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Abstract: This paper presents an advanced modular modeling approach for vertical vibration analysis
of dynamic systems using the Generalized Receptance Coupling and Frequency-Based Substructuring
(GRCFBS) method. The focus is on a four-DoF half-vehicle model comprising three key subsystems:
front suspension, rear suspension, and the vehicle’s trimmed body. The proposed technique is de-
signed to predict dynamic responses in reconfigurable systems across various applications, including
automotive, robotics, mechanical machinery, and aerospace structures. By coupling the receptance
matrices (FRFs) of individual vehicle modules, the overall system receptance matrix is efficiently
derived in a disassembled configuration. Two generalized coupling methods, originally developed
by Jetmundsen and D.D. Klerk, are employed to determine the complete vehicle’s receptance matrix
from its subsystems. Validation is achieved by comparing the results with established methods,
such as direct solution and modal analysis, demonstrating high accuracy and reliability for complex
dynamic systems. This modular approach allows for the creation of reduced-order models focused
on key measurement points without the need for detailed system representation. The method offers
significant advantages in early-stage vehicle development, providing critical insights into system
vibration behavior.

Keywords: Generalized Receptance Coupling (GRC); Frequency-Based Substructuring (FBS); half-vehicle
model; modal analysis; dynamic response; receptance matrix; substructuring methods; reduced-order
modeling; vibration analysis; reconfigurable systems

1. Introduction

Accurately predicting the dynamic behavior of engineering systems, particularly in the
early development stages, remains a persistent challenge. Both numerical and experimental
methods have inherent limitations that impact their effectiveness in modeling real-world
systems. Numerical models offer flexibility but rely heavily on precise input data—such as
geometry, material properties, boundary conditions, and contact characteristics—that are
often difficult to obtain due to uncertainties. Conversely, experimental models provide a
more realistic perspective but face constraints in spatial resolution, particularly at critical
connection points, due to limited measurement capabilities. In the early stages of system
development, the absence of physical prototypes exacerbates these difficulties, making
both experimental validation and reliable numerical simulation challenging. Traditional
approaches often fall short in predicting dynamic performance without sufficient input
data or direct measurements. This highlights the need for a more modular, adaptable
methodology capable of addressing incomplete data while delivering reliable predictions
of system behavior. Frequency-Based Substructuring (FBS) has emerged as a powerful
solution by breaking down complex systems into smaller, manageable subsystems, each
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evaluated through receptance functions. This method allows for predicting the overall
system’s dynamic response by coupling the receptances of individual subsystems. FBS
is particularly beneficial for systems with multiple interchangeable modules, where a
limited number of reference points at subsystem interfaces serve as key excitation and
measurement locations. Additionally, strategically selected internal measurement points
within subsystems enhance the method’s analytical flexibility. A notable advantage of FBS
is its hybrid modeling capability, which combines numerical, experimental, and analytical
data. This hybrid approach facilitates the integration of subsystems from diverse sources,
ensuring accurate system-level predictions, even when data are incomplete or limited. For
instance, FBS enables system-level vibration analysis with minimal subsystem data, even
in the absence of detailed input data.

Integrating Generalized Receptance Coupling (GRC) with FBS extends dynamic mod-
eling to reconfigurable systems across various industries, including automotive, aerospace,
and robotics. In this study, the Generalized Receptance Coupling Frequency-Based Sub-
structuring (GRCFBS) method is applied to a half-vehicle system with four degrees of
freedom (DoF). This innovative approach focuses on the dynamic coupling of subsystems,
such as the front suspension, rear suspension, and trimmed body. By coupling the individ-
ual subsystem receptances, the receptance matrix of the entire system is derived, enabling
accurate dynamic predictions early in the design process without extensive physical proto-
typing or detailed input data. The effectiveness of this modular hybrid modeling approach
is validated by comparing it with well-established numerical methods, including direct
solution techniques and modal analysis. This study incorporates both Jetmundsen’s and
De Klerk’s Lagrange Multiplier Frequency-Based Substructuring (LM-FBS) approaches,
demonstrating how FBS can generate reduced-order models that maintain accuracy in
critical areas while capturing the overall dynamic behavior of the system.

Historically, the groundwork for dynamic system analysis using impedance functions
was laid by Bishop and Johnson (1960) [1] and later expanded by O’Hara (1961) [2], who
applied these techniques to complex mechanical structures. Ewins and Gleeson (1975) [3]
made significant contributions by deriving system parameters through Frequency Response
Functions (FRFs), advancing the evolution of FBS. Building on these foundational works,
Jetmundsen et al. (1980) [4] introduced a canonical form determining receptance of a system
in terms of subsystems’ receptance using FBS. In 2006, De Klerk et al. [5] introduced the
Lagrange Multiplier Frequency-Based Substructuring (LM-FBS) method, which provides
another canonical form allowing for indirect omission of certain FRFs at interface DoFs,
minimizing the influence of noisy data. Additionally, Lagrange multipliers, which represent
internal forces at connection points, can be obtained. This feature enhances LM-FBS’s value
in applications involving experimental FRF and requiring a reduction in noise uncertainty
at substructure interfaces.

Zhang et al. (2017) [6] explored the dynamic interactions between vehicle bodies
and subframes using FBS. His study explored the application of FBS to analyze the dy-
namic interactions between vehicle bodies and subframes. While the authors present
valuable insights, they acknowledge the limitations in accurately modeling full-vehicle
configurations due to the complexity of interactions and material properties. The work
indicates a need for more comprehensive models that incorporate various dynamic ef-
fects and subsystems, which are often oversimplified in traditional approaches. However,
Kang et al. (2019) [7] developed techniques for quantifying improvements in road noise
through inverse substructuring. The paper discusses techniques for quantifying road noise
improvements using inverse substructuring methods. However, the authors recognize
that current methodologies often rely on simplified vehicle models that do not reflect
real-world complexities. There is a clear need for more sophisticated full-vehicle mod-
els that can capture the intricacies of real driving conditions and their impact on NVH.
Hülsmann et al. (2020) [8] applied dynamic substructuring to electric vehicles (EVs), ad-
dressing NVH issues specific to electric drivetrains. In their research, the authors applied
dynamic substructuring techniques specifically for electric vehicles, focusing on NVH
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issues related to electric drivetrains. The study highlights that, while advancements have
been made, many existing models fail to account for the unique dynamic characteristics of
electric vehicles, such as those arising from their powertrain and weight distribution. There
is a gap in methodologies that adequately represent these dynamics in full-vehicle models.
Tsai (2019) [9] advanced methods for measuring rotational receptance, crucial for rotational
dynamics modeling. These developments reflect the growing utility of FBS, particularly for
applications demanding more precise dynamic modeling. Additional contributions include
Clontz and Taheri (2017) [10], who decoupled tire and suspension subsystems using FBS.
Their research explored the decoupling of tire and suspension subsystems using FBS. While
it provides insights into individual subsystem dynamics, it lacks a comprehensive approach
to integrating these subsystems into a full-vehicle model for NVH analysis. The authors
suggest that future work should focus on developing full-vehicle models that consider
the interactions between various subsystems more holistically. Voormeeren and Rixen
(2022) [11] examined the impact of measurement uncertainties on FBS outcomes. De Klerk,
Rixen, and Jong (2021) [12] refined FBS with new algorithms for enhanced robustness,
while Liu and Mir (2003) [13] explored hybrid approaches to vehicle axle noise prediction.
FBS has proven its versatility across industries. Li et al. (2021) [14] applied FBS to railway
vehicle dynamics, and Scheel and Sturzenegger (2020) [15] used it for satellite structural
analysis in aerospace. In robotics, Hou et al. (2022) [16] employed FBS for modular robotic
configurations, while Gebhardt et al. (2020) [17] applied it to wind turbine blade dynamics.
Further, Park et al. (2023) [18] explored FBS in ship hull vibration analysis, and Lee et al.
(2021) [19] demonstrated its relevance in civil engineering by analyzing large structures
like bridges.

