Monitoring Hazards in Dam Environments Using Remote Sensing Techniques: Case of Kulekhani-I Reservoir in Nepal
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Data Collection and Analysis
Data Category | Source | Outputs (Reference Output Figure Numbers in Brackets) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
High-resolution satellite images from 2004 to 2020 | QuickBird image for the year 2004, GeoEye images for the year 2010, and SPOT for 2012–2020. https://www.l3harris.com (accessed on 27 July 2024) | Land cover classification/extraction of landslides and water body of Kulekhani 1 area (Figures 2, 5, and 10–12). | ||||||||||||||
Landsat images from 1988 to 2020 | Source link: https://earthexplorer.usgs.gov (accessed on 27 July 2024) | For the analysis of long-term water level extraction using NDWI method in Kulekhani reservoir and evaluation using NDVI (Figures 6–8). | ||||||||||||||
Station-based precipitation and temperature data, 1985–2020 | Environmental statistic, 2008, 2013, and 2019, Nepal and Department of Hydrology and Metrology, 2020. | For the analysis of long-term precipitation and temperature data (Figure 9). | ||||||||||||||
Shuttle Rader Topography Mission (SRTM) Digital Elevation Model (DEM) data | Source link: https://earthexplorer.usgs.gov/ (accessed on 27 July 2024) | SRTM DEM data for the analysis of elevation, slope, and aspect (Appendix B). | ||||||||||||||
Soil and Terrain (SOTER) database for Nepal | SRIC Report 2009/01: Soil and Terrain database for Nepal https://www.isric.org/documents/document-type/isric-report-200901-soil-and-terrain-database-nepal-11-million (accessed on 27 July 2024) | Soil and Terrain (SOTER) attribute data for the analysis of landslides (Appendix B). | ||||||||||||||
Geology data | ICIMOD, https://rds.icimod.org/Home/DataDetail?metadataId=2521 (accessed on 27 July 2024) | Geology attribute data for the analysis of landslides (Appendix B). | ||||||||||||||
Seismic hazard data level | Pandey et al., 2002 [52], GoN, 1996, [53] | Seismic hazard data for the analysis of landslides (Appendix B). | ||||||||||||||
Time series Landsat 5, 7, and 8 imagery applied (Path/Row 141/041). | ||||||||||||||||
Year | 1988 | 1990 | 1992 | 1994 | 1996 | 1998 | 2000 | 2002 | 2004 | 2006 | 2008 | 2010 | 2014 | 2016 | 2018 | 2020 |
Months | 29-Nov | 4-Feb | 23-Oct | 13-Oct | 18-Oct | 8-Oct | 22-Nov | 27-Oct | 9-Nov | 30-Oct | 20-Nov | 25-Oct | 23-Dec | 25-Oct | 31-Oct | 22-Jan |
Sensor | TM | TM | TM | TM | TM | TM | ETM+ | ETM+ | TM | TM | TM | TM | OLI | OLI | OLI | OLI |
2.3. Spatial Analysis Description
2.4. Evaluation of Major Landslide and Preparation of Landslide Risk Map
3. Results
3.1. Land Use Land Cover Change and Its Impact on the Dam Environment
3.2. Climate Change Analysis
3.3. Landslide Risk Analysis
4. Discussion
5. Conclusions and Further Research
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Applied Landslide Risk Mapping Methodology
- Land use/land cover data using SPOT Image 2020.
- Slope and slope aspect from SRTM DEM.
- Relative relief derived from DEM.
- River network from land use/land cover data, 2020, and topographical data prepared by the Survey Department of Nepal, 1996.
- Geology data from ICIMOD.
- Soil and Terrain (SOTER), 2009, data from SRIC Report 2009/01: Soil and Terrain database for Nepal.
- Rainfall data from DHM, 2020, and CBS, 2008, 2013, and 2019, from 1985 to 2020.
