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Abstract: The application of hyperspectral data in machine learning models can contribute to the
rapid and accurate determination of caffeine content in coffee beans. This study aimed to identify the
machine learning algorithm with the best performance for predicting caffeine content and to find
input data for these models that can improve the accuracy of these algorithms. The coffee beans were
harvested one year after the seedlings were planted. The fresh beans were taken to the spectroscopy
laboratory (Laspec) at the Federal University of Mato Grosso do Sul, Chapadao do Sul campus, for
spectral evaluation using a spectroradiometer. For the analysis, the dried coffee beans were ground
and sieved for the quantification of caffeine, which was carried out using a liquid chromatograph on
the Waters Acquity 1100 series UPLC system, with an automatic sample injector. The spectral data of
the beans, as well as the spectral data of the roasted and ground coffee, were analyzed using machine
learning (ML) algorithms to predict caffeine content. Four databases were used as input: the spectral
information of the bean (CG), the spectral information of the bean with additional clone information
(CG+C), the spectral information of the bean after roasting and grinding (CGRG) and the spectral
information of the bean after roasting and grinding with additional clone information (CGRG+C).
The caffeine content was used as an output to be predicted. Each database was subjected to different
machine learning models: artificial neural networks (ANNSs), decision tree (DT), linear regression
(LR), M5P, and random forest (RF) algorithms. Pearson’s correlation coefficient, mean absolute error,
and root mean square error were tested as model accuracy metrics. The support vector machine
algorithm showed the best accuracy in predicting caffeine content when using hyperspectral data
from roasted and ground coffee beans. This performance was significantly improved when clone
information was included, allowing for an even more accurate analysis.

Keywords: support vector machine; spectroscopy; secondary metabolites

1. Introduction

Coffee is one of the most popular beverages worldwide due to its high commercial
value and flavor, which is influenced by its chemical composition and the treatment the
grains receive from the moment they are harvested until they are processed [1]. It is a
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commodity with high economic value in the world, second only to oil in terms of commer-
cialized value; coffee cultivation is a major contributor to the socioeconomic development
of developing tropical countries, with Brazil being among the world’s largest producers of
the bean [2]. In this way, coffee is a traditional and widely consumed drink in Brazil, being
crucial in the global and Brazilian economy [3].

Among the variables used to assess coffee quality are caffeine, trigonelline and chloro-
genic acids [4]. Caffeine is said to be one of the components of coffee beans that is responsi-
ble for the bitterness and stimulating effect of the drink that makes it so well known [5]. In
addition, caffeine is considered an important indicator of coffee quality, and its quantifi-
cation is commonly established by chemical methods, which tend to be time-consuming,
destructive and expensive, making a rapid determination of this content unfeasible [6].

Caffeine in plants is a type of secondary metabolite belonging to the alkaloid class.
These low molecular weight compounds act as bioactive signaling molecules, providing
protection against stressors. As a result, they contribute to strengthening the plant’s de-
fenses, in addition to promoting vegetative and/or reproductive growth, thus improving
yield [7] and acting as a natural defense, helping the plant to protect itself against herbi-
vores and pests, due to its toxic properties in high concentrations. The accumulation and
concentration of caffeine are influenced by genetic and environmental factors, occurring
predominantly in leaves, seeds and fruits of plants, such as the coffee plant [3].

One of the most widely used methods for determining caffeine is through liquid chro-
matography, which is used to analyze coffee beans and beverages, following protocols that
have high sensitivity, precision and accuracy. However, it is a highly complex methodology
that requires lengthy and expensive sample preparation (cleaning) [1,8-10]. This creates
an opportunity for proposing new, faster methods of caffeine content determination. The
use of hyperspectral information is an innovative approach in the food sector that enables
rapid analysis of food materials [1].

Obtaining hyperspectral information can provide several advantages, such as quickly
and conveniently collecting spectral information from a large number of coffee samples in a
short period [11]. Hyperspectral data combine the non-destructive and fast nature of NIRS
with highly detailed information on the heterogeneity of the sample being studied [12].
Therefore, the use of sensors that provide hyperspectral information is a valuable tool for
predicting caffeine in coffee beans, helping to improve both the efficiency of the process and
the quality of the final product. However, the amount of data generated by these sensors is
extensive, making it difficult to use traditional data analysis for such a prediction.

