Self-Inductance of the Circular Coils of the Rectangular Cross-Section with the Radial and Azimuthal Current Densities
Abstract
:1. Introduction
2. Basic Expressions
2.1. Radial Current
2.2. Azimuthal Current
3. Calculation Method
3.1. The Self-Inductance Caused by the Radial Current Density
3.2. The Self-Inductance Caused by the Azimuthal Current Density
3.3. Asymptotic Behaviors of Disk Coils and Thin-Wall Solenoids
4. Numerical Validation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Grover, F.W. Inductance Calculations; Dover: New York, NY, USA, 1964. [Google Scholar]
- Dwight, H.B. Electrical Coils and Conductors; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1945. [Google Scholar]
- Snow, C. Formulas for Computing Capacitance and Inductance; National Bureau of Standards Circular 544: Washington, DC, USA, December 1954. [Google Scholar]
- Spielrein, J. Die Induktivität eisenfreier Kreisringspulen. Archiv Elektrotechnik. 1915, 3, 187–202. [Google Scholar] [CrossRef]
- Rosa, E.B.; Grover, F.W. Scientific Papers of the National Bureau of Standards, 3rd ed.; National Bureau of Standards: Washington, DC, USA, 1948. [Google Scholar]
- Kalantarov, P.L. Inductance Calculations; National Power Press: Moscow, Russia, 1955. [Google Scholar]
- Watson, G.N. A Treaties on the Theory of Bessel Functions, 2nd ed.; Cambridge Univ. Press: Cambridge, UK, 1944. [Google Scholar]
- Yu, D.; Han, K.S. Self-inductance of air-core circular coils with rectangular cross section. IEEE Trans. Magn. 1987, 23, 3916–3921. [Google Scholar] [CrossRef]
- Kajikawa, K.; Kaiho, K. Usable Ranges of Some Expressions for Calculation of the Self-Inductance of a Circular Coil of Rectangular Cross Section. J. Cryog. Soc. Jpn. 1995, 30, 324–332. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Conway, J.T. Inductance Calculations for Circular Coils of Rectangular Cross Section and Parallel Axes Using Bessel and Struve Functions. IEEE Trans. Magn. 2009, 46, 75–81. [Google Scholar] [CrossRef]
- Babic, S.; Akyel, C. Improvement in calculation of the self- and mutual inductance of thin-wall solenoids and disk coils. IEEE Trans. Magn. 2000, 36, 1970–1975. [Google Scholar] [CrossRef]
- Conway, J.T. Exact solutions for the mutual inductance of circular coils and elliptic coils. IEEE Trans. Magn. 2011, 48, 81–94. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, B. Improvement of Self-Inductance Calculations for Circular Coils of Rectangular Cross Section. IEEE Trans. Magn. 2012, 49, 1249–1255. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, X.; Zhou, X. Inductance Calculations for Circular Coils With Rectangular Cross Section and Parallel Axes Using Inverse Mellin Transform and Generalized Hypergeometric Functions. IEEE Trans. Power Electron. 2016, 32, 1367–1374. [Google Scholar] [CrossRef]
- Pankrac, V. Generalization of Relations for Calculating the Mutual Inductance of Coaxial Coils in Terms of Their Applicability to Non-Coaxial Coils. IEEE Trans. Magn. 2011, 47, 4552–4563. [Google Scholar] [CrossRef]
- Liang, S.; Fang, Y. Analysis of Inductance Calculation of Coaxial Circular Coils With Rectangular Cross Section Using Inverse Hyperbolic Functions. IEEE Trans. Appl. Supercond. 2015, 25, 1–9. [Google Scholar] [CrossRef]