Appendix B. Drainage, Elevation, Slope, Soil, Geology, and Seismic Risk Level Map for Landslide Evaluation
Appendix C. Trend of Land Use/Land Cover from 2004 to 2020 in the Study Area
References
- Bell, R.; Fort, M.; Götz, J.; Bernsteiner, H.; Andermann, C.; Etzlstorfer, J.; Posch, E.; Gurung, N.; Gurung, S. Major geomorphic events and natural hazards during monsoonal precipitation 2018 in the Kali Gandaki Valley, Nepal Himalaya. Geomorphology 2021, 372, 107451. [Google Scholar] [CrossRef]
- Barros, A.; Chiao, S.; Lang, T.; Burbank, D.; Putkonen, J. From Weather to Climate-Seasonal and Interannual Variability of Storms and Implications for Erosion Processes in the Himalaya; Geological Society of America: Boulder, CO, USA, 2006; Volume 398, pp. 17–38. [Google Scholar]
- Qiu, J. Killer landslides: The lasting legacy of Nepal’s quake. Nature 2016, 532, 428–431. [Google Scholar] [CrossRef] [PubMed]
- Pehlivan, M.; Madugo, C.M.; Macdonald, A.; Rayamajhi, D.; Hashash, Y.M.A.; Tiwari, B. Hydropower Infrastructure Performance after the 2015 Gorkha, Nepal, Earthquake Sequence. Earthq. Spectra 2017, 33, 115–132. [Google Scholar] [CrossRef]
- Bhatt, R.P. Hydropower Development in Nepal—Climate Change, Impacts and Implications. Renew. Hydropower Technol. 2017, 1, 75–98. [Google Scholar] [CrossRef]
- Ghimire, H.R.; Phuyal, S.; Singh, N.R. Environmental compliance of hydropower projects in Nepal. Environ. Chall. 2021, 5, 100307. [Google Scholar] [CrossRef]
- Alley, K.D.; Hile, R.; Mitra, C. Visualizing Hydropower Across the Himalayas: Mapping in a time of Regulatory Decline. Himalaya 2014, 34, 9. [Google Scholar]
- Shrestha, S.; Khatiwada, M.; Babel, M.S.; Parajuli, K. Impact of Climate Change on River Flow and Hydropower Production in Kulekhani Hydropower Project of Nepal. Environ. Process. 2014, 1, 231–250. [Google Scholar] [CrossRef]
- Grumbine, R.E.; Pandit, M.K. Threats from India’s Himalaya Dams. Science 2013, 339, 36–37. [Google Scholar] [CrossRef]
- Sidle, R.C.; Jarihani, B.; Kaka, S.I.; Koci, J.; Al-Shaibani, A. Hydrogeomorphic processes affecting dryland gully erosion: Implications for modelling. Prog. Phys. Geogr. Earth Environ. 2018, 43, 46–64. [Google Scholar] [CrossRef]
- Woldemichael, A.T.; Hossain, F.; Pielke, R., Sr.; Beltrán-Przekurat, A. Understanding the impact of dam-triggered land use/land cover change on the modification of extreme precipitation. Water Resour. Res. 2012, 48, 1–16. [Google Scholar] [CrossRef]
- Hossain, F.; Degu, A.M.; Yigzaw, W.; Burian, S.; Niyogi, D.; Shepherd, J.M.; Pielke, R. Climate Feedback–Based Provisions for Dam Design, Operations, and Water Management in the 21st Century. J. Hydrol. Eng. 2012, 17, 837–850. [Google Scholar] [CrossRef]
- Fox, G.A.; Sheshukov, A.; Cruse, R.; Kolar, R.L.; Guertault, L.; Gesch, K.R.; Dutnell, R.C. Reservoir Sedimentation and Upstream Sediment Sources: Perspectives and Future Research Needs on Streambank and Gully Erosion. Environ. Manag. 2016, 57, 945–955. [Google Scholar] [CrossRef] [PubMed]