The use of machine learning (ML) can efficiently overcome the problem of the large
volume of data generated by the sensor and the lack of direct correlation between the
spectral data of the coffee beans and the caffeine content. ML techniques are a data analysis
process used to make complex decisions. It represents a branch of artificial intelligence (AI)
that allows computers to “learn” from the available data [13]. The use of spectral data in
conjunction with machine learning techniques to predict caffeine content in plants, such as
coffee, is an innovative and efficient approach that is not well researched. The integration
of these techniques has not yet been proposed in an efficient way and using different ML
models with different input configurations seeking the best performances. Additional input
information to the spectral variables, such as information from the different genotypes
under analysis, should be tested, since the accuracy of caffeine prediction can be variable
depending on the genetic material information. This is because there may be differences in
caffeine content between genetic materials, and this behavior can be captured by machine
learning models and have an impact on the models’ ability to learn and generalize.

In light of the above, the application of hyperspectral data in machine learning models
can contribute to the rapid and accurate determination of the caffeine content in coffee beans.
This study aimed to identify the machine learning algorithm with the best performance for
predicting caffeine content and to find input data for these models that can improve the
accuracy of these algorithms.
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2. Materials and Methods
2.1. Experiment

The experiment was carried out at Laranjeiras’ Farm, in the city of Currais-PI. Samples
of beans from 15 coffee cultivars (Conilon and Arabica) were evaluated in a randomized
block design with four replications. Coffee was grown using drip irrigation. The soil at
the site of the experiment was characterized as physiochemical through analysis of the soil
sampled in the experiment (Table 1). The soil was characterized as a typical dystrophic
yellow latosol (SIBCS 3° edition).

Table 1. Chemical and granulometric characterization of the experiment area.

Depth pH Ca Mg Al H+ Al K SB T P \' M MO Sand Silt Clay
m HO, = cmol; dm3 —memmmmmmmmmmmmeeeean mgdm3 - Yommmmmmm g kg

0-0.20 6.1 351 055 0.00 2.31 0.25 431 662 2491 65.1 0.0 153 851 5 144
0.20-0.40 49 056 015 0.10 1.82 0.05 076 257 423 29.5 11.6 40 823 9 167
0.40-0.60 49 037 013 0.10 4.62 0.05 054 516 190 10.5 15.6 14 770 18 213

Reflectance factor

pH = hydrogen potential; P = phosphorus; K = potassium; Ca = calcium; Mg = magnesium; Al = aluminum;
H + Al = hydrogen + aluminum; SB = sum of bases; T = cation exchange capacity at pH 7.0; m = aluminum
saturation; V = base saturation; MO = organic matter.

2.2. Spectral Analysis

The coffee beans were harvested one year after the seedlings were planted. The fresh
beans were taken to the spectroscopy laboratory (Laspec) at the Federal University of
Mato Grosso do Sul, Chapadao do Sul campus, for spectral evaluation using a spectro-
radiometer (FieldSpec 4 HRes, Analytical Spectral Devices, Boulder, CO, USA), which
provides spectral information in the 350 to 2500 nm range. The spectral data were used
to form the spectral signature of the coffee beans for each clone evaluated (Figure 1). The
hyperspectral data were preprocessed using a Savitzky-Golay (SG) smoothing filter and
mean normalization, as suggested by [14]. Each coffee sample was subdivided into six
samples for spectral analysis.

Clone
BRS1213
—BRS1216
—BRS160
—BRS22125
—BRS3210
—BRS33836
—C106
—C12
—C201
—C205
—C301
—C302
—C303
—C306
C309

2000 2500

1000

Wavgogngth (nm)
Figure 1. Hyperspectral curve of coffee beans from each clone evaluated.

After the spectral evaluation of the grains, they were sent for milling and medium
roasting, following strict recommendations for this procedure. The roasts were carried out
using the reference parameters of the SCA (Specialty Coffee Association) methodology.