- Župan, T.; Štih, Ž.; Trkulja, B. Fast and Precise Method for Inductance Calculation of Coaxial Circular Coils with Rectangular Cross Section Using the One-Dimensional Integration of Elementary Functions Applicable to Superconducting Magnets. IEEE Trans. Appl. Supercond. 2014, 24, 81–89. [Google Scholar] [CrossRef]
- Dolezel, I. Self-inductance of an air cylindrical coil. Acta Tech. CSAV 1989, 34, 443–473. [Google Scholar]
- Bitter, F. The Design of Powerful Electromagnets Part II. The Magnetizing Coil. Rev. Sci. Instrum. 1936, 7, 482–489. [Google Scholar] [CrossRef]
- Conway, J.T. Non coaxial force and inductance calculations for bitter coils and coils with uniform radial current distributions. In Proceedings of the 2011 International Conference on Applied Superconductivity and Electromagnetic Devices, Sydney, NSW, Australia, 14–16 December 2011; pp. 61–64. [Google Scholar]
- Ren, Y.; Wang, F.; Kuang, G.; Chen, W.; Tan, Y.; Zhu, J.; He, P. Mutual Inductance and Force Calculations between Coaxial Bitter Coils and Superconducting Coils with Rectangular Cross Section. J. Supercond. Nov. Magn. 2010, 24, 1687–1691. [Google Scholar] [CrossRef]
- Ren, Y.; Kuang, G.; Chen, W. Inductance of Bitter Coil with Rectangular Cross-section. J. Supercond. Nov. Magn. 2012, 26, 2159–2163. [Google Scholar] [CrossRef]
- Babic, S.; Akyel, C. Mutual inductance and magnetic force calculations for coaxial bitter disk coils (Pancakes). IET Sci. Meas. Technol. 2016, 10, 972–976. [Google Scholar] [CrossRef]
- Babic, S.; Akyel, C. Calculation of mutual inductance and magnetic force between two thick coaxial Bitter coils of rectangular cross section. IET Electr. Power Appl. 2017, 11, 441–446. [Google Scholar] [CrossRef]
- Filanovsky, I. On Design of 60 GHz Solid-State Transformers Modeled as Coupled Bitter Coils. In Proceedings of the 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), Dallas, TX, USA, 4–7 August 2019; pp. 1021–1024. [Google Scholar]
- Babic, S.I.; Akyel, C. An improvement in the calculation of the thin disk coils with air-core. WSEAS Trans. Circuits Syst. 2004, 3, 1621–1626. [Google Scholar]
- Babic, S.; Akyel, C.; Erdogan, L.; Babic, B. The Influence of the Numerical Integration with MATLAB and Mathematica Programming in the Treatment of the Logarithmic Singularity of the Inductance of the Pancake. Am. J. Math. Comput. Sci. 2016, 1, 62–66. [Google Scholar]
- Gradshteyn, S.; Ryzhik, I.M. Table of Integrals, Series and Products; Academic Press Inc.: New York, NY, USA; London, UK, 1965. [Google Scholar]
- Abramowitz, M.; Stegun, I.S. Handbook of Mathematical Functions; Dover: New York, NY, USA, 1972. [Google Scholar]
- Brychkov, Y.A. Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Conway, J.T. Analytical Solutions for the Self- and Mutual Inductances of Concentric Coplanar Disk Coils. IEEE Trans. Magn. 2012, 49, 1135–1142. [Google Scholar] [CrossRef]
- Babic, S.; Akyel, C.; Boudjada, N. The Simplest Formulas for Self-Inductance, Mutual Inductance and Magnetic Force of Coaxial Cylindrical Magnets and Thin Coils; Recent Researches in Circuits and Systems; WSEAS: Kos, Greece, 2012. [Google Scholar]
- Digital Library of Mathematical Function (Elliptic Integrals, Asymptotic Approximations), NIST, National Institute of Standard and Technology. Available online: https://dlmf.nist.gov/19.12 (accessed on 2 June 2020).