- Kou, P.; Xu, Q.; Jin, Z.; Tao, Y.; Yunus, A.P.; Feng, J.; Pu, C.; Yuan, S.; Xia, Y. Analyzing gully erosion and deposition patterns in loess tableland: Insights from small baseline subset interferometric synthetic aperture radar (SBAS InSAR). Sci. Total Environ. 2024, 916, 169873. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Hu, X.; Zheng, W.; He, C.; Zhang, G.; Zhang, H.; Wang, X. Effects of reservoir water level fluctuations and rainfall on a landslide by two-way ANOVA and K-means clustering. Bull. Eng. Geol. Environ. 2021, 80, 5405–5421. [Google Scholar] [CrossRef]
- Lehner, B.; Beames, P.; Mulligan, M.; Zarfl, C.; De Felice, L.; van Soesbergen, A.; Thieme, M.; Garcia de Leaniz, C.; Anand, M.; Belletti, B.; et al. The Global Dam Watch database of river barrier and reservoir information for large-scale applications. Sci. Data 2024, 11, 1069. [Google Scholar] [CrossRef]
- Tian, D.; Zhao, X.; Gao, L.; Liang, Z.; Yang, Z.; Zhang, P.; Wu, Q.; Ren, K.; Li, R.; Yang, C.; et al. Estimation of water quality variables based on machine learning model and cluster analysis-based empirical model using multi-source remote sensing data in inland reservoirs, South China. Environ. Pollut. 2024, 342, 123104. [Google Scholar] [CrossRef]
- Dini, B.; Manconi, A.; Loew, S.; Chophel, J. The Punatsangchhu-I dam landslide illuminated by InSAR multitemporal analyses. Sci. Rep. 2020, 10, 8304. [Google Scholar] [CrossRef]
- Iradukunda, P.; Bwambale, E. Reservoir sedimentation and its effect on storage capacity—A case study of Murera reservoir, Kenya. Cogent Eng. 2021, 8, 1917329. [Google Scholar] [CrossRef]
- Kothyari, U. Sediment problems and sediment management in the Indian Sub-Himalayan region. In Proceedings of the Sediment Problems and Sediment Management in Asian River Basins, Hyderabad, India, 7–11 September 2009. [Google Scholar]
- Yasarer, L.M.W.; Sturm, B.S.M. Potential impacts of climate change on reservoir services and management approaches. Lake Reserv. Manag. 2015, 32, 13–26. [Google Scholar] [CrossRef]
- Mishra, S.K.; Veselka, T.D.; Prusevich, A.A.; Grogan, D.S.; Lammers, R.B.; Rounce, D.R.; Ali, S.H.; Christian, M.H. Differential Impact of Climate Change on the Hydropower Economics of Two River Basins in High Mountain Asia. Front. Environ. Sci. 2020, 8, 26. [Google Scholar] [CrossRef]
- Shrestha, A.; Shrestha, S.; Tingsanchali, T.; Budhathoki, A.; Ninsawat, S. Adapting hydropower production to climate change: A case study of Kulekhani Hydropower Project in Nepal. J. Clean. Prod. 2021, 279, 123483. [Google Scholar] [CrossRef]
- Hwang, J.; Lall, U. Increasing dam failure risk in the USA due to compound rainfall clusters as climate changes. Npj Nat. Hazards 2024, 1, 27. [Google Scholar] [CrossRef]
- Ahmad, M.-u.-D.; Peña-Arancibia, J.L.; Yu, Y.; Stewart, J.P.; Podger, G.M.; Kirby, J.M. Climate change and reservoir sedimentation implications for irrigated agriculture in the Indus Basin Irrigation System in Pakistan. J. Hydrol. 2021, 603, 126967. [Google Scholar] [CrossRef]
- Lempérière, F. Dams and Floods. Engineering 2017, 3, 144–149. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, W.; An, B. A massive lateral moraine collapse triggered the 2023 South Lhonak Lake outburst flood, Sikkim Himalayas. Landslides 2024, 1–13. [Google Scholar] [CrossRef]