According to the methodology, roasting must be standardized to guarantee the correct
sensory evaluation of the batches, without penalizing or rewarding a batch due to the
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Reflectance factor

roasting standard. The samples were roasted in the Carmomagq Laboratto sample roaster
designed to analyze specialty coffees. The roaster uses gas heating, with precise control of
gas flow and airflow, allowing independent adjustments. This level of control is necessary
to ensure a consistent roasting pattern. After the roasting rest, the samples were subjected
to grinding. We used the Mahlkonig EK43 grinder, known for its precision and consistency,
guaranteeing a uniform grind suitable for tasting. The samples were then returned to
Laspec for a second hyperspectral evaluation of the grains after they had been roasted and
ground (Figure 2).

°

Clone
BRS1213
—BRS1216
—BRS160
—BRS22125
—BRS3210
—BRS33836
—C106
—C12
—C201
—C205
—C301
—C302
—C303
—C306
—C309

1000 2000 2500

Wavelg;ﬂgth (nm)
Figure 2. Hyperspectral curve of ground and roasted coffee beans from each clone evaluated.

2.3. Determination of Caffeine

For the analysis, the dried coffee beans were ground and sieved. An aliquot of
0.05 g of the samples was added to test tubes, after which 0.2 g of magnesium oxide was
added. A total of 10 mL of Milli-Q water was added to the test tubes, which were then
ultrasonicated for 5 min. The tubes were then placed in a water bath at 100 °C for 20 min
and homogenized every 5 min. After this period, Milli-Q water was added to complete
the total 20 mL volume. Then, 1.0 mL of each sample was filtered through a syringe with
a 0.2 pm filter and transferred to 1.5 mL vials before injection into an ultra-performance
liquid chromatography (UPLC) system. Aliquots of 1.0 uL. were used for direct injection
into the equipment. Each sample was analyzed three times.

Caffeine content was quantified using a Waters Acquity 1100 series UPLC liquid
chromatograph with an automatic sample injector. The analyses were carried out using a
1.7 um BEH C18 reverse phase column (internal diameter 2.1 mm (i.d.) £ 50 mm). A binary
linear gradient system was used, with Milli-Q) water as solvent A and acetonitrile as solvent
B as mobile phases. The initial gradient was 99% for solvent A and 1.0% for solvent B from
0 to 1 min, 50% A and 50% B from 1 to 1.01 min, 5% A and 95% B from 1.01 to 1.10 min,
returning to 99% A and 1% B at 1.10 min and remaining like this until 3 min, which was the
run time for each sample. The mobile phase flow rate was 0.4 mL min~! and the column
temperature during the run was 40 °C.

Caffeine was detected using a Waters photodiode array detector, set to a wavelength
of 254 nm. Commercially purchased standards were used to detect caffeine at the following
concentrations: 0.002; 0.01; 0.03; 0.04; 0.05; 0.08; 0.1;0.16 and 4.0 mg mL~L. The qualitative
and quantitative identity of the peak was confirmed by comparing the retention times and
UV spectra of the individual compounds using the standard addition method.
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All the solvents used in the chromatographic analysis were HPLC grade, and before
use, they were vacuum filtered through a 0.2 um pore membrane and then degassed in a
vacuum system using ultrasound. The water used was distilled and then ultra-purified in
a Milli-Q system before being degassed.

2.4. Machine Learning Analysis

The spectral data of the beans and the spectral data of the roasted and ground coffee
were analyzed using machine learning (ML) algorithms for caffeine content prediction. A
flowchart of analyses performed is shown in Figure 3. A total of 108 samples were used
in each dataset. Four databases were used as input: the spectral information of the bean
(CG), the spectral information of the bean with additional clone information (CG+C), the
spectral information of the bean after roasting and grinding (CGRG) and the spectral
information of the bean after roasting and grinding with additional clone information
(CGRG+CQ). The caffeine content was used as an output to be predicted. After identifying
the best input for predicting caffeine content, it was resubmitted to the ML models with
different sample sizes: all the samples evaluated (ALL), i.e., consisting of the 108 samples;
half the samples evaluated (50%); and two-thirds of the samples evaluated (75%). Samples
used to compose the partitioned datasets (50 and 75%) were randomly chosen from the
original dataset (ALL).