Since the foundational contributions of Jetmundsen and D.D. Klerk [20], FBS and
receptance coupling methods have evolved considerably. Recent advancements include
Schmitz et al. (2022) [21], who introduced an advanced approach merging Receptance
Coupling Substructure Analysis (RCSA) with Bayesian machine learning for predicting
milling stability, and Smith et al. (2021) [22], who developed an improved receptance
matrix formulation that enhances precision for high-frequency dynamics and complex
boundary conditions. Hou et al. (2023) [23] developed a framework for predicting FRFs in
parameter-varying mechanical systems using generalized receptance coupling substructure
analysis. In their paper, the authors develop a Multi-Body Dynamics (MBD) model for a
full vehicle to analyze NVH. They note that, while their model improves upon traditional
methods, challenges remain in integrating nonlinear characteristics of subsystems and en-
suring accurate boundary conditions. This highlights the necessity for enhanced modeling
techniques that can account for the complexities of full-vehicle dynamics.

Ji et al. (2018) [24] introduced a refined RCSA method for predicting tool tip dynamics,
and De Klerk et al. (2021) [25] advanced FBS with algorithms that improve accuracy and
efficiency in subsystem coupling. Hamedi and Taheri [26] reviewed hybrid modeling and
modular substructuring using RCFBS, illustrating its effectiveness for vehicle noise and
vibration prediction. Additionally, Hamedi and Taheri (2024) [27] provided a comparison
of conventional modal analysis method suffering from mode truncation with the proposed
RCFBS method, especially when dealing with high-frequency dynamics. In contrast, the
RCFBS method provides greater accuracy when compared with numerical FEA and the
direct method because it captures all relevant modes by working directly in the frequency
domain, avoiding the truncation errors associated with modal analysis. This feature is
particularly useful in systems with flexible or distributed parameters.

Despite these advancements, the development of modular FBS methods for vehicle
dynamic modeling to study NVH performance, specifically for full-vehicle and half-vehicle
car models, remains incomplete. This study introduces a novel, modular, FBS-based vibra-
tional model for a half-vehicle, offering valuable insights during early development stages.
This approach is particularly effective for target setting and cascading, providing a flexible,
modular framework that emphasizes subsystem interactions and load paths for vibration
transfer, especially in scenarios where numerical FEA models and experimental tests are
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unavailable. This work demonstrates how GRCFBS can be employed to build efficient
reduced-order models to handle the complexities of full-vehicle systems, particularly the
interaction between subsystems like tire and suspensions.

This study introduces three key contributions:

1. Advancing modular applications in vehicle models: Building on recent FBS applica-
tions, we enhance the modular capabilities of vehicle modeling by integrating both
translational and rotational degrees of freedom (DoFs) for the vehicle body, enabling a
more comprehensive representation of dynamic responses. In contrast to earlier stud-
ies, which primarily focused on translational DoFs, this dual DoF approach provides
a holistic model of dynamic vehicle responses.

2. Improved computational efficiency through sparse matrix representation: Consoli-
dating substructures, like the front and rear suspensions, into a single module with
sparse matrix representation reduces computational complexity and model sensi-
tivity to noise, enhancing model reliability. This method minimizes off-diagonal
term inversions, reducing unnecessary computational load and preserving boundary
conditions.

3. Robust validation of receptance data for predictive accuracy: By employing receptance-
based FBS methods with both Jetmundsen’s and LM-FBS algorithms, this study vali-
dates the capability of reduced-order models to capture resonant and anti-resonant
behaviors critical for NVH studies.
While both algorithms yield identical results when substructures are analytically
determined, discrepancies may arise under experimental conditions. In Jetmund-
sen’s formula, the receptance or FRFs at the interface directly influence subsystem
coupling. The risk of noise propagation during experimental measurements arises
because interface FRFs are susceptible to external influences, leading to potential
inaccuracies. Conversely, the LM-FBS method mitigates these risks by managing the
influence of interface FRFs through the product of the full receptance matrix and the
Boolean matrix, thereby minimizing dependence on noisy data. Thus, for vehicle
modeling, the LM-FBS method is superior when substructure receptance is derived
from experimental measurements. This aspect is excluded from this study.

In summary, the GRCFBS approach demonstrates robust predictive accuracy for
vehicle vibration modeling by introducing reliable reduced-order models that are computa-
tionally efficient for dynamic system identification in the early stages of development.

2. Technical Framework
2.1. Overview of Receptance Coupling Using Frequency-Based Substructuring (FBS)

Accurately determining the receptance of an assembly system is critical for predicting
dynamic behavior in complex structural interactions. This framework provides a systematic
approach to ensure the precise characterization and effective coupling of subsystems [27].
The process begins by setting the dynamic analysis objectives and identifying key points
of interest, such as critical excitation and measurement points, which help define the
generalized coordinates and degrees of freedom (DoFs) at significant nodes. Following
this, the structure is segmented into distinct subsystems based on their dynamic properties,
including natural frequencies and boundary conditions. This segmentation allows for an
independent analysis of each subsystem prior to coupling.

The next step involves accurately modeling the connections between these subsys-
tems. Whether these connections are simple single-point, multi-point, or complex, such as
bushings, it is essential to account for their stiffness, damping, and kinematic relationships.
Once the connections are modeled, generalized coordinates and DoFs are allocated at both
the connection points and the internal points within each subsystem, focusing on modes
of motion that are essential for capturing the dynamic behavior. Receptance matrices for
the subsystems are then determined using a combination of experimental data, numerical
simulations such as Finite Element Analysis (FEA), or analytical methods tailored to the
complexity of the subsystem.
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To improve the accuracy of the experimental receptance data, filtering techniques
are applied to the Frequency Response Function (FRF) data to remove noise. The next
step is to select an appropriate coupling method based on the specific requirements of the
analysis. This could involve direct receptance coupling, modal-based coupling, or more
advanced methods, such as Lagrange Multiplier Frequency-Based Substructuring (LM-FBS)
or the Jetmundsen method. Once the coupling method is selected, the direct and cross
components of the receptance matrix are calculated, ensuring equilibrium and continuity
across the subsystems. Finally, these components are combined to construct the complete
assembly system’s receptance matrix, which encapsulates the dynamic characteristics of
the entire structure and predicts its response to external excitations.