- Himeur, Y.; Rimal, B.; Tiwary, A.; Amira, A. Using artificial intelligence and data fusion for environmental monitoring: A review and future perspectives. Inf. Fusion 2022, 86–87, 44–75. [Google Scholar] [CrossRef]
- Krzton, W.; Walusiak, E.; Wilk-Wozniak, E. Possible consequences of climate change on global water resources stored in dam reservoirs. Sci. Total Environ. 2022, 830, 154646. [Google Scholar] [CrossRef]
- Mackey, B.H.; Roering, J.J.; Lamb, M.P. Landslide-dammed paleolake perturbs marine sedimentation and drives genetic change in anadromous fish. Proc. Natl. Acad. Sci. USA 2011, 108, 18905. [Google Scholar] [CrossRef]
- Petley, D.N.; Hearn, G.J.; Hart, A.B.; Rosser, N.J.; Dunning, S.A.; Oven, K.J.; Mitchell, W.A. Trends in landslide occurrence in Nepal. Nat. Hazards 2007, 43, 23–44. [Google Scholar] [CrossRef]
- McAdoo, B.G.; Quak, M.; Gnyawali, K.R.; Adhikari, B.R.; Devkota, S.; Rajbhandari, P.L.; Sudmeier-Rieux, K. Roads and landslides in Nepal: How development affects environmental risk. Nat. Hazards Earth Syst. Sci. 2018, 18, 3203–3210. [Google Scholar] [CrossRef]
- Choudhary, S.S.; Ghosh, S.K. Surface Water Area Extraction by Using Water Indices and DFPS Method Applied to Satellites Data. Sens. Imaging 2022, 23, 33. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.; Shi, C.; Yan, D. Automated Glacier Extraction Index by Optimization of Red/SWIR and NIR /SWIR Ratio Index for Glacier Mapping Using Landsat Imagery. Water 2019, 11, 1223. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, L.; Wylie, B.K. Analysis of dynamic thresholds for the normalized difference water index. Photogramm. Eng. Remote Sens. 2009, 75, 1307–1317. [Google Scholar] [CrossRef]
- Li, D.; Shangguan, D.; Anjum, M.N. Glacial Lake Inventory Derived from Landsat 8 OLI in 2016–2018 in China–Pakistan Economic Corridor. ISPRS Int. J. Geo-Inf. 2020, 9, 294. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Lacaux, J.P.; Tourre, Y.M.; Vignolles, C.; Ndione, J.A.; Lafaye, M. Classification of ponds from high-spatial resolution remote sensing: Application to Rift Valley Fever epidemics in Senegal. Remote Sens. Environ. 2007, 106, 66–74. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 1995, 54, 127–140. [Google Scholar] [CrossRef]
- Donmez, C.; Berberoglu, S.; Cicekli, S.Y.; Cilek, A.; Arslan, A.N. Mapping snow cover using landsat data: Toward a fine-resolution water-resistant snow index. Meteorol. Atmos. Phys. 2020, 133, 281–294. [Google Scholar] [CrossRef]
- Xiong, L.; Deng, R.; Li, J.; Liu, X.; Qin, Y.; Liang, Y.; Liu, Y. Subpixel Surface Water Extraction (SSWE) Using Landsat 8 OLI Data. Water 2018, 10, 653. [Google Scholar] [CrossRef]
- Schulz, D.; Yin, H.; Tischbein, B.; Verleysdonk, S.; Adamou, R.; Kumar, N. Land use mapping using Sentinel-1 and Sentinel-2 time series in a heterogeneous landscape in Niger, Sahel. ISPRS J. Photogramm. Remote Sens. 2021, 178, 97–111. [Google Scholar] [CrossRef]