[13] | [9] | |||
---|---|---|---|---|
1.5 | 0.5 | 2.8693036 | 2.8693 | 2.8693035 |
3.0 | 2.0 | 2.5330065 | 2.533 | 2.5330065 |
4.0 | 6.0 | 1.9012958 | 1.9012 | 1.9012958 |
7.0 | 12.0 | 2.4472979 | 2.4473 | 2.4472979 |
9.0 | 8.0 | 4.2674018 | 4.2661 | 4.2674018 |
[13] | [9] | |||
---|---|---|---|---|
1.2 | 20.0 | 0.2142821 | 0.21428 | 0.2142821 |
5.0 | 20.0 | 1.0456844 | 1.0457 | 1.0456844 |
20.0 | 20.0 | 7.8764442 | 7.867 | 7.8764442 |
40.0 | 20.0 | 19.950453 | 19.951 | 19.950453 |
1.2 | 2.0 | 1.4613306 | 1.4618 | 1.4613306 |
5.0 | 2.0 | 3.8343885 | 3.8343 | 3.8343885 |
20.0 | 2.0 | 14.120116 | 14.112 | 14.120116 |
40.0 | 2.0 | 28.015984 | 27.992 | 28.015984 |
1.2 | 0.2 | 3.5880363 | 3.588 | 3.5880363 |
5.0 | 0.2 | 5.0682989 | 5.0681 | 5.0682989 |
20.0 | 0.2 | 15.288175 | 15.28 | 15.288175 |
40.0 | 0.2 | 29.185174 | 29.161 | 29.185174 |
[10] | [9] | |||
---|---|---|---|---|
1.5 | 0.5 | 2.8693035 | 2.8693 | 2.8693035 |
3.0 | 2.0 | 2.5330065 | 2.533 | 2.5330065 |
4.0 | 6.0 | 1.9012858 | 1.9012 | 1.9012858 |
7.0 | 12.0 | 2.4472979 | 2.4473 | 2.4472979 |
9.0 | 8.0 | 4.2676018 | 4.2661 | 4.2676018 |
5.0 | 36.282205 | 36.282205 | 36.282205 | 36.282205 |
10.0 | 8.5558079 | 8.5558079 | 8.5558079 | 8.5558079 |
3.0 | 4.1202479 | 4.1202478 | 4.1202478 | 4.1202478 |
1.5 | 3.9375566 | 3.9375570 | 3.9375569 | 3.9375569 |
1.1 | 5.1875898 | 5.1875898 | 5.1875898 | 5.1875898 |
1.01 | 7.8169836 | 7.8169836 | 7.8169836 | 7.8169836 |
1.001 | 10.671287 | 10.671287 | 10.671287 | 10.671287 |
1.00001 | 16.452442 | 16.452442 | 16.452442 | 16.452442 |
1.000001 | 19.345878 | 19.345878 | 19.345878 | 19.345878 |
1.0000001 | 22.239382 | 22.239382 | 22.239382 | 22.239382 |
10−1 | 5.1875898 | 5.1875898 |
10−2 | 7.8169836 | 7.8169836 |
10−3 | 10.671287 | 10.671287 |
10−4 | 19.345878 | 19.345878 |
10−8 | 25.132895 | 25.132895 |
10−10 | 25.132895 | 25.132895 |
10−12 | 36.706950 | 36.706950 |
10−15 | 45.387491 | 45.387491 |
10−16 | 45.387491 | 45.387491 |
or | L [9] | |||
---|---|---|---|---|
10−1 | 4.0133453 | 4.0072641 | 4.0037786 | 4.0134 |
10−2 | 6.9008759 | 6.9007779 | 6.9006943 | 6.9009 |
10−3 | 9.7942930 | 9.7942916 | 9.7942903 | 9.7942 |
10−6 | 18.474833 | 18.474833 | 18.474833 | - |
10−9 | 25.155374 | 25.155374 | 25.155374 | - |
10−12 | 35.835916 | 35.835916 | 35.835916 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babic, S.; Akyel, C. Self-Inductance of the Circular Coils of the Rectangular Cross-Section with the Radial and Azimuthal Current Densities. Physics 2020, 2, 352-367. https://doi.org/10.3390/physics2030019
Babic S, Akyel C. Self-Inductance of the Circular Coils of the Rectangular Cross-Section with the Radial and Azimuthal Current Densities. Physics. 2020; 2(3):352-367. https://doi.org/10.3390/physics2030019
Chicago/Turabian StyleBabic, Slobodan, and Cevdet Akyel. 2020. "Self-Inductance of the Circular Coils of the Rectangular Cross-Section with the Radial and Azimuthal Current Densities" Physics 2, no. 3: 352-367. https://doi.org/10.3390/physics2030019
APA StyleBabic, S., & Akyel, C. (2020). Self-Inductance of the Circular Coils of the Rectangular Cross-Section with the Radial and Azimuthal Current Densities. Physics, 2(3), 352-367. https://doi.org/10.3390/physics2030019