The Receptance Coupling Frequency-Based Substructuring (RCFBS) method offers sev-
eral advantages for dynamic analysis, particularly when compared to traditional methods
such as the modal method. FBS-focused methods are preferable to conventional methods
in scenarios where the systems are modular or reconfigurable and in cases where detailed
FEM or MBD models are unavailable or impractical. This method also allows for combining
FRF data from various sources, such as physical tests, numerical simulations, and analytical
models, which is not feasible with conventional approaches. RCFBS enables reduced-order
modeling by focusing on critical points of interest—namely connection points and essential
internal nodes—thereby reducing computational complexity while maintaining high ac-
curacy in these significant areas. In addition, unlike traditional modal methods that are
based on mode truncation, RCFBS captures the full dynamic behavior of substructures
by utilizing full receptance matrices, particularly improving accuracy in higher-frequency
ranges with subsystems with distributed parameters.

Another key advantage of RCFBS is its flexibility, as the method allows for deriv-
ing receptance matrices from both experimental and numerical data, such as FEA. This
versatility makes it suitable for handling complex interactions or boundary conditions.
This also provides an advantage when physical or numerical measurements at connection
points are inaccessible, as the method can still predict the dynamic response at these points.
Additionally, the direct use of receptance data ensures accurate representation of dynamic
interactions, especially at higher frequencies where subsystem interactions are more com-
plex. RCFBS also integrates advanced coupling techniques, such as those developed by
Jetmundsen and D.D. Klerk, further enhancing its applicability for dynamic modeling in
systems with multiple substructures and degrees of freedom.

2.2. Half-Vehicle Model

The half-car model serves as a classic example in dynamic analysis, especially for
evaluating the effects of suspension systems on ride performance. The suspension subsys-
tem plays a critical role in ensuring vehicle comfort and stability. Figure 1 illustrates the
schematic of the half-car model, which includes a trimmed body with mass ms and mo-
ment of inertia ICG. The body interfaces with the front and rear suspensions at designated
mounting points, represented by generalized coordinates u1 and u2. These coordinates
are used in the model instead of pitch angle and bounce degrees of freedom (DoFs) of the
center of gravity, as they better reflect the connection points.

The front and rear suspensions are modeled with linear springs and dampers, charac-
terized by stiffness coefficients Ks f and Ksr and damping coefficients Cs f and Csr, respec-
tively. Unsprung masses are represented by lumped masses mu f and mur at the wheel
centers, with generalized coordinates u3 and u4. The wheel–ground contact is modeled
using tire characteristics with stiffness Kt f and Ktr and damping coefficients Ct f and Ctr.
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Figure 1. Half-car model.

The angular and vertical displacements of the trimmed body are depicted in Figure 1,
with vertical coordinates representing displacements at both ends of the vehicle. Analyti-
cal development of the mass, damping, and stiffness matrices for this model is possible.
Consequently, the system features four generalized coordinates corresponding to vertical
displacement DoFs. The vehicle is positioned on a flat surface and excited at key points to
measure displacements at connection and internal points, like modal experimental mea-
surements.

Like using an anti-roll bar to model roll stiffness, many vehicle models incorporate an
anti-pitch bar or equivalent torsional spring mechanism to account for pitch stiffness [27].
This approach, as supported in various vehicle dynamics texts [Jazar and Marzbani, 2024],
allows for the model to capture pitch resistance by adding a torsional stiffness element,
simulating the vehicle’s response to dynamic forces without introducing additional dynam-
ics due to the mass of a physical component. The torsional stiffness (kθ) of the anti-pitch
bar defines resistance against pitch rotation. Pitch stiffness in a vehicle depends on vari-
ous factors, including suspension geometry, underbody stiffness, subframe rigidity, and
components like anti-pitch bars or torsional mechanisms.

The challenge lies in determining whether subsystems, such as the front and rear
suspensions along with the trimmed body, can be measured in free-free conditions to
obtain their Frequency Response Functions (FRFs). This approach simplifies access to
measurement points and allows for the coupling of subsystem responses and FRFs to
derive the overall car receptance matrix.

While the half-vehicle model can be solved using direct methods (exact solution),
modal methods, and determinant methods, this paper focuses on solving it through re-
ceptance coupling with Frequency-Based Substructuring (FBS). The first step involves
decomposing the system into substructures. In this case, the vehicle is divided into three
subsystems: the front suspension, rear suspension, and trimmed body, as shown in Figure 2.
To enhance model reliability, the top mounts of the suspensions are replaced by a dummy
mass md connected to the upper body with a rigid link. Consequently, the vehicle system
dynamics can be resolved by coupling the dynamics of the three subsystems: A, B1, and B2.
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To streamline the coupling process, a reduced-order substructuring approach is em-
ployed, merging the front and rear suspensions into a single subsystem B. This reduces
the problem from coupling three subsystems to coupling two subsystems, simplifying the
mathematical model and formulation. Figure 3 illustrates this condensed substructuring
scheme, showing the trimmed body as substructure A and the combined suspension sub-
system as substructure B. Generalized coordinates and forces at the connection points are
also depicted.
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2.3. FBS-Based Generalized Receptance Coupling (GRC) Technique

The Generalized Receptance Coupling (GRC) method is an advanced extension of
traditional receptance coupling techniques, designed to handle systems composed of multi-
ple interconnected substructures. Rooted in Frequency-Based Substructuring (FBS), this
method enables the accurate prediction of system receptances in complex assemblies of N
subsystems. In receptance coupling, the boundary conditions of displacement compatibility
and force equilibrium at connection interfaces are crucial. While rigid connections are often
assumed for simplicity, interface flexibility can also be incorporated. This section outlines
two prominent GRC methods: the Lagrange Multiplier Frequency-Based Substructuring
(LM-FBS) method and the Jetmundsen algorithm. Although a basic two-substructure
coupling example is used to illustrate these methods, both approaches can be extended to
more complex assemblies.

2.3.1. Generalized Coupling Method Using LM-FBS

The LM-FBS method employs Lagrange multipliers to introduce internal forces at
connection points between substructures, ensuring compatibility and force equilibrium
at these interfaces. The core formulation of the method revolves around the computation
of the coupled receptance matrix, which is obtained by incorporating the dynamics of
individual substructures along with any interface compliance. The general formula for the
coupled receptance matrix is given by [5,12]:

[H]AB = [H]− [H][B]T
(
[B][H][B]T + [H]bush

)−1
[B][H] (1)

where [B] is the Boolean matrix that ensures compatibility of the displacements at the
connection interfaces. [H]AB is the receptance matrix of the assembled system, and [H]
contains the uncoupled receptance matrix of the substructures. [H bush] accounts for the
compliance of the interface (if applicable), which can be modeled as follows:

[Hbush] =
(
[K] + jω[C]− ω2[M]

)−1

bush
(2)
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This formulation accounts for interface compliance, which is modeled as a form of
compatibility relaxation, accurately capturing the dynamic behavior of interconnected sub-
systems. The interface forces, λ, that balance the substructures are given by the following:

{λ} =
(
[B][H][B]T + [Hbush]