- Elmahdy, S.I.; Mohamed, M.M. The impact of land use land cover on groundwater level and quality in the Emirate of Abu Dhabi, UAE: An integration approach using remote sensing and hydrological data. Geocarto Int. 2023, 38, 2272664. [Google Scholar] [CrossRef]
- Fallah Shamsi, S.R.; Zakeri-Anaraki, S.; Masoudi, M. Chapter 41—Kernel-based granulometry of textural pattern measures on satellite imageries for fine-grain sparse woodlands mapping. In Computers in Earth and Environmental Sciences; Pourghasemi, H.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 563–576. [Google Scholar]
- Devkota, P.; Dhakal, S.; Shrestha, S.; Shrestha, U.B. Land use land cover changes in the major cities of Nepal from 1990 to 2020. Environ. Sustain. Indic. 2023, 17, 100227. [Google Scholar] [CrossRef]
- Li, M.; Wu, P.; Wang, B.; Park, H.; Yang, H.; Wu, Y. A Deep Learning Method of Water Body Extraction From High Resolution Remote Sensing Images With Multisensors. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3120–3132. [Google Scholar] [CrossRef]
- NEF: Siltation in Kulekhani Reservoir Affects Power; Nepal Energy Forum: Hetaunda, Nepal, 14 February 2013; Available online: http://www.nepalenergyforum.com/siltation-in-kulekhani-reservoir-affects-power/ (accessed on 16 August 2024).
- Ghimire, S.; Dhungana, N.; Upadhaya, S. Impacts of Climate Change on Water Availability and Reservoir Based Hydropower. J. For. Nat. Resour. Manag. 2019, 1, 52–68. [Google Scholar] [CrossRef]
- Dhital, M.; Manandhar, S.; Hino, T.; Daisuke, S. Sediment accumulation in the Kulekhani reservoir due to the 1993 debris flows and landslides. In Proceedings of the 9th International Symposium on Lowland Technology (ISLT 2014), Saga, Japan, 22–26 June 2014. [Google Scholar]
- Pandey, M.R.; Chitrakara, G.R.; Kafle, B.; Sapkota, S.N.; Rajaure, S.; Gautam, U.P. Seismic Hazard Map of Nepal; National Seismological Centre: Kathmandu, Nepal, 2002. [Google Scholar]
- GoN. Topographical Map. In Government of Nepal MoLRaM; Survey Department, Topographic Survey Branch, Ed.; Min Bhawan: Kathmandu, Nepal, 1996. [Google Scholar]
- Silva, L.P.e.; Xavier, A.P.C.; da Silva, R.M.; Santos, C.A.G. Modeling land cover change based on an artificial neural network for a semiarid river basin in northeastern Brazil. Glob. Ecol. Conserv. 2020, 21, e00811. [Google Scholar] [CrossRef]
- Aguilera, M.A.Z. Classification of Land-Cover Through Machine Learning Algorithms for Fusion of Sentinel-2a and Planetscope Imagery. In Proceedings of the 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile, 22–26 March 2020. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3/W12-2020, 361–368. [Google Scholar] [CrossRef]
- Estacio, I.; Sianipar, C.P.M.; Onitsuka, K.; Basu, M.; Hoshino, S. A statistical model of land use/cover change integrating logistic and linear models: An application to agricultural abandonment. Int. J. Appl. Earth Obs. Geoinf. 2023, 120, 103339. [Google Scholar] [CrossRef]
- Tikuye, B.G.; Rusnak, M.; Manjunatha, B.R.; Jose, J. Land Use and Land Cover Change Detection Using the Random Forest Approach: The Case of The Upper Blue Nile River Basin, Ethiopia. Glob. Chall. 2023, 7, 2300155. [Google Scholar] [CrossRef]
