alicycliphilus denitrificans | Coprococcus phoceensis | Haemophilus parainfluenzae | Enterococcus faecalis | Haemophilus unknown_species |
Phocaeicola dorei | Eubacterium rectale | Cutibacterium unknown_species | Micrococcus luteus | Sellimonas intestinalis | Veillonella atypica | Veillonella atypica | Phocaeicola sartorii |
G1 | G2 | ||||||||||||||||
ABO | AWO | RBD | RWD | IOBD | IOWD | MM | CM | ABO | AWO | RBD | RWD | IOBD | IOWD | MM | CM | ||
ABO | 50 | 33 | 0 | 0 | 13 | 21 | 13 | 12 | ABO | 50 | 30 | 0 | 0 | 37 | 25 | 50 | 50 |
AWO | 0 | 50 | 0 | 0 | 16 | 30 | 16 | 15 | AWO | 0 | 50 | 0 | 0 | 29 | 32 | 30 | 30 |
RBD | 0 | 0 | 50 | 5 | 0 | 0 | 0 | 0 | RBD | 0 | 0 | 50 | 37 | 0 | 0 | 0 | 0 |
RWD | 0 | 0 | 0 | 50 | 0 | 0 | 0 | 0 | RWD | 0 | 0 | 0 | 50 | 0 | 1 | 0 | 0 |
IOBD | 0 | 0 | 0 | 0 | 50 | 27 | 44 | 45 | IOBD | 0 | 0 | 0 | 0 | 50 | 31 | 37 | 37 |
IOWD | 0 | 0 | 0 | 0 | 0 | 50 | 27 | 26 | IOWD | 0 | 0 | 0 | 0 | 0 | 50 | 25 | 25 |
MM | 0 | 0 | 0 | 0 | 0 | 0 | 50 | 46 | MM | 0 | 0 | 0 | 0 | 0 | 0 | 50 | 50 |
CM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 50 | CM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 50 |
G3 | G4 | ||||||||||||||||
ABO | AWO | RBD | RWD | IOBD | IOWD | MM | CM | ABO | AWO | RBD | RWD | IOBD | IOWD | MM | CM | ||
ABO | 50 | 35 | 0 | 0 | 38 | 29 | 49 | 48 | ABO | 50 | 31 | 0 | 0 | 31 | 24 | 48 | 48 |
AWO | 0 | 50 | 0 | 0 | 27 | 34 | 34 | 34 | AWO | 0 | 50 | 0 | 0 | 21 | 28 | 29 | 29 |
RBD | 0 | 0 | 50 | 14 | 0 | 0 | 0 | 0 | RBD | 0 | 0 | 50 | 40 | 0 | 0 | 0 | 0 |
RWD | 0 | 0 | 0 | 50 | 0 | 0 | 0 | 0 | RWD | 0 | 0 | 0 | 50 | 0 | 0 | 0 | 0 |
IOBD | 0 | 0 | 0 | 0 | 50 | 32 | 39 | 40 | IOBD | 0 | 0 | 0 | 0 | 50 | 27 | 32 | 32 |
IOWD | 0 | 0 | 0 | 0 | 0 | 50 | 29 | 29 | IOWD | 0 | 0 | 0 | 0 | 0 | 50 | 25 | 25 |
MM | 0 | 0 | 0 | 0 | 0 | 0 | 50 | 49 | MM | 0 | 0 | 0 | 0 | 0 | 0 | 50 | 50 |
CM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 50 | CM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 50 |
Rank | G1 | G2 | G3 | G4 | ||||
---|---|---|---|---|---|---|---|---|
1 | Bifidobacterium longum | 75% | Bacteroides unknown_species | 62.5% | Faecalibacterium prausnitzii | 75% | Intestinimonas unknown_species | 63% |
2 | Bifidobacterium breve | 75% | Faecalibacterium prausnitzii | 62.5% | Faecalibacterium unknown_species | 75% | Faecalibacterium prausnitzii | 63% |
3 | Ruminococcus gnavus | 75% | Faecalibacterium unknown_species | 62.5% | Eubacterium rectale | 75% | Faecalibacterium unknown_species | 63% |
4 | Escherichia coli | 62.5% | Ruminococcus unknown_species | 62.5% | Eubacterium unknown_species | 75% | Ruminococcus unknown_species | 63% |
5 | Bifidobacterium bifidum | 62.5% | Bacteroides uniformis | 62.5% | Roseburia unknown_species | 75% | Bacteroides uniformis | 63% |
6 | Veillonella parvula | 62.5% | Eubacterium rectale | 62.5% | Roseburia inulinivorans | 75% | Gemmiger unknown_species | 63% |
7 | Enterococcus faecalis | 62.5% | Phocaeicola vulgatus | 62.5% | Blautia unknown_species | 63% | Blautia unknown_species | 50% |
8 | Erysipelatoclostridium ramosum | 50% | Blautia unknown_species | 50% | Ruminococcus unknown_species | 63% | Agathobaculum butyriciproducens | 50% |
9 | Veillonella atypica | 50% | Parabacteroides unknown_species | 50% | Lachnospira unknown_species | 63% | Eubacterium rectale | 50% |
10 | Haemophilus parainfluenzae | 50% | Gemmiger unknown_species | 50% | Gemmiger unknown_species | 63% | Eubacterium unknown_species | 50% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellingeri, M.; Mancabelli, L.; Milani, C.; Lugli, G.A.; Alfieri, R.; Turchetto, M.; Ventura, M.; Cassi, D. Machine Learning Monte Carlo Approaches and Statistical Physics Notions to Characterize Bacterial Species in Human Microbiota. Mach. Learn. Knowl. Extr. 2024, 6, 2375-2399. https://doi.org/10.3390/make6040117
Bellingeri M, Mancabelli L, Milani C, Lugli GA, Alfieri R, Turchetto M, Ventura M, Cassi D. Machine Learning Monte Carlo Approaches and Statistical Physics Notions to Characterize Bacterial Species in Human Microbiota. Machine Learning and Knowledge Extraction. 2024; 6(4):2375-2399. https://doi.org/10.3390/make6040117
Chicago/Turabian StyleBellingeri, Michele, Leonardo Mancabelli, Christian Milani, Gabriele Andrea Lugli, Roberto Alfieri, Massimiliano Turchetto, Marco Ventura, and Davide Cassi. 2024. "Machine Learning Monte Carlo Approaches and Statistical Physics Notions to Characterize Bacterial Species in Human Microbiota" Machine Learning and Knowledge Extraction 6, no. 4: 2375-2399. https://doi.org/10.3390/make6040117
APA StyleBellingeri, M., Mancabelli, L., Milani, C., Lugli, G. A., Alfieri, R., Turchetto, M., Ventura, M., & Cassi, D. (2024). Machine Learning Monte Carlo Approaches and Statistical Physics Notions to Characterize Bacterial Species in Human Microbiota. Machine Learning and Knowledge Extraction, 6(4), 2375-2399. https://doi.org/10.3390/make6040117