)−1
[B][H]{F} (3)

For a system with two substructures—substructure A (trimmed body) with two DoFs
and substructure B (platform with front and rear suspensions) with four DoFs—the 6 × 6
uncoupled receptance matrix is structured as follows:

[H]6×6 =


[
HA

AA

]
2×2

0

0
[

HB
BB

]
4×4

 (4)

where
[
HA

AA

]
is the internal receptance matrix of substructure A, with both internal and

connection DoFs.
[
HB

BB

]
represents the internal receptance matrix of substructure B. The

receptance matrix of substructures A and B is strctured as follows:

[
HA

AA

]
=

[
HA

11 HA
12

HA
21 HA

22

]
,

[
HB

BB

]
==


HB

33 HB
34 HB

31b HB
32b

HB
43 HB

44 HB
41b HB

42b
HB

1b3 HB
1b4 HB

1b1b HB
1b2b

HB
2b3 HB

2b4 HB
2b1 HB

2b2b

 =


HB

33 0 HB
31b 0

0 HB
44 0 HB

42b
HB

1b3 0 HB
1b1b 0

0 HB
2b4 0 HB

2b2b

 (5)

Since there is no internal coupling between the front and rear suspension subsystems,
several off-diagonal elements are zero:

HB
34 = HB

43 = H
B
32b = HB

2b3 = HB
41b = HB

1b4 = HB
1b2b = HB

2b1b = 0 (6)

The Boolean matrix [B], which ensures displacement compatibility, is constructed
as follows: 1 0 0 0 −1 0

0 1 0 0 0 −1︸ ︷︷ ︸
[B]





uA
1a

uA
2a

uB
3

uB
4

uB
1b

uB
2b


= [0] (7)

This matrix enforces the conditions uA
1a = uB

1b and uA
2a = uB

2b, ensuring displacement
compatibility at the connection points. Substituting [H] and [B] into the equations of
motion, the resulting coupled receptance matrix [H]AB describes the dynamic response of
the system. The displacement–force relationship for the assembled system can be expressed
as follows: 

u1a
u2a
u3
u4
u1b
u2b



AB

= [H]AB



F1a
F2a
F3
F4
F1b
F2b



AB

(8)

where uA
1a and uA

2a are the displacements at the connection points of substructure A and,
similarly, uB

1b and uB
2b are the corresponding displacements at the connection points of
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substructure B. F1a, F2a, F1b, and F2b are the forces applied at these connection points, and
F3 and F4 are the internal forces within substructure B.

In this system of equations, two of the six equations are redundant, as they describe
identical conditions for the displacements at the connection points, ensuring continuity
between substructures A and B. Specifically, the compatibility equations ensure that the
displacements are continuous across the interface, maintaining the physical condition of
the coupled system.

Thus, the reduced system reflects the overall dynamic behavior of the interconnected
subsystems, with the coupled receptance matrix [H]AB encapsulating the effects of both
internal dynamics and interface coupling.

2.3.2. Jetmundsen Algorithm

The Jetmundsen algorithm computes the coupled receptance matrix by utilizing the
receptance matrices of subsystems, considering both internal and connection degrees of
freedom (DoFs) and involving the total receptance at the connection points. For a system
composed of two substructures, A and B, the equations of motion for the decoupled
substructures are given as follows:

{uA} = [HA]{FA}, {uB} = [HB]{FB} (9)

where [HA] and [HB] are the receptance matrices of subsystems A and B, respectively.
When coupling substructures A and B, Jetmundsen’s general algorithm simplifies to the
following form [4]:

[H]AB =

[
[HAA] [0]
[0] [HBB]

]
−

[ [
HAc

]
−[H Bc]

][
[HA

cc] + [HB
cc]

]−1
[
[HAc]
−[H Bc]

]T

(10)

In this expression,

• AA indicates that substructure A retains both internal and interface DoFs, whereas
substructure B contains only internal DoFs. This differs from earlier coupling methods
where both substructures retained generalized coordinates at the interface.

•
[
HA

cc
]

and
[
HB

cc
]

represent the receptance matrices at the connection points between
the two substructures.

The term
[
[HA

cc] + [HB
cc]

]−1
dominates the computational cost but remains relatively

small in size, making the Jetmundsen algorithm computationally efficient. This matrix
represents the total receptance at the connection points, assuming a rigid interface. As
the size of this matrix is significantly smaller than the subsystem receptance matrices, the
computational load is reduced. If interface flexibility is present, such as a bushing, its

receptance can be incorporated as
[
HA

cc + HB
cc + [Hbush]

]−1
, further refining the coupled

system’s dynamic response. In a simplified case with a rigid interface, the full coupled
receptance matrix is computed as follows:

[H]AB =


HA

11 HA
12 0 0

HA
21 HA

22 0 0
0 0 HB

33 0
0 0 0 HB

44



−


HA

11 HA
12

HA
21 HA

22
−HB

31 0
0 −HB

42

[[ HA
11 HA

12
HA

21 HA
22

]
+

[
HB

11 HB
12

HB
21 HB

22

]]−1


HA

11 HA
12

HA
21 HA

22
−HB

31 0
0 −HB

42


T (11)
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By calculating the coupled receptance matrix [H]AB, the dynamic response of the
assembled system can be determined. The relationship between the displacements and
applied forces at the generalized coordinates is given by the following:

u1
u2
u3
u4


AB

=


HAB

11 HAB
12 HAB

13 HAB
14

HAB
21 HAB

22 HAB
23 HAB

24
HAB

31 HAB
32 HAB

33 HAB
34

HAB
41 HAB

42 HAB
43 HAB

44




F1
F2
F3
F4


AB

(12)

Here, [H]AB represents the full receptance matrix of the assembled system. The
subscripts A and B correspond to the upper substructure (trimmed body) and the lower
substructure (platform consisting of front and rear unsprung mass elements), respectively.
These receptance matrices are typically measured under free-free boundary conditions to
ensure accurate subsystem characterization. By leveraging this approach, the Jetmundsen
algorithm allows for an efficient and accurate prediction of the dynamic response of coupled
systems, such as vehicle subsystems.

2.4. Substructuring and Determining Receptance Functions for Subsystems

In dynamic system analysis, especially for complex multi-body systems such as vehi-
cles, the behavior of individual subsystems contributes significantly to the overall dynamic
response. Substructuring techniques allow for the isolation of these subsystems, enabling
a detailed analysis of each component’s dynamic characteristics. By calculating the re-
ceptance functions—also referred to as frequency response functions (FRFs)—of each
subsystem, we can assess their individual dynamic behaviors and, later, couple them to pre-
dict the entire system’s response. This approach is particularly advantageous in reducing
the computational complexity of the system while maintaining accuracy, as the subsys-
tems can be modeled using various methods, including analytical derivation, numerical
techniques like Finite Element Analysis (FEA), or experimental measurements.