- Rimal, B.; Rijal, S.; Stork, N.; Keshtkar, H.; Zhang, L. Forest restoration and support for sustainable ecosystems in the Gandaki Basin, Nepal. Environ. Monit. Assess. 2021, 193, 563. [Google Scholar] [CrossRef]
- Jamsran, B.-E.; Lin, C.; Byambakhuu, I.; Raash, J.; Akhmadi, K. Applying a support vector model to assess land cover changes in the Uvs Lake Basin ecoregion in Mongolia. Inf. Process. Agric. 2019, 6, 158–169. [Google Scholar] [CrossRef]
- Ibrahim Mahmoud, M.; Duker, A.; Conrad, C.; Thiel, M.; Shaba Ahmad, H. Analysis of Settlement Expansion and Urban Growth Modelling Using Geoinformation for Assessing Potential Impacts of Urbanization on Climate in Abuja City, Nigeria. Remote Sens. 2016, 8, 220. [Google Scholar] [CrossRef]
- Huang, C.; Davis, L.S.; Townshend, J.R.G. An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 2002, 23, 725–749. [Google Scholar] [CrossRef]
- Mubea, K.; Menz, G. Monitoring Land-Use Change in Nakuru (Kenya) Using Multi-Sensor Satellite Data. Adv. Remote Sens. 2012, 1, 74–84. [Google Scholar] [CrossRef]
- Pal, M.; Mather, P.M. Support vector machines for classification in remote sensing. Int. J. Remote Sens. 2005, 26, 1007–1011. [Google Scholar] [CrossRef]
- Sothe, C.; Almeida, C.; Liesenberg, V.; Schimalski, M. Evaluating Sentinel-2 and Landsat-8 Data to Map Sucessional Forest Stages in a Subtropical Forest in Southern Brazil. Remote Sens. 2017, 9, 838. [Google Scholar] [CrossRef]
- Xiong, J.; Thenkabail, P.; Tilton, J.; Gumma, M.; Teluguntla, P.; Oliphant, A.; Congalton, R.; Yadav, K.; Gorelick, N. Nominal 30-m Cropland Extent Map of Continental Africa by Integrating Pixel-Based and Object-Based Algorithms Using Sentinel-2 and Landsat-8 Data on Google Earth Engine. Remote Sens. 2017, 9, 1065. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, F.; Zhang, M. A Systematic Extraction Approach for Mapping Glacial Lakes in High Mountain Regions of Asia. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2788–2799. [Google Scholar] [CrossRef]
- Acharya, T.D.; Subedi, A.; Lee, D.H. Evaluation of Machine Learning Algorithms for Surface Water Extraction in a Landsat 8 Scene of Nepal. Sensors 2019, 19, 2769. [Google Scholar] [CrossRef]
- Yan, D.; Huang, C.; Ma, N.; Zhang, Y. Improved Landsat-Based Water and Snow Indices for Extracting Lake and Snow Cover/Glacier in the Tibetan Plateau. Water 2020, 12, 1339. [Google Scholar] [CrossRef]
- Chicas, S.D.; Li, H.; Mizoue, N.; Ota, T.; Du, Y.; Somogyvári, M. Landslide susceptibility mapping core-base factors and models’ performance variability: A systematic review. Nat. Hazards 2024, 2024, 1–21. [Google Scholar] [CrossRef]
- Gaidzik, K.; Ramírez-Herrera, M.T. The importance of input data on landslide susceptibility mapping. Sci. Rep. 2021, 11, 19334. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.D.T.; Chackroborty, R.D.; Intisar, L.; Al Toufiq Shuvo, S.; Al Rakib, A.; Kafy, A.-A. Landslide Susceptibility and Risk Assessment in Hilly Regions of Bangladesh: A Geostatistical and Geospatial Modeling Approach for Sustainability. In Landslide: Susceptibility, Risk Assessment and Sustainability: Application of Geostatistical and Geospatial Modeling; Panda, G.K., Shaw, R., Eds.; Springer Nature: Cham, Switzerland, 2024. [Google Scholar]