Input

S

Sample - coffee beans

Algorithms

Hyperspectral curve of
coffee beans

Caffeine

Sample - ground and
roasted coffee beans

Hyperspectral curve of ground
and roasted coffee beans

Figure 3. Flowchart of analyses performed.

Each database was subjected to different machine learning models, artificial neural
networks (ANNSs), decision tree (DT), linear regression (LR), M5P algorithm, random forest
(RF) and support vector machine (SVM), which were selected according to [15-17]. The
software used for the analyses was Weka 3.9.4, with cross-validation stratified 10 times
with 10 repetitions using the standard (default) configuration for all the models tested,
except for ANN, which will use two layers with ten neurons in each as suggested in the
methodology of [18]. Default hyperparameter configuration consists of a DT algorithm
(named REPTree), which builds a decision/regression tree using information gain/variance
and prunes it using reduced-error pruning (with backfitting). M5P is a regression M5’
model tree algorithm, whose default hyperparameters carry out pruning and a minimum
number of instances to allow at a leaf node equal to 4.0. ANN tested is the Multilayer
Perceptron type, whose default configuration considers a learning rate of 0.3, momentum
equal to 0.2 and number of epochs equal to 500. Finally, the default configuration for the RF
considers no restriction on the size of the trees and the number of trees equal to 100, while
SVM consists of a regression learner (called SMOreg) whose kernel type is polynomial,
with the parameter C (cost) equal to 1.0, epsilon parameter equalt to 0.001 and tolerance
parameter equal to 0.001.
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Pearson’s correlation coefficient (r), mean absolute error (MAE) and root mean square
error (RMSE) were tested as metrics of model accuracy. To check the significance of the
inputs, the algorithms tested and the interaction between both, an analysis of variance was
carried out using a completely randomized design in a factorial scheme. If statistically
significant, bar graphs were generated with the means of r, MAE and RMSE, grouped
according to the Scott—Knott test at 5% probability. The grouping of means and all the
graphs in the manuscript were generated using the ggplot2 and ExpDes.pt packages in the
R software 4.1.0 version. A second ML analysis was then carried out with different sample
sizes using the best input found in the first phase of the ML analysis.

3. Results
3.1. Basic Information on Caffeine

The caffeine content of each genetic material varied, with BR51213, BR522125, C301,
C303 and C309 showing the highest amounts (Figure 4). The lowest amount of caffeine
was observed in clone 106. The mean comparison test thus reaffirms the variability of
caffeine among the clones studied. In addition to the variability among clones, there is also

a variation in caffeine content within the clones themselves.
a a a
0z0- a a
b
b b b
b L b
[ d
I d
205 cio caoe ca03 c306 c309

e
BRS1213 BRS1216 BRS160 BRSI21Z5  BRSRA0  BRSIHIE cios 201 Clonet2
Clone

caffeine (mg mL'1) .

Figure 4. Comparison of means for caffeine content in the beans of different coffee clones by grouping
means using the Scott-Knott test.

3.2. Caffeine Prediction Using Machine Learning

Since there was variability in the caffeine content of the coffee samples tested, the
spectral data were applied to ML models to predict the caffeine content of the samples. The
ML and input sources of variation were significant, as was the interaction among them
(Table 2), for all accuracy tests to which the models were subjected.

Table 2. Mean squares of the analysis of variance for the Pearson correlation coefficient (r), mean
absolute error (MAE), and root mean square error (RMSE) variables.

