Electrical Utilizations of Air Gap Region Formed on Superhydrophobic Silicone Rubber in NaCl Aqueous Solution
Abstract
1. Introduction
2. Preparation of the Superhydrophobic Silicone Rubber
3. Results and Discussion
3.1. Electrical Insulation in the Air Gap
3.2. Electrolysis of the NaCl Aqueous Solution in the Air Gap
3.3. Generation of Electric Voltage in the Air Gap
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhutani, G.; Muralidhar, K.; Khandekar, S. Drop Dynamics and Dropwise Condensation on Textured Surfaces; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Chu, F. Condensed and Melting Droplet Behavior on Superhydrophobic Surfaces; Springer: Singapore, 2021. [Google Scholar]
- Katasho, Y.; Liang, Y.; Murata, S.; Fukunaka, Y.; Matsuoka, T.; Takahashi, S. Mechanisms for enhanced hydrophobicity by atomic-scale roughness. Sci. Rep. 2015, 5, 13790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishino, T.; Meguro, M.; Nakamae, K.; Matsushita, M.; Ueda, Y. The lowest surface free energy based on −CF3 alignment. Langmuir 1999, 15, 4321–4323. [Google Scholar] [CrossRef]
- Karapanagiotis, I.; Manoudis, P. Superhydrophobic and Water-Repellent Polymer-Nanoparticle Composite Films. In Industrial Applications for Intelligent Polymers and Coatings; Hosseini, M., Makhlouf, A.S.H., Eds.; Springer: Cham, Switzerland, 2016; pp. 205–221. [Google Scholar]
- Narhe, R.D.; Beysens, D.A. Water condensation on a super-hydrophobic spike surface. EPL 2006, 75, 98–104. [Google Scholar] [CrossRef]
- Parvate, S.; Dixit, P.; Chattopadhyay, S. Superhydrophobic surfaces: Insights from theory and experiment. J. Phys. Chem. B 2020, 124, 1323–1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Darmanin, T.; Guittard, F. Superhydrophobic and superoleophobic properties in nature. Mater. Today 2015, 18, 273–285. [Google Scholar] [CrossRef]
- Li, S.; Tian, Z.; Liu, X.; Han, Z.; Ren, L. Biomimetic superhydrophobic and antibacterial stainless-steel mesh via double-potentiostatic electrodeposition and modification. Surf. Coat. Technol. 2020, 403, 126355. [Google Scholar] [CrossRef]
- Du, X.; Xin, B.; Xu, J.; Wang, C. Biomimetic superhydrophobic membrane with multi-scale porous microstructure for waterproof and breathable application. Colloids Surf. A Physicochem. Eng. Asp. 2021, 612, 125924. [Google Scholar] [CrossRef]
- Wu, Y.; Dong, L.; Shu, X.; Yang, Y.; She, W.; Ran, Q. A review on recent advances in the fabrication and evaluation of superhydrophobic concrete. Compos. B. Eng. 2022, 237, 109867. [Google Scholar] [CrossRef]
- Hong, X.; Hu, H.; Yan Gao, Y. Thermodynamic analysis and prediction on the wetting properties of pore array superhydrophobic laser-texturing surfaces. J. Appl. Phys. 2021, 129, 215302. [Google Scholar] [CrossRef]
- Latthe, S.S.; Sutar, R.S.; Kodag, V.S.; Bhosale, A.K.; Kumar, A.M.; Sadasivuni, K.K.; Xing, R.; Liu, S. Self-cleaning superhydrophobic coatings: Potential industrial applications. Prog. Org. Coat. 2019, 128, 52–58. [Google Scholar] [CrossRef]
- Vercillo, V.; Cardoso, J.T.; Huerta-Murillo, D.; Tonnicchia, S.; Laroche, A.; Guillén, J.A.M.; Ocaña, J.L.; Lasagni, A.F.; Bonaccurso, E. Durability of superhydrophobic laser-treated metal surfaces under icing conditions. Mater. Lett. X 2019, 3, 100021. [Google Scholar] [CrossRef]
- Cao, M.; Guo, D.; Yu, C.; Li, K.; Liu, M.; Jiang, L. Water-repellent properties of superhydrophobic and lubricant-infused “slippery” surfaces: A brief study on the functions and applications. ACS Appl. Mater. Interfaces 2016, 8, 3615–3623. [Google Scholar] [CrossRef] [PubMed]
- Takao, H.; Okoshi, M.; Inoue, N. Swelling and modification of silicone surface by F2 laser irradiation. Appl. Phys. A 2004, 79, 1571–1574. [Google Scholar] [CrossRef]
- Okoshi, M.; Pambudi, W.S. Fabrication of superhydrophobic silicone rubber by ArF-excimer-laser-induced microstructuring for repelling water in water. Appl. Phys. Express 2016, 9, 112701. [Google Scholar] [CrossRef]
- Nojiri, H.; Pambudi, W.S.; Okoshi, M. Formation of periodic micro-swelling structures on silicone rubber surface by ArF excimer laser to realize superhydrophobic property. Jpn. J. Appl. Phys. 2017, 56, 072002. [Google Scholar] [CrossRef]
- Okoshi, M.; Awaihara, Y.; Yamashita, T.; Inoue, N. F2-laser-induced micro/nanostructuring and surface modification of iron thin film to realize hydrophobic and corrosion resistant. Jpn. J. Appl. Phys. 2014, 53, 112701. [Google Scholar] [CrossRef]
- Okoshi, M. Fabrication of superhydrophobic silicone rubber operating in water. Appl. Phys. Express 2018, 11, 101801. [Google Scholar] [CrossRef]
- Okoshi, M. Formation of textured Al thin film on silicone rubber to obtain superhydrophobic property. SN Appl. Sci. 2018, 1, 133. [Google Scholar] [CrossRef] [Green Version]
- Boccia, C.K.; Swierk, L.; Varela, F.P.A.; Boccia, J.; Borges, I.L.; Estupiñán, C.A.; Martin, A.M.; Grimaldo, R.E.M.; Ovalle, S.; Senthivasan, S.; et al. Repeated evolution of underwater rebreathing in diving Anolis lizards. Curr. Biol. 2021, 31, 2947–2954. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okoshi, M. Electrical Utilizations of Air Gap Region Formed on Superhydrophobic Silicone Rubber in NaCl Aqueous Solution. Micro 2022, 2, 488-494. https://doi.org/10.3390/micro2030030
Okoshi M. Electrical Utilizations of Air Gap Region Formed on Superhydrophobic Silicone Rubber in NaCl Aqueous Solution. Micro. 2022; 2(3):488-494. https://doi.org/10.3390/micro2030030
Chicago/Turabian StyleOkoshi, Masayuki. 2022. "Electrical Utilizations of Air Gap Region Formed on Superhydrophobic Silicone Rubber in NaCl Aqueous Solution" Micro 2, no. 3: 488-494. https://doi.org/10.3390/micro2030030
APA StyleOkoshi, M. (2022). Electrical Utilizations of Air Gap Region Formed on Superhydrophobic Silicone Rubber in NaCl Aqueous Solution. Micro, 2(3), 488-494. https://doi.org/10.3390/micro2030030