Robust Object Detection Under Smooth Perturbations in Precision Agriculture
Abstract
:1. Introduction
- Adding smooth noise in the bounding box to improve the robustness and stability of YOLOv5 in blueberry root collar detection task.
- Robustness and stability inference on test data.
- Building a blueberry image data acquisition system using a camera and mobile platform.
2. Blueberry Plantations
3. Related Work
4. Theoretical Foundations
4.1. Perturbation Resilience
4.2. Model Architecture
5. Design of Experiment, Results, and Discussion
5.1. Data Acquisition: Hardware and Software
5.2. Design of Experiment
5.3. Results
5.4. Discussion
6. Conclusions
7. Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Langer, F.; Mandtler, L.; Milioto, A.; Palazzolo, E.; Stachniss, C. Geometrical Stem Detection from Image Data for Precision Agriculture. arXiv 2018, arXiv:1812.05415. [Google Scholar]
- Yu, W.; Luo, M.; Zhou, P.; Si, C.; Zhou, Y.; Wang, X.; Feng, J.; Yan, S. Metaformer is actually what you need for vision. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 10819–10829. [Google Scholar]
- Balasubramaniyan, P.; Palaniappan, S.P. Principles and Practices of Agronomy; Agrobios: Jodhpur, India, 2001. [Google Scholar]
- Virro, I.; Arak, M.; Maksarov, V.; Olt, J. Precision fertilisation technologies for berry plantation. Agron. Res. 2020, 18, 2797–2810. [Google Scholar] [CrossRef]
- Yu, H.; Liu, D.; Chen, G.; Wan, B.; Wang, S.; Yang, B. A neural network ensemble method for precision fertilization modeling. Math. Comput. Model. 2010, 51, 1375–1382. [Google Scholar] [CrossRef]
- Haghtalab, N.; Roughgarden, T.; Shetty, A. Smoothed Analysis with Adaptive Adversaries. J. ACM 2024, 71, 1–34. [Google Scholar] [CrossRef]
- Angelidakis, H.; Makarychev, K.; Makarychev, Y. Algorithms for Stable and Perturbation-Resilient Problems. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, 19–23 June 2017; pp. 438–451. [Google Scholar] [CrossRef]
- Çeli̇K, H. The performance of some northern highbush blueberry (Vaccinium corymbosum L.) varieties in North eastern part of Anatolia. Anadolu Tarım Bilim. Derg. 2009, 24, 141–146. [Google Scholar]
- Gough, R. The Highbush Blueberry and Its Management; Taylor & Francis: Abingdon, UK, 1993. [Google Scholar]
- Eaton, L.J.; Sanderson, K.R.; Hoyle, J. Effects of salt deposition from salt water spray on lowbush blueberry shoots. Small Fruits Rev. 2004, 3, 95–103. [Google Scholar] [CrossRef]
- Ni, X.; Li, C.; Jiang, H.; Takeda, F. Deep learning image segmentation and extraction of blueberry fruit traits associated with harvestability and yield. Hortic. Res. 2020, 7, 110. [Google Scholar] [CrossRef]
- Lyu, H.; McLean, N.; McKenzie-Gopsill, A.; White, S.N. Weed survey of Nova Scotia lowbush blueberry (Vaccinium angustifolium Ait.) fields. Int. J. Fruit Sci. 2021, 21, 359–378. [Google Scholar] [CrossRef]
- White, S.N.; Zhang, L. Evaluation of terbacil-based herbicide treatments for hair fescue (Festuca filiformis) management in lowbush blueberry. Weed Technol. 2021, 35, 485–491. [Google Scholar] [CrossRef]
- Bilodeau, M.F.; Esau, T.J.; MacEachern, C.B.; Farooque, A.A.; White, S.N.; Zaman, Q.U. Identifying hair fescue in wild blueberry fields using drone images for precise application of granular herbicide. Smart Agric. Technol. 2023, 3, 100127. [Google Scholar] [CrossRef]
- Rai, N.; Zhang, Y.; Ram, B.G.; Schumacher, L.; Yellavajjala, R.K.; Bajwa, S.; Sun, X. Applications of deep learning in precision weed management: A review. Comput. Electron. Agric. 2023, 206, 107698. [Google Scholar] [CrossRef]
- Ahmad, A.; Saraswat, D.; Aggarwal, V.; Etienne, A.; Hancock, B. Performance of deep learning models for classifying and detecting common weeds in corn and soybean production systems. Comput. Electron. Agric. 2021, 184, 106081. [Google Scholar] [CrossRef]
- Akumu, C.E.; Dennis, S. Effect of the Red-Edge Band from Drone Altum Multispectral Camera in Mapping the Canopy Cover of Winter Wheat, Chickweed, and Hairy Buttercup. Drones 2023, 7, 277. [Google Scholar] [CrossRef]
- Yang, C.; Lee, W.S.; Gader, P. Hyperspectral band selection for detecting different blueberry fruit maturity stages. Comput. Electron. Agric. 2014, 109, 23–31. [Google Scholar] [CrossRef]