EV. G.L. r MAE RMSE
ML 5 0.814 * 0.000 * 0.0004 *
input 3 1.002 * 0.000 * 0.0001 *
ML * input 15 0.133 * 0.000 * 0.0000 *
Waste 216 0.007 0.000 0.0000
Total 239 0.045 0.000 0.0000
C.V. (%) 36.4 11.79 10.28

F.V.: Sources of variation; G.L.: degree of freedom; ML: machine learning algorithms; C.V. (%): coefficient of
variation. *: significant at 5% de probability.
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The ML models used spectral data from coffee beans (CG) and spectral data from these
same samples after grinding and roasting (CGRG) and were submitted to machine learning
models for caffeine content prediction. In addition to these inputs, the specification of
clones (CG+C and CGRG+C) was also tested, totaling four different inputs (Figure 5). In
terms of Pearson’s correlation coefficient, which indicates prediction accuracy, the inputs
tested with the additional clone information, along with the spectral data provided the best
accuracy for DT and M5P, reaching an average of 0.45 (Figure 6). RF and ANN models
performed better when using the spectral information of the coffee beans along with the
clone, with accuracies close to 0.4. SVM showed the best accuracy when using spectral
information from the ground and roasted beans to identify the clones, with r-values close
to 0.7, showing the best accuracy for caffeine content prediction.

aA
bA aA DPA aBaC Input
0.6- aA aA
CG

oa- bA B o CG+C

= BN 5 cd bC CGRG
cB
& BN bc Blccraic
0.2- bD
Ac Ac Ac Ae
0.0- —
DT M5P RF ANN SVM

Ze;oR
ML

0.04- ai

aA aAbB aA bB aA  aAaA aAaA| aB bADbBDbA aA aA aAaA

0.03 -
Input
iN)
< 0.02- G
= CG+C
0.01- CGRG
’ Bcerac
0.00 -

o

ZeroR
0.05- aA
aA aB| aB bA
0.04 - b2y Input
L 003 PADADACA  bBbBCB bAbDADAbA bADAJB bA bAbA bA cG
o CG+C
=
& 0.02- CGRG
Bccrec
0.01-
0.00 -
DT M5P RF ZeroR

ML

Figure 5. Bar graphs for comparing the means of the precision measures correlation coefficient (r),
mean absolute error (MAE), and root mean square error (RMSE) for predicting caffeine content in
coffee beans. Spectral information of the grain (CG), spectral information of the grain with additional
clone information (CG+C), spectral information of the grain after roasting and grinding (CGRG),
and spectral information of the grain after roasting and grinding with additional clone information
(CGRG+C). Equal uppercase letters do not differ among the inputs tested; equal lowercase letters do
not differ among the machine learning models. Mean comparisons were made using the Scott-Knot
grouping at 5% probability.
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0.1 0.12 0.14 0.16 0.18 0.2
Predicted

Figure 6. Observed versus predicted values for caffeine content prediction obtained by the best model
and best input.

For the behavior of the inputs for each model, the use of CG provided the best accuracy
for SVM, with a value close to 0.20 being the best accuracy among the models but with low
prediction results. When this same information was used as an input with additional clone
identification, the DT, M5P, RF and SVM models showed good accuracy, with performances
above 0.40. When the input used was the spectral information of the grains after roasting
and grinding, the best model was SVM, with an accuracy close to 0.5. The CGRG+C SVM
information also achieved the best accuracy, with values of approximately 0.7.

Comparing the four inputs to the models, it can be seen that, for DT and REF, CG+C
provided the lowest error rate for the algorithms. M5P performed well in terms of error
when clone identification was added to the inputs. SVM showed a lower error with
CGRG+C. Comparing each input among the models in terms of MAE error, SVM showed
lower errors (0.02) when using CG spectral information. ZeroR showed the same behavior
across all the models. Using coffee bean spectral information with clone identification
provided the lowest error for most algorithms: SVM, DT, M5P and RE, with an average
error of 0.02 for all of them. Using the spectral information of the beans after grinding and
roasting, the M5P and SVM models had the lowest errors (0.02). Adding clone information
to this last input, in addition to M5P and SVM, the DT model also showed lower MAE
values (0.02).

In terms of RMSE, all the inputs tested had the same error rate for DT, RF and ZeroR.
M5P and SVM showed a lower error rate when using CG+C, CGRG and CGRG+C. ANN
showed the lowest error rate with CG, CG+C and CGRG+C. Evaluating the error perfor-
mance that each input generated for the models, the use of all inputs was lower for all
models except ANN.