The equations outlined in Equations (1) and (10) present the mathematical framework
for determining the coupled system receptances by utilizing the receptance matrices of
individual subsystems. In this study, a four DoF half-car model is employed, where the
trimmed body (representing the sprung mass) and the front and rear unsprung masses
are treated as two degrees of freedom (DoF) systems. This allows for the analytical deriva-
tion of their respective receptance components. However, for more complex subsystems,
receptance components are typically determined through numerical methods, such as
Finite Element Analysis (FEA) or Multi-Body Dynamics (MBD), or experimentally using
Frequency Response Function (FRF) measurements.

2.4.1. Front Suspension Receptance Derivation

In this section, we focus on deriving the receptance functions for the front suspension
subsystem, which plays a critical role in defining the vehicle’s dynamic response. The
suspension connects the vehicle body to the unsprung mass and dictates how external
forces—such as road disturbances—are transmitted to the body. By deriving the receptance
functions, we can evaluate the front suspension’s behavior under dynamic loading and
its contribution to the overall system response. For the front suspension subsystem, the
equations of motion are expressed as follows:md

..
uB

1b + Cs f

( .
uB

1b −
.
uB

3

)
+ Ks f

(
uB

1b − uB
3
)
= FB

1b

mu f
..
uB

3 + Cs f

( .
uB

3 − .
uB

1b

)
+ Ks f

(
uB

3 − uB
1b
)
= FB

3

(13)

where md is the dummy mass added at the suspension top, mu f is the unsprung mass of
the front suspension, and Cs f and Ks f are the damping and stiffness of the suspension,
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respectively. By applying the Laplace transform and assuming an excitation force applied at
the connection point of the front suspension, the following receptance functions are derived:

HB
31 =

UB
3

FB
1

, HB
11 =

UB
1

FB
1

(14)

Similarly, applying the excitation force FB
3 and measuring displacements at the rear

suspension coordinates uB
2 and uB

4 , we obtain the following:

HB
33 =

UB
3

FB
3

, HB
13 =

UB
1

FB
3

(15)

As expected from the reciprocity principle, it holds that HB
31 = HB

13. The corresponding
analytical expressions for these receptance components are the following:

HB
11 =

p1

p1 p2 − p2
3

, HB
13 = HB

31 =
p3

p1 p2 − p2
3

, HB
33 =

p2

p1 p2 − p2
3

(16)

where the parameters p1, p2, and p3 are defined as follows:

p1 = −mu f ω2 +
(

Ks f + Kt f

)
+

(
Cs f + Ct f

)
ωj

p2 = −mdω2 + Cs f ωj + Ks f
p3 = Cs fωj + Ks f

(17)

2.4.2. Rear Suspension Receptance Derivation

In this section, we extend the analysis to the rear suspension subsystem, which,
along with the front suspension, governs the vehicle’s ride dynamics and stability. The
rear suspension (substructure B2, part of substructure B) is responsible for managing the
dynamic loads acting on the rear of the vehicle, particularly in response to road surface
variations and vehicle acceleration or braking. Deriving the receptance functions for the
rear suspension allows for us to understand its influence on the overall system’s dynamic
response, complementing the front suspension’s role. For the rear suspension, the equations
of motion are similarly expressed as follows:md

..
uB

2b + Csr

( .
uB

2 − .
uB

4

)
+ Ks f

(
uB

2 − uB
4
)
= FB

2

mur
..
uB

4 + Csr

( .
uB

4 − .
uB

2

)
+ Ksr

(
uB

4 − uB
2
)
= FB

4

(18)

Here, Csr and Ksr represent the damping and stiffness of the rear suspension, while
mur is the unsprung mass. The derived receptance components are the following:

HB
22 =

q1

q1q2 − q2
3

, HB
24 = HB

42 =
q3

q1q2 − q2
3

, HB
44 =

q2

q1q2 − q2
3

(19)

with the parameters q1, q2, q3 defined as follows:

q1 = −murω2 + (Ksr + Ktr) + (Csr + Ctr)ωj
q2 = −mdω2 + Csrωj + Ksr

q3 = Csrωj + Ksr

(20)

Thus, Equations (5), (6), and (19) provide the receptance matrix components for
substructure B, encompassing both front and rear suspension subsystems.

2.4.3. Trimmed Body (Substructure A) Receptance Derivation

Next, we turn to substructure A, representing the vehicle’s trimmed body, often
referred to as the sprung mass. The trimmed body plays a central role in determining
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overall ride comfort and stability, as it directly interacts with both the front and rear
suspension subsystems. A key aspect of this analysis is the body’s rotational stiffness in the
pitch direction, which governs its resistance to rotational motion about the center of gravity.
This stiffness is crucial for accurately capturing the vehicle’s pitch dynamics and modeling
its response to vertical forces at the suspension interfaces.

In this analysis, both vertical (heave) and rotational (pitch) modes of motion are con-
sidered to provide a comprehensive understanding of how forces transmitted through
the suspension influence the body structure’s overall motion. The vertical (heave) motion
describes the upward and downward movement of the vehicle body, while the rotational
(pitch) motion involves rotation about the vehicle’s lateral axis. To model these dynamics,
Newton’s second law of motion is applied to both the translational and rotational move-
ments. In the vertical (heave) direction, the summation of forces acting on the vehicle
body is equal to the mass times the acceleration of the center of gravity. Similarly, for
rotational (pitch) motion, the summation of moments about the center of gravity is equal
to the product of the body’s mass moment of inertia and its angular acceleration. These
governing principles can be mathematically expressed as follows:{

∑ FA
y = ms

..
ys

∑ MA
CG = ICG

..
θs

(21)

where ms is the mass of the sprung body, ICG is the mass moment of inertia at the center
of gravity, and θs is the angular displacement. The generalized coordinates uA

1 and uA
2

correspond to displacements at the front and rear suspension mounting points. The
transformation to generalized coordinates is given by the following:

θs =
uA

1 − uA
2

L
, ys=

Lr

L
uA

1 +
L f

L
uA

2 (22)

where L f and Lr are the distances from the center of gravity to the front and rear suspen-
sions, respectively. Assuming an excitation force FA

2 applied at the rear connection point
and combining Equations (21) and (22), the equations of motion become the following:

FA
2 = ms

(
Lr
L

..
uA

1 +
L f
L

..
uA

2

)
−FA

2 Lr − kθ

(
uA

1 −uA
2

L

)
= ICG

(
..
uA

1 − ..
uA

2
L

) (23)

Transforming the equations to the frequency domain and deriving uA
2 and uA

1 as
functions of FA

2 , the displacement receptance components HA
22, and HA

12 are determined
as follows:

HA
22 =

uA
2

FA
2
= −

(
1

msω2 − Lr
2

kθ−ICGω2

)
HA

12 =
uA

1
FA

2
= −

(
1

msω2 +
L f Lr

kθ−ICGω2

) (24)

Following a similar approach for an excitation force FA
1 , we obtain the following:

HA
11 =

uA
1

FA
1
= −

(
1

msω2 −
L f

2

kA
θ −ICGω2

)
HA

21 =
uA

2
FA

1
= −

(
1

msω2 +
L f Lr

kθ−ICGω2

) (25)

These equations satisfy the reciprocity principle, as HA
21 = HA

12.
The torsional spring kθ provides a simplified method for introducing pitch resistance

without altering the rigid body dynamics of the vehicle. The upper body remains rigid,
and the torsional spring merely captures the pitch stiffness without compromising the
overall assumption of a rigid body. In this approach, pitch stiffness has been modeled with
a torsional spring between the front and rear body attachments using two massless rigid
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beams connected by a torsional spring to account for the effects of pitch stiffness similar to
modeling roll stiffness, as demonstrated in Figure 1.