- Yang, C.; Lee, W.S.; Williamson, J.G. Classification of blueberry fruit and leaves based on spectral signatures. Biosyst. Eng. 2012, 113, 351–362. [Google Scholar] [CrossRef]
- Balcan, M.F.; Haghtalab, N. Noise in Classification. In Beyond the Worst-Case Analysis of Algorithms; Roughgarden, T., Ed.; Cambridge University Press: Cambridge, UK, 2020; Chapter 16. [Google Scholar]
- Awasthi, P.; Blum, A.; Sheffet, O. Center-based clustering under perturbation stability. Inf. Process. Lett. 2012, 112, 49–54. [Google Scholar] [CrossRef]
- Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In Proceedings of the European Conference on Computer Vision/arXiv, Zurich, Switzerland, 6–12 September 2014; pp. 818–833. [Google Scholar]
- Balcan, M.F.; Liang, Y. Clustering under Perturbation Resilience. In Proceedings of the 39th International Colloquium Conference on Automata, Languages, and Programming–Volume Part I, ICALP’12, Warwick, UK, 9–13 July 2012; pp. 63–74. [Google Scholar] [CrossRef]
- Angelidakis, H.; Awasthi, P.; Blum, A.; Chatziafratis, V.; Dan, C. Bilu-Linial Stability, Certified Algorithms and the Independent Set Problem. In Proceedings of the 27th Annual European Symposium on Algorithms (ESA 2019), Leibniz International Proceedings in Informatics (LIPIcs). Munich/Garching, Germany, 9–11 September 2019; Bender, M.A., Svensson, O., Herman, G., Eds.; Dagstuhl Publishing: Wadern, Germany, 2019; Volume 144, pp. 7:1–7:16. [Google Scholar] [CrossRef]
- Reyzin, L. Data Stability in Clustering: A Closer Look. arXiv 2011, arXiv:1107.2379. [Google Scholar]
- Cohen-Addad, V.; Schwiegelshohn, C. On the Local Structure of Stable Clustering Instances. In Proceedings of the 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), Berkeley, CA, USA, 15–17 October 2017; pp. 49–60. [Google Scholar] [CrossRef]
- Wosner, O.; Farjon, G.; Bar-Hillel, A. Object detection in agricultural contexts: A multiple resolution benchmark and comparison to human. Comput. Electron. Agric. 2021, 189, 106404. [Google Scholar] [CrossRef]
- Filipović, V.; Stefanović, D.; Pajević, N.; Grbović, Ž.; Djuric, N.; Panić, M. Bush Detection for Vision-Based UGV Guidance in Blueberry Orchards: Data Set and Methods. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 3645–3654. [Google Scholar]
- Lac, L.; Costa, J.P.D.; Donias, M.; Keresztes, B.; Bardet, A. Crop stem detection and tracking for precision hoeing using deep learning. Comput. Electron. Agric. 2022, 192, 106606. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Adhikari, S.P.; Yang, H.; Kim, H. Learning semantic graphics using convolutional encoder–decoder network for autonomous weeding in paddy. Front. Plant Sci. 2019, 10, 1404. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Che, J.; Chen, Y. Weed identification using deep learning and image processing in vegetable plantation. IEEE Access 2021, 9, 10940–10950. [Google Scholar] [CrossRef]
- Milella, A.; Marani, R.; Petitti, A.; Reina, G. In-field high throughput grapevine phenotyping with a consumer-grade depth camera. Comput. Electron. Agric. 2019, 156, 293–306. [Google Scholar] [CrossRef]
- Hennessy, P.J.; Esau, T.J.; Schumann, A.W.; Zaman, Q.U.; Corscadden, K.W.; Farooque, A.A. Evaluation of cameras and image distance for CNN-based weed detection in wild blueberry. Smart Agric. Technol. 2022, 2, 100030. [Google Scholar] [CrossRef]
- Rakhmatulin, I.; Kamilaris, A.; Andreasen, C. Deep neural networks to detect weeds from crops in agricultural environments in real-time: A review. Remote Sens. 2021, 13, 4486. [Google Scholar] [CrossRef]
- García-Navarrete, O.L.; Correa-Guimaraes, A.; Navas-Gracia, L.M. Application of Convolutional Neural Networks in Weed Detection and Identification: A Systematic Review. Agriculture 2024, 14, 568. [Google Scholar] [CrossRef]
- Wang, P.; Tang, Y.; Luo, F.; Wang, L.; Li, C.; Niu, Q.; Li, H. Weed25: A deep learning dataset for weed identification. Front. Plant Sci. 2022, 13, 1053329. [Google Scholar] [CrossRef]
- Dwyer, B.; Nelson, J.; Hansen, T. Roboflow (Version 1.0) [Software]. 2024. Available online: https://roboflow.com (accessed on 20 October 2024).