The algorithm with the best performance was SVM using CGRG+C as input, so
a regression graph was constructed to express predicted and observed data using the
algorithm and input with the best performance (Figure 6). The model’s prediction accuracy
was 0.6 for the correlation coefficient and 0.02 for the mean absolute error and root mean
square error.

3.3. Comparison of Different Methods

Once the best input for caffeine content prediction had been obtained, it was resubmit-
ted to the ML models with different sample sizes: all the samples evaluated (ALL), half the
samples evaluated (50%) and two-thirds of the samples evaluated (75%). Pearson’s correla-
tion coefficient shows that regardless of the number of samples submitted to the models,
they have the same accuracy behavior, except for ANN and SVM, which demonstrated
better accuracy with the larger amount of data used (Figure 7). Evaluating the individual
behavior of each model with each input reveals that using ALL, SVM achieved the best
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prediction performance and when the database was halved, DT, M5P and SVM performed
well; the same algorithms exhibited good accuracy when 75% of the database was used.

aA
bA aA aA
Input
ALL
50%
B 75%
eA CA dA
MSP RNA SVM ZeroR
ML
aA
0.04-
0.03 bA cA bA bA aA bA aA aA aA aA bB aA bA bB
' Input
W bA cA
<§t 0.02- ALL
50%
0.01- . 75%
0.00-
DT M5P RF ZeroR
ML
0.05- ad
aA aA aA
0.04-
cA cB bB cA B bB bA bA aA dB aA DbA bA aA
W 0.03- Input
E ALL
0.02-
50%
0.01- B 75%
0.00-
DT M5P RF RNA SVM ZeroR
ML

Figure 7. Bar graphs for comparing the means of the precision measures correlation coefficient
(r), mean absolute error (MAE) and root mean square error (RMSE) for the prediction of caffeine
content in coffee beans in different numbers of samples. Equal uppercase letters do not differ among
the inputs tested; equal lowercase letters do not differ among the machine learning models. Mean
comparisons were made using the Scott-Knot grouping at 5% probability.

As for the error accuracy metric, for MAE comparing the three inputs and for most of
the models, there was no difference among the number of samples, except for SVM, which
exhibited a lower error rate with larger numbers of samples. The use of ALL provided the
lowest error rate for DT, M5P and SVM; the use of 50% of the database provided the lowest
error rate for DT and M5P and both algorithms had low error when 75% of the database
was used. For RMSE, using 50% and 75% of the complete database provided lower errors
for DT and M5P; ALL provided lower errors for SVM; the other models showed similar
behavior regardless of the input used. Comparing the performance of the models with
each input, it is important to note that SVM exhibited the lowest RMSE when ALL was
used; when 50% was used as input, the lowest errors were shown by DT and M5P, as well
as when 75% of the database was used as input. In summary, SVM performed best with all
samples, while DT and M5P were more effective with 50% and 75%.
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4. Discussion

Caffeine plays a significant role in the human food chain through plant-derived foods,
such as tea, coffee beans, cocoa beans and nuts. Caffeine is an alkaloid found mainly
in coffee and is used abundantly as an additive in foods, beverages and medicines [19].
Differences in caffeine content are common among coffee samples of different varieties,
seasons and roasting or grinding processes [20]. Coffea arabica is the most cultivated and
consumed species, specifically in Brazil, well known for its fine and exquisite aromas,
while Coffea canephora has specific characteristics, such as a higher caffeine content and
distinct flavors [3,21,22]. This result is demonstrated in Figure 3, which shows a variation
in caffeine content among the clones studied, due to the factors mentioned above.

The chemical composition of coffee varies widely between Arabica (Coffea arabica) and
Robusta (Coffea canephora), which can be influenced by environmental factors, geographical
origin and post-harvest processing, not to mention the notable differences within the same
batch [1,23]. This variability between Coffea arabica and Coffea canephora is important so
that the algorithms have data with greater variability and can learn more accurately and
effectively to predict caffeine content.