2.5. Validation: Correlation Using Classical Methods

Validation of dynamic system models is essential to ensure the accuracy and reliability
of the predictions made by the model. This section describes the methods used for vali-
dating the model’s receptance coupling matrix, employing classical techniques including
dynamic system modeling, determinant-based methods, and modal analysis.

2.5.1. Dynamic System Modeling and Direct Solution Approach

In this subsection, the direct method (exact solution) for determining the receptance
coupling matrix is examined. This approach involves formulating the system equations of
motion using classical techniques and solving them in the Laplace domain. We specifically
employ the Lagrange method, which is well-suited for complex dynamic systems with
multiple degrees of freedom due to its energy-based formulation.

The Lagrange method is selected for its effectiveness in deriving equations of motion by
utilizing the principles of energy. This method is advantageous when dealing with systems
that have multiple interacting components and generalized coordinates. By expressing
the system’s kinetic and potential energies in terms of these coordinates, the equations
of motion can be derived in a systematic way. For the vehicle system with generalized
coordinates u1, u2, u3, u4, the kinetic energy T, damping D, and potential energy V are
defined as follows:

T = 1
2

{
ms

(
Lr

.
u1+L f

.
u2

L

)2
+ ICG

( .
u1−

.
u2

L

)2
+ mu f

.
u3

2
+ mur

.
u4

2
}

D = 1
2

{
Cs f

( .
u1 −

.
u3

)2
+ Csr

( .
u2 −

.
u4

)2
+ Ct f

.
u3

2
+ Ctr

.
u4

2
}

V = 1
2

{
Ks f (u1 − u3)

2 + Ksr(u2 − u4)
2 + Kt f u3

2 + Ktru4
2 +kθ

(
u1−u2

L

)2
} (26)

The equations of motion are derived from the Lagrange equations:

dy
dx

(
∂T
∂

.
ui

)
− ∂T

∂ui
+

∂V
∂ui

+
∂D
∂

.
ui

= Qi (27)

where ui and Qi are generalized coordinates and generalized external force, respectively.
Equations (26) and (27) lead to the following:

α1
..
u1 + α2

..
u2 + Cs f

( .
u1 −

.
u3

)
+ Ks f (u1 − u3) +

kθ
L2 (u1 − u2) = F1

α2
..
u1 + α1

..
u2 + Cs f

( .
u2 −

.
u4

)
+ Ks f (u2 − u4)− kθ

L2 (u1 − u2) = F2

mu f
..
u3 +

(
Ks f + Kt f

)
u3 +

(
Cs f + Ct f

) .
u3−Ks f u1−Cs f

.
u1 = F3

mur
..
u4 + (Ksr + Ktr)u4 +

(
Cs f + Ct f

) .
u4−Ksru2−Csr

.
u2 = F3

(28)

The matrix form of the equations of motion is the following:
α1 α2 0 0
α2 α1 0 0
0 0 mu f 0
0 0 0 mur




..
u1..
u2..
u3..
u4

+


Cs f 0 −Cs f 0
0 Csr 0 −Csr
−Cs f 0 Cs f + Ct f 0
0 −Csr 0 Csr + Ctr




.
u1.
u2.
u3.
u4


+


Ks f +

kθ
L2 − kθ

L2 −Ks f 0
− kθ

L2 Ksr +
kθ
L2 0 −Ksr

−Ks f 0 Ks f + Kt f 0
0 −Ksr 0 Ksr + Ktr




u1
u2
u3
u4

 =


F1
F2
F3
F4


(29)



Vibration 2024, 7 1076

Assuming harmonic excitation forces, the steady-state response can be obtained. The
linear equations of motion for the assembly system AB are expressed as follows:

uAB
1

uAB
2

uAB
3

uAB
4

 = [HAB]


F1
F2
F3
F4

 (30)

The receptance matrix [HAB] of the assembly system AB is determined as follows:

[HAB] =


HAB

11 HAB
12 HAB

13 HAB
14

HAB
21 HAB

22 HAB
23 HAB

24
HAB

31 HAB
32 HAB

33 HAB
34

HAB
41 HAB

42 HAB
43 HAB

44

 =
[
−ω2[MAB] + jω[CAB] + [KAB]

]−1
. (31)

where [M AB], [C AB], and [K AB] represent the mass, damping, and stiffness matrices of
the assembly system, respectively. This receptance matrix captures the system’s dynamic
response characteristics and is crucial for analyzing and predicting the vibrational behavior
of the coupled system.

2.5.2. Determinant-Based Method

Although this method is not a standalone approach, it serves as a computational tech-
nique within the broader framework of calculating the receptance matrix. The determinant-
based method is a classical technique often employed in multi-degree-of-freedom systems
to compute individual elements of the Frequency Response Function (FRF) matrix [1].
While it shares some similarities with matrix inversion techniques, this method leverages
Cramer’s Rule and Cofactor Expansion, which offer distinct advantages in certain appli-
cations. Specifically, the method calculates the FRF for a given degree of freedom as the
ratio of two determinants: the determinant of a modified dynamic stiffness matrix (with
the i-th row and j-th column removed) and the determinant of the full dynamic stiffness
matrix. In contrast to a general matrix inversion approach, which computes all elements of
the inverse matrix simultaneously, the determinant-based method focuses on individual
matrix elements, offering a more targeted and computationally efficient solution, especially
when FRFs for specific degrees of freedom are required. This makes it particularly useful
when inverting large matrices is impractical or unnecessary for the entire system, and it
allows for a deeper understanding of the contributions of specific subsystems to the overall
dynamic behavior.

For a system subjected to harmonic excitation, where both the external force and the
response oscillate at the same frequency ω, the equations of motion can be simplified
and analyzed in the frequency domain. The FRF matrix element Hij (ω), representing
the receptance between the i-th displacement (output) and the j-th force (input), can be
calculated as follows:

Hij =
det

(
∆ij

)
det(∆)

(−1)i+j (32)

where ∆ is the full dynamic stiffness matrix:

∆ = −ω2[M] + iω[C] + [K] (33)

and ∆ij is the matrix obtained by removing the i-th column and j-th row from ∆ while
keeping the remaining elements unchanged. To derive the matrix ∆, we consider the homo-
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geneous algebraic equations obtained by taking the Laplace transform of the equations of
motion. For the vehicle system, these equations are the following:

(
−α1ω2 + Cs fωj + Ks f +

kθ
L2

)
U1 −

(
α2ω2 + kθ

L2

)
U2 −

(
Ks f + Cs fωj

)
U3 = F1

−
(

α2ω2 + kθ
L2

)
U1 +

(
−α1ω2 + Csrωj + Ksr +

kθ
L2

)
U2 − (Ksr + Csrωj)U4 = F2(

−mu f ω2 +
(

Ks f + Kt f

)
+

(
Cs f + Ct f

)
ωj

)
U3 −

(
Ks f + Cs fωj

)
U1 = F3(

−murω2 + (Ksr + Ktr) + (Csr + Ctr)ωj
)