- Quaicoe, J. Landslide Risk and Vulnerability; Real Issues, Thoughts and Perspectives. In Landslide: Susceptibility, Risk Assessment and Sustainability: Application of Geostatistical and Geospatial Modeling; Panda, G.K., Shaw, R., Pal, S.C., Chatterjee, U., Saha, A., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 3–23. [Google Scholar]
- Youssef, K.; Shao, K.; Moon, S.; Bouchard, L.S. Landslide susceptibility modeling by interpretable neural network. Commun. Earth Environ. 2023, 4, 162. [Google Scholar] [CrossRef]
- Jaafari, A. An Overview of Triggering and Causing Factors of Landslides. In Landslides in the Himalayan Region: Risk Assessment and Mitigation Strategy for Sustainable Management; Chatterjee, U., Lalmalsawmzauva, K.C., Biswas, B., Pal, S.C., Eds.; Springer Nature: Singapore, 2024; pp. 25–45. [Google Scholar]
- Shrestha, A.; Ghimire, S.; Pokharel, A.; Dhami, S.; Karki, S.; Awasthi, B.; Acharya, T. Landslide Susceptibility Mapping in Budhi Gandaki River Sub-Basin Using Frequency Ratio and Statistical Information Index. Bull. Nepal Hydrogeol. Assoc. 2021, 6, 97–120. [Google Scholar]
- Muñoz-Torrero Manchado, A.; Allen, S.K.; Ballesteros-Cánovas, J.A.; Dhakal, A.; Dhital, M.R.; Stoffel, M. Three decades of landslide activity in western Nepal: New insights into trends and climate drivers. Landslides 2021, 18, 2001–2015. [Google Scholar] [CrossRef]
- Dhakal, M. Climate Change Impact on Reservoir Based Hydropower Generation in Nepal: A Case Study of Kulekhani Hydropower Plant. Master’s Thesis, Pokhara University, Pokhara, Nepal, 2011. [Google Scholar]
- Ngondo, J.; Mango, J.; Nobert, J.; Dubi, A.; Li, X.; Cheng, H. Hydrological Response of the Wami–Ruvu Basin to Land-Use and Land-Cover Changes and Its Impacts for the Future. Water 2022, 14, 184. [Google Scholar] [CrossRef]
- Republica, Water Level at Kulekhani I Hydropower Station Recedes, Operating at Full Capacity, Republica. 28 September 2024. Available online: https://myrepublica.nagariknetwork.com/news/water-level-at-kulekhani-i-hydropower-station-recedes-operating-at-full-capacity/?categoryId=81 (accessed on 16 October 2024).
- Lamsal, H. Lack of Disaster Preparedness Causing Severe Damages to Hydropower Projects in Nepal, Myrepublica. 27 January 2024. Available online: https://myrepublica.nagariknetwork.com/news/lack-of-flood-preparedness-inflicts-severe-damage-on-hydropower-projects/ (accessed on 16 August 2024).
- Prasain, S. Heavy Rains Inflict an Estimated Rs17 Billion Loss on Nepal. Kathmandu Post. 14 October 2024. Available online: https://kathmandupost.com/national/2024/10/01/heavy-rains-inflict-rs17-billion-loss-on-nepal (accessed on 16 October 2024).
- Nepal, F. Nepal’s Power Sector Faces Billions in Losses for Second Year Due to Floods and Landslides, Fiscal Nepal. 14 October 2024. Available online: https://www.fiscalnepal.com/2024/09/30/18165/nepals-power-sector-faces-billions-in-losses-for-second-year-due-to-floods-and-landslides/#ixzz8odc1kM33 (accessed on 16 October 2024).