The use of bean reflectance allows coffee beans to be analyzed in nature, preserving
the samples for other analyses or marketing, since the use of chromatography can be
time-consuming and costly. The use of the hyperspectral sensor for this function can be
applied at different stages of the coffee production chain, from the selection of the beans to
the quality control of the final product, helping to standardize and improve the quality of
the coffee offered to the consumer. Using the reflectance of coffee after it has been roasted
and ground helps improve the accuracy of models in predicting caffeine content. This is
because coffee beans behave differently and produce different results in terms of physical
properties, chemical composition and biological activities when roasted under different
conditions [24,25].

After roasting, coffee beans have a higher correlation with caffeine content, indicating
that the use of reflectance analysis of roasted and ground beans is more accurate. Roasting
profoundly alters the physical and chemical properties of the beans, intensifying the spectral
characteristics that are directly linked to caffeine content. Therefore, the reflectance of the
beans after roasting and milling proved to be better for increasing the accuracy of the
prediction models, providing more reliable estimates. In addition, the identification of
clones in the database helped to significantly improve the performance of the algorithms.

The most notable feature of the spectral information forming the hyperspectral curve
for each clone is that the entire coffee spectrum shows greater absorbance than reflectance.
In addition, the region at approximately 1400 nm is of great importance in predicting
caffeine content, chlorogenic acid and total phenolics, and the region at approximately
1200 nm makes important contributions to the model’s loadings, especially for the control
of chlorogenic acid and total phenolics [11].

The SVM algorithm performed the best in predicting caffeine content using the spectral
information mentioned above. The use of ML models is a more advanced approach that
efficiently deals with the non-linearity of spectral information with caffeine content and
offers robustness against outliers and noise [26]. The SVM is recognized for its robustness,
especially against overfitting, an essential feature when dealing with spectral data where
the number of features often exceeds the number of observations [27]. In addition to a
high r, the model showed low MAE and RMSE values, which indicates that the model is
more reliable and consistent in its predictions, providing more precise and accurate results,
demonstrating that the predictions generated by the model are closer to the actual observed
values and reflecting its effectiveness in generalizing training data to new unseen data [26].

The amount of data affects the performance of ML models differently, depending on
the algorithm (Figure 6). SVM’s superior performance with the use of all samples (ALL)
suggests that this model benefits from larger data sets, supporting what was previously
mentioned with the use of this model. DT and M5P maintain good performance with
smaller sets (50% and 75%), highlighting the robustness of these models in cases where
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there are few samples available. This may be relevant in situations where data collection
is difficult, allowing simpler models to still provide reliable results. The accuracy means
obtained for the best algorithm and input (SVM using the ALL dataset) suggest that future
research should test other experimental conditions, such as larger datasets, different input
configurations and different and/or larger amounts of genetic materials in order to increase
the accuracy of caffeine content prediction.

The use of hyperspectral data combined with appropriate machine learning mod-
els has significant potential and diverse applications in the coffee industry due to its
non-destructive nature, rapid analysis capabilities and sophistication in data analysis tech-
niques [26]. The methodology suggested here may have future applications in routine
quality control, allowing the rapid assessment of coffee bean quality throughout production,
from green beans to roasted coffee, as well as the detection of defects such as mold or insect
damage and the determination of other chemical components of coffee.

5. Conclusions

The traditional assessment of caffeine content determination requires laboratory pro-
cedures that are often expensive, time-consuming and specialized infrastructure. These
limitations make the process more complex for determination, especially on a large scale or
for studies that require a high sampling frequency. The proposed method, using machine
learning models with spectral data, offers an efficient and low-cost long-term solution.
The combination of both technologies makes it possible to predict caffeine content quickly
and with good accuracy, even with small data sets. By applying the right model, this
approach can optimize both time and financial resources. The support vector machine
(SVM) algorithm demonstrated the best accuracy in predicting caffeine content by using
hyperspectral data from roasted and ground coffee beans. This performance was improved
significantly when the clones were identified, with values of approximately 0.6 for the
correlation coefficient and with a low mean absolute error of approximately 0.02.
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C.V. coefficient of variation
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