U4 − (Ksr + Csrωj)U2 = F4

(34)

From these equations, the coefficient matrix ∆ is constructed as follows:

[∆] =


∆11 ∆12 ∆13 ∆14
∆21 ∆22 ∆23 ∆24
∆31 ∆32 ∆33 ∆34
∆41 ∆42 ∆43 ∆44

 (35)

where
∆11 =

(
−α1ω2 + Cs fωj + Ks f +

kθ
L2

)
∆12 = ∆21 = −(α2ω2 + kθ

L2 )

∆13 = ∆31 = −
(

Ks f + Cs fωj
)

,

∆22 =
(
−α1ω2 + Csrωj + Ksr +

kθ
L2

)
,

∆33 = −mu f ω2 +
(

Ks f + Kt f

)
+

(
Cs f + Ct f

)
ωj,

∆24 = ∆42 = (Ksr + Csrωj),
∆44 = −murω2 + (Ksr + Ktr) + (Csr + Ctr)ωj

∆14 = ∆41 = ∆23 = ∆32 = ∆43 = ∆43 = 0

(36)

Thus, the determinant-based method simplifies the problem of finding the FRFs to
computing the determinants of the dynamic stiffness matrix and its modifications for
specific degrees of freedom. This classical technique is often preferred when a more direct
inversion method is impractical or when FRFs are needed for specific degrees of freedom.

2.5.3. Modal Analysis and Subsystem Response Prediction

Modal analysis is a powerful framework for predicting the dynamic behavior of struc-
tures by decomposing complex systems into their fundamental modes of vibration. This
approach is particularly useful for analyzing the receptance matrix, which can be expressed
using modal superposition. The receptance matrix Hij(ω), representing the relationship
between the i-th displacement (degree of freedom) and the j-th force, is calculated as [28]:

Hij(ω) =
Xi

Fj
=

n

∑
r=1

ϕirϕjr

(ωr2 −ω2) + 2jξrωrω
(37)

where ϕir and ϕjr are the mass-normalized mode shapes corresponding to the i-th and j-th
degrees of freedom, respectively. ωr and ξr are the natural frequency and the damping
ratio of the r-th mode.

The double-subscript notation (e.g., ϕir and ϕjr) refers to the mode shapes at specific
degrees of freedom. The subscript i represents the degree of freedom where the response is
measured, and j represents the degree of freedom where the force is applied.

To compute the mode shapes and corresponding parameters, the following equations
are used:

ϕr =
1√
mr
ψr, ξr =

cr

2
√

krmr
(38)
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where mr, kr, and cr are the mass, stiffness, and damping coefficients associated with the
r-th mode, respectively. These coefficients are calculated as follows:

mr = [ψr]
T[M][ψr], kr = [ψr]

T[K][ψr], cr = [ψr]
T[C][ψr] (39)

While this method is efficient and effective for analyzing large systems, one signif-
icant limitation is mode truncation, where only a subset of modes is considered due to
computational constraints or practical considerations. Truncating the modes can lead to
inaccuracies in the predicted system response, particularly if the neglected modes have
a significant impact on the system’s dynamic behavior. Regarding damping, the modal
approach presented here assumes general damping, though proportional damping is often
employed in practical applications. Proportional damping assumes that the damping ma-
trix [C] is a linear combination of the mass [M] and stiffness [K] matrices, which simplifies
the analysis by ensuring that the mode shapes remain uncoupled. However, the half-car
model analyzed in this study is approximately proportionally damped but not strictly
so. There are small deviations from proportional damping, which could introduce minor
discrepancies in the predicted dynamic response. Despite these deviations, the system
behaves in a manner close to proportion, making the modal approach still applicable with
a reasonable degree of accuracy.

3. Numerical Results and Validation

To evaluate the accuracy of the Frequency-Based Substructuring (FBS) method com-
pared to classical techniques, a MATLAB (Version (2023b)) code was developed. This code
calculates the receptance components, focusing on both magnitude and phase behaviors to
provide a comprehensive assessment. Table 1 summarizes the input parameters used for
the vehicle model.

Table 1. Input parameters used for modeling.

Parameters Value Unit (SI)

CoG to FR wheel center, Lf 1.5 m

Wheelbase, L 3.2 m

Sprung mass, ms 900 kg

Moment of inertia, ICG 768 kgm2

FR/RR unsprung mass, muf/mur 90/80 kg

FR/RR tire damping, Ctf/Ctr 10/10 Ns/m

FR/RR suspension stiffness, ksf/ksr 23,000/18,000 N/m

FR/RR tire stiffness, ktf/ktr 280,000/250,000 N/m

FR/RR damping coefficient 100/90 Ns/m

Trimmed body angular stiffness, kA
θ 1000 Nm/rad

Dummy mass, md 0.1 kg

Figures 4–13 present the comparison of predicted receptance (FRF) components ob-
tained using the FBS method with those obtained using classical theoretical models. Both
magnitude and phase responses are calculated across a frequency range that encompasses
the system’s natural frequencies. The magnitude response exhibits resonance peaks at
natural frequencies and anti-resonance dips, while the phase response transitions smoothly
across these frequencies. Resonance peaks indicate frequencies where the system exhibits
significant vibrational response. Anti-resonances are points where the system’s response
is minimal due to destructive interference. Comparing the magnitude of receptance com-
ponents using the FBS method with that using theoretical models highlights how well
the FBS captures resonant frequencies. Near resonances, the phase typically transitions
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through −180◦, reflecting significant lag in the system’s response relative to the input force.
The phase plot provides insight into how the system’s response evolves with frequency,
indicating how the system behaves in terms of timing and damping effects. Near anti-
resonances, the phase may shift back toward 0◦, showing a more in-phase relationship
between the input and output.
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ural frequencies and anti-resonance dips, while the phase response transitions smoothly 
across these frequencies. Resonance peaks indicate frequencies where the system exhibits 
significant vibrational response. Anti-resonances are points where the system’s response 
is minimal due to destructive interference. Comparing the magnitude of receptance com-
ponents using the FBS method with that using theoretical models highlights how well the 
FBS captures resonant frequencies. Near resonances, the phase typically transitions 
through −180°, reflecting significant lag in the system’s response relative to the input force. 
The phase plot provides insight into how the system’s response evolves with frequency, 
indicating how the system behaves in terms of timing and damping effects. Near anti-
resonances, the phase may shift back toward 0°, showing a more in-phase relationship 
between the input and output. 

It is worth noting that the natural frequency ranges for pitch and bounce modes, as 
defined in the chassis handbook [29], provide a reference for validating the values in this 
analysis. 
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Figure 13. Magnitude and phase graph: receptance component of H12.

It is worth noting that the natural frequency ranges for pitch and bounce modes, as
defined in the chassis handbook [29], provide a reference for validating the values in this
analysis.