- Spielman, D.A.; Teng, S. Smoothed Analysis of Algorithms: Why the Simplex Algorithm Usually Takes Polynomial Time. J. ACM 2001, 51, 385–463. [Google Scholar] [CrossRef]
- Howard, S.R.; Ramdas, A.; McAuliffe, J.; Sekhon, J. Time-uniform Chernoff bounds via nonnegative supermartingales. Probab. Surv. 2020, 17, 257–317. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.K.; Girshick, R.B.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016; IEEE Computer Society: Washington, DC, USA, 2016; pp. 779–788. [Google Scholar] [CrossRef]
- Jocher, G. YOLOv5 by Ultralytics, Version v7.0; Ultralytics LLC: Arlington, VA, USA, 2020. [Google Scholar] [CrossRef]
- Liu, H.; Sun, F.; Gu, J.; Deng, L. SF-YOLOv5: A Lightweight Small Object Detection Algorithm Based on Improved Feature Fusion Mode. Sensors 2022, 22, 5817. [Google Scholar] [CrossRef]
- Lin, T.Y.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L.; Dollár, P. Microsoft COCO: Common Objects in Context. In Proceedings of the Computer Vision—ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Proceedings, Part V 13. Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 740–755. Available online: https://link.springer.com/chapter/10.1007/978-3-319-10602-1_48 (accessed on 20 October 2024).
- Soots, K.; Lillerand, T.; Jogi, E.; Virro, I.; Olt, J. Feasibility analysis of cultivated berry field layout for automated cultivation. Eng. Rural. Dev. 2021, 20, 1003–1008. [Google Scholar] [CrossRef]
- Plants. Weeds Dataset. 2024. Available online: https://universe.roboflow.com/plants-e5wq4/weeds-sovlx (accessed on 20 October 2024).
Detection Task | Experiment | Perturb on Training | Augumentation on Testing |
---|---|---|---|
Bush and pole | Exp. 1 | No | |
Exp. 2 | Yes | Gaussian blur | |
Blueberry root collar | Exp. 3 | No | |
Exp. 4 | Yes | ||
Pepper, tomato, and weed | Exp. 5 | No | |
Exp. 6 | Yes |
Experiment | Precision | Recall | mAP50 |
---|---|---|---|
Exp. 1 | 0.910 | 0.859 | 0.899 |
Exp. 2 | 0.880 | 0.711 | 0.818 |
Exp. 3 | 0.744 | 0.672 | 0.635 |
Exp. 4 | 0.13 | 0.385 | 0.119 |
Exp. 5 | 0.842 | 0.812 | 0.875 |
Exp. 6 | 0.943 | 0.536 | 0.617 |
Experiment | Precision | Recall | mAP50 |
---|---|---|---|
Exp. 1 | 0.871 | 0.761 | 0.794 |
Exp. 2 | 0.886 | 0.735 | 0.828 |
Exp. 3 | 0.572 | 0.462 | 0.468 |
Exp. 4 | 0.121 | 0.385 | 0.109 |
Exp. 5 | 0.881 | 0.756 | 0.847 |
Exp. 6 | 0.891 | 0.523 | 0.624 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, N.T.A.; Virro, I.; Zaman, A.G.M.; Lillerand, T.; Chan, W.T.; Liivapuu, O.; Roy, K.; Olt, J. Robust Object Detection Under Smooth Perturbations in Precision Agriculture. AgriEngineering 2024, 6, 4570-4584. https://doi.org/10.3390/agriengineering6040261
Mahmoud NTA, Virro I, Zaman AGM, Lillerand T, Chan WT, Liivapuu O, Roy K, Olt J. Robust Object Detection Under Smooth Perturbations in Precision Agriculture. AgriEngineering. 2024; 6(4):4570-4584. https://doi.org/10.3390/agriengineering6040261
Chicago/Turabian StyleMahmoud, Nesma Talaat Abbas, Indrek Virro, A. G. M. Zaman, Tormi Lillerand, Wai Tik Chan, Olga Liivapuu, Kallol Roy, and Jüri Olt. 2024. "Robust Object Detection Under Smooth Perturbations in Precision Agriculture" AgriEngineering 6, no. 4: 4570-4584. https://doi.org/10.3390/agriengineering6040261
APA StyleMahmoud, N. T. A., Virro, I., Zaman, A. G. M., Lillerand, T., Chan, W. T., Liivapuu, O., Roy, K., & Olt, J. (2024). Robust Object Detection Under Smooth Perturbations in Precision Agriculture. AgriEngineering, 6(4), 4570-4584. https://doi.org/10.3390/agriengineering6040261