- Regmi, S.; Dahal, R.K. Consequences of slope instability and existing practices of mitigation in hydropower projects of Nepal. Geoenviron. Disasters 2024, 11, 26. [Google Scholar] [CrossRef]
- He, J.; Zhang, L.; Xiao, T.; Chen, C. Emergency risk management for landslide dam breaks in 2018 on the Yangtze River, China. Resilient Cities Struct. 2022, 1, 1–11. [Google Scholar] [CrossRef]
- Suo, L.; Niu, X.; Xie, H. 6.07—The Three Gorges Project in China. In Comprehensive Renewable Energy; Sayigh, A., Ed.; Elsevier: Oxford, UK, 2012; pp. 179–226. [Google Scholar]
- Abdi, A.M. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GISci. Remote Sens. 2020, 57, 1–20. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef]
QuickBird (Resample 1.5 m) | 01 and 03-Dec 2004 |
World View 2 (Resample 1.5 m) | 26-Jan-2010 |
SPOT 1.5 m | 29-Oct-2012 |
SPOT 1.5 m | 13-Jan-2015 |
SPOT 1.5 m | 06-Nov-2016 |
SPOT 1.5 m | 17-Jan 2017 |
SPOT 1.5 m | 04-Nov-2018 |
SPOT 1.5 m | 20-Dec-2019 |
SPOT 1.5 m | 01-Nov-2020 |
Land Cover Types | Description |
---|---|
Cultivated land | Orchards, wet and dry crop lands |
Forest | Evergreen broad leaf forest, deciduous forest, temperate forest, low density sparse forest, degraded forest, mix of trees, and other natural covers |
Grass | Mainly grass fields (dense coverage grass, moderate coverage grass, and low coverage grass) |
Shrub | Mix of short trees, other natural covers, and highly degraded forest |
Water | Reservoir, river, lake/pond, canal, and swamp areas |
Other land | Sandy areas, river banks, other areas |
Barren land | Cliffs/landslides, bare rocks, other unused land |
Public use | Road network, and other construction features |
Residential | Residential area (urban and rural settlements), commercial areas, industrial |
Land Cover | 2004 | 2010 | 2012 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|---|---|
Agriculture | 1147.94 | 1102.23 | 1083.57 | 1058.37 | 1024.39 | 1002.26 | 981.10 | 948.95 | 934.55 |
Forest | 1264.89 | 1320.86 | 1317.44 | 1320.46 | 1331.89 | 1343.09 | 1340.86 | 1377.08 | 1412.75 |
Grass Land | 69.25 | 64.85 | 61.09 | 74.20 | 68.60 | 70.51 | 69.65 | 72.00 | 84.66 |
Shrub | 110.97 | 94.44 | 106.15 | 116.31 | 128.91 | 139.93 | 147.47 | 157.45 | 105.51 |
Water Body | 194.57 | 140.40 | 195.04 | 196.48 | 180.34 | 177.21 | 188.67 | 172.03 | 181.43 |
Others | 59.10 | 75.01 | 53.95 | 52.49 | 58.89 | 58.85 | 55.21 | 53.34 | 53.96 |
Barren | 22.12 | 47.66 | 26.19 | 23.24 | 38.50 | 38.13 | 35.75 | 36.82 | 32.36 |
Public Use | 17.38 | 31.73 | 31.81 | 31.85 | 38.97 | 38.93 | 46.88 | 47.09 | 50.74 |
Residential | 25.19 | 34.27 | 36.22 | 38.06 | 40.93 | 42.49 | 45.83 | 46.65 | 55.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rimal, B.; Tiwary, A. Monitoring Hazards in Dam Environments Using Remote Sensing Techniques: Case of Kulekhani-I Reservoir in Nepal. Earth 2024, 5, 873-895. https://doi.org/10.3390/earth5040044
Rimal B, Tiwary A. Monitoring Hazards in Dam Environments Using Remote Sensing Techniques: Case of Kulekhani-I Reservoir in Nepal. Earth. 2024; 5(4):873-895. https://doi.org/10.3390/earth5040044
Chicago/Turabian StyleRimal, Bhagawat, and Abhishek Tiwary. 2024. "Monitoring Hazards in Dam Environments Using Remote Sensing Techniques: Case of Kulekhani-I Reservoir in Nepal" Earth 5, no. 4: 873-895. https://doi.org/10.3390/earth5040044