3.1. Receptance Component H11 of the Coupled Car Model

The magnitude response of H11, as shown in Figure 4, reveals distinct resonance
peaks at approximately 1 Hz and 2 Hz, corresponding to the trimmed body bounce and
pitch modes, respectively. Beyond these frequencies, the response diminishes significantly,
indicating that higher-frequency modes contribute minimally to the system’s dynamics.
The dominance of the body dynamics is evident, as higher-frequency modes, such as
unsprung mass dynamics, have negligible contributions to the system’s overall response.
The phase response transitions smoothly across the resonance frequencies, displaying a
phase shift near these resonances. A notable drop toward −180◦ occurs near the second
resonance, which aligns with the expected dynamic behavior of coupled systems. Both
the LM-FBS and Jetmundsen methods demonstrate strong agreement with the classical
theoretical models, confirming their reliability in predicting dynamic behavior.

3.2. Direct Receptance Component H22 of the Coupled Car Model

Similarly, the magnitude and phase analysis of H22 follows a pattern consistent with
H11, with resonance peaks appearing around 1 Hz and 2 Hz. This component describes the
rear interface response due to excitation applied at the front interface of the trimmed body
and front suspension. The differences between H11 and H22, particularly in amplitude, can
be attributed to variations in front and rear suspension properties and mass distribution.
The phase plot for H22 shows smooth transitions across the resonance frequencies, with
a gradual decrease toward −180◦. This behavior is consistent with dynamic systems
subjected to damping and inertia effects. Both the LM-FBS and Jetmundsen methods
align well with the exact and determinant-based methods, confirming their robustness for
predicting coupled system dynamics (Figure 5).

3.3. Direct Receptance Component H33 and H44 of the Coupled Car Model

Figures 6 and 7 illustrate the magnitude and phase responses of H33 and H44, cor-
responding to the front and rear unsprung masses, respectively. The magnitude plots
show clear resonance peaks around 9.2 Hz and 9.3 Hz, corresponding to the unsprung
mass bounce modes, with minimal interaction from the trimmed body dynamics. This
behavior is consistent across all methods, with both the LM-FBS and Jetmundsen-FBS
methods providing accurate predictions of the system’s dynamics. The phase response
shows a sharp transition near these unsprung mass modes, dropping to −180◦ and re-
maining constant beyond these frequencies. This reflects the dominant contribution of the
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unsprung masses to the overall system behavior. The consistency of the results across all
methods confirms the effectiveness of the FBS-based coupling techniques in capturing both
magnitude and phase behavior accurately, particularly for systems dominated by unsprung
mass dynamics.

3.4. Cross-Receptance Component H13, H24, H12 of the Coupled Car Model

Figures 8 and 9 illustrate the cross-receptance components H31 and H13, which
represent the interaction between the sprung and unsprung masses. These components
exhibit good agreement across all methods. Resonance peaks appear around the natural
frequencies of the trimmed body, while anti-resonance dips between these frequencies
indicate the system’s dynamic filtering effect. Both the LM-FBS and Jetmundsen algorithms
align closely with the exact, determinant-based, and modal methods in capturing the
magnitude behavior, particularly in both resonance and anti-resonance regions. The results
show strong agreement between the LM-FBS and Jetmundsen algorithms and the exact
and determinant-based methods, especially in the phase behavior for the first and second
modes. These modes correspond to the bounce and pitch of the sprung mass, with natural
frequencies of 1 Hz and 1.6 Hz, respectively. However, deviations are observed in the third
and fourth modes, which relate to the bounce modes of the front and rear unsprung masses
at 9.2 Hz and 9.3 Hz. The proximity of these two frequencies likely contributes to the phase
discrepancies observed in the modal approach. As these unsprung mass bounce modes
are very close in frequency, the modal method struggles to differentiate them, leading to
slight phase inaccuracies. A similar pattern is observed for components H24 and H42 in
Figures 10 and 11. For components H21 and H12, as shown in Figures 12 and 13, reciprocity
holds, and both the magnitude and phase plots reflect typical dynamic behavior for a
four-DoF system. Resonances occur around 1 Hz and 1.6 Hz, corresponding to the system’s
natural modes. The magnitude plots show distinct peaks at these frequencies, while
the phase transitions smoothly across the resonances. All methods—including the exact,
determinant, modal, LM-FBS, and Jetmundsen-FBS approaches—yield nearly identical
results for these components, demonstrating the robustness of the receptance data. This
consistency across methods confirms the accuracy of these coupling techniques in capturing
the system’s dynamic response, particularly in both resonant and anti-resonant behaviors.
The results presented through the receptance analysis provide valuable insights into the
dynamic behavior of the system, demonstrating a high degree of coherence across the
methods used. The receptance components highlight the consistency and accuracy of the
receptance coupling method using FBS, which are established based on the algorithms of
LM-FBS and Jetmundsen when compared to classical theoretical approaches, validating
their applicability in predicting system dynamics.

4. Conclusions

This study presents an effective application of the Frequency-Based Substructuring
(FBS) method combined with the generalized receptance approach to predict the dynamic
response of reconfigurable systems. The results from the receptance coupling methodology
show strong agreement with theoretical models, demonstrating the robustness of the
approach in capturing both resonant and anti-resonant behaviors of the system. Key
findings indicate that the receptance coupling method reliably predicts both the magnitude
and phase behavior across a wide frequency range, particularly at resonant and anti-
resonant points. Resonance peaks in the magnitude response, observed at the system’s
natural frequencies, were accompanied by significant phase shifts approaching −180◦,
which is consistent with theoretical predictions for dynamic systems with low damping.
The agreement between the predicted and theoretical natural frequencies at these resonance
peaks further validates the method’s accuracy. In contrast, the anti-resonance regions, where
phase shifted back toward 0◦, demonstrated minimal displacement due to destructive
interference, further corroborating the expected dynamic behavior.
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For the specific vehicle parameters used in this simulation, the largest resonance
peaks in magnitude were observed in the first and second modes, corresponding to the
trimmed body bounce and pitch motions and reflected in the receptance component H12.
The smallest peaks were associated with the third and fourth modes, linked to the un-
sprung mass bounce motions. Validation of cross-receptance terms (e.g., H12 and H21)
further supports the accuracy of the proposed method, confirming the system’s linear and
reciprocal behavior. The smooth phase transitions observed in these terms reinforce the
method’s consistency in predicting dynamic interactions between subsystems.

Numerically, the generalized receptance coupling approach matched closely with the
results obtained from classical methods for the same system configuration. The agreement
in natural frequencies and resonance peaks underscores the method’s practical applicability,
particularly for automotive and electric vehicle (EV) applications, where reliable dynamic
predictions are essential in the early development phases.

Looking ahead, the receptance coupling method demonstrated in this study can be
extended from a half-car model to more complex dynamic systems with flexible couplings
and multiple substructures. Its capability to predict both resonant and anti-resonant
behaviors, phase lags, and system response magnitudes positions this method as a valuable
tool for addressing challenges in noise, vibration, and harshness (NVH) analysis. This is
particularly relevant in the context of EV systems, where this methodology can be applied
to a broader range of frequencies and more intricate structural configurations, including
systems with higher damping or more complex boundary conditions.
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