Transverse Enhancement, Longitudinal Quenching and Coulomb Sum Rule in e-12C and e-16O Quasielastic Scattering †
Abstract
:1. Introduction
2. Analysis and Results
- Coulomb corrections using the effective momentum approximation (EMA) in modeling scattering from nuclear targets.
- Updated nuclear elastic+excitation form factors.
- Superscaling parameters are re-extracted, including the broadening parameter .
- Parameterizations of the free nucleon form factors are re-derived from all and data.
- Rosenfelder Pauli suppression, which reduces and changes the QE distribution at low and .
- Updates of fits to inelastic electron scattering data (in the nucleon resonance region and inelastic continuum) for and .
- A -dependent parameter accounting for the optical potential of final state nucleons.
- Photo-production data in the nucleon resonance region and inelastic continuum.
- Gaussian Fermi smeared nucleon resonance and inelastic continuum. The (Fermi smearing) parameters for pion production and QE can be different.
- Parametrizations of the medium modifications of both the L and T structure functions responsible for the EMC effect (nuclear dependence of inelastic structure functions). These are applied to the free nucleon cross sections prior to the application of the Fermi smearing.
- Parametizations of TE() and as described below.
- QE data at all values of down to = 0.01 GeV (which were not included in the Bosted–Mamyan fit).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bodek, A.; Christy, M.E. Extraction of the Coulomb sum rule, transverse enhancement, and longitudinal quenching from an analysis of all available e-12C and e-16O cross section data. Phys. Rev. C 2022, 106, L061305. [Google Scholar] [CrossRef]
- Bodek, A.; Christy, M.E. Contribution of nuclear excitation electromagnetic form factors in 12C and 16O to the Coulomb sum rule. Phys. Rev. C 2023, 107, 054309. [Google Scholar] [CrossRef]
- Jourdan, J. Quasielastic response functions: The Coulomb sum revisited. Nucl. Phys. A 1996, 603, 117. [Google Scholar] [CrossRef]
- Jourdan, J. Longitudinal response functions: The Coulomb sum revisited. Phys. Lett. B 1995, 353, 189. [Google Scholar] [CrossRef]
- Dieperink, A.E.L.; Nagorny, S.I. Electromagnetic form-factors of the proton in the ‘unphysical’ region from the gamma p —> p e+ e- reaction. Phys. Lett. B 1997, 397, 29. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Terasawa, T.; Nakahara, K.; Torizuka, Y. Excitation of the Giant Resonance in C-12 by Inelastic Electron Scattering. Phys. Rev. C 1971, 3, 1750–1769. [Google Scholar]
- Bosted, P.E.; Mamyan, V. Empirical Fit to electron-nucleus scattering. arXiv 2012, arXiv:1203.2262. [Google Scholar]
- Mamyan, V. Measurements of F2 and R = σL/σT on Nuclear Targets in the Nucleon Resonance Region. Ph.D. Thesis, The University of Virginia, Charlottesville, VA, USA, 2010. [Google Scholar]
- Amaro, J.E.; Barbaro, M.B.; Caballero, J.A.; Donnelly, T.W.; Molinari, A.; Sick, I. Using electron scattering superscaling to predict charge-changing neutrino cross sections in nuclei. Phys. Rev. C 2005, 71, 015501. [Google Scholar] [CrossRef] [Green Version]
- Amaro, J.E.; Barbar, M.B.; Caballero, J.A.; Gonzalez-Jimenez, R.; Megias, G.D.; Ruiz Simo, J. Electron- versus neutrino-nucleus scattering. J. Phys. G Nucl. Part. Phys. 2020, 47, 124001. [Google Scholar] [CrossRef]
- Lovato, A.; Gandolfi, S.; Carlson, J.; Pieper, S.C.; Schiavilla, R. Electromagnetic response of 12C: A first-principles calculation. Phys. Rev. Lett. 2016, 117, 082501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihaila, B.; Heisenberg, J.H. Microscopic calculation of the inclusive electron scattering structure function in O-16. Phys. Rev. Lett. 2000, 84, 1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cloet, I.C.; Bentz, W.; Thomas, A.W. Relativistic and Nuclear Medium Effects on the Coulomb Sum Rule. Phys. Rev. Lett. 2016, 116, 032701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobczyk, J.E.; Acharya, B.; Bacca, S.; Hagen, G. Coulomb sum rule for 4He and 16O from coupled-cluster theory. Phys. Rev. C 2020, 102, 064312. [Google Scholar] [CrossRef]
- Pandey, V.; Jachowicz, N.; Van Cuyck, T.; Ryckebusch, J.; Martini, M. Low-energy excitations and quasielastic contribution to electron-nucleus and neutrino-nucleus scattering in the continuum random-phase approximation. Phys. Rev. C 2015, 92, 024606. [Google Scholar] [CrossRef] [Green Version]
- Martini, M.; Jachowicz, N.; Ericson, M.; Pandey, V.; Van Cuyck, T.; Van Dessel, N. Electron-neutrino scattering off nuclei from two different theoretical perspectives. Phys. Rev. C 2016, 94, 015501. [Google Scholar] [CrossRef] [Green Version]
- Pandey, V.; Jachowicz, N.; Martini, M.; Gonzalez-Jimenez, R.; Ryckebusch, J.; Van Cuyck, T.; Van Dessel, N. Impact of low-energy nuclear excitations on neutrino-nucleus scattering at MiniBooNE and T2K kinematics. Phys. Rev. C 2016, 94, 054609. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bodek, A.; Christy, M.E. Transverse Enhancement, Longitudinal Quenching and Coulomb Sum Rule in e-12C and e-16O Quasielastic Scattering. Phys. Sci. Forum 2023, 8, 12. https://doi.org/10.3390/psf2023008012
Bodek A, Christy ME. Transverse Enhancement, Longitudinal Quenching and Coulomb Sum Rule in e-12C and e-16O Quasielastic Scattering. Physical Sciences Forum. 2023; 8(1):12. https://doi.org/10.3390/psf2023008012
Chicago/Turabian StyleBodek, Arie, and Michael Eric Christy. 2023. "Transverse Enhancement, Longitudinal Quenching and Coulomb Sum Rule in e-12C and e-16O Quasielastic Scattering" Physical Sciences Forum 8, no. 1: 12. https://doi.org/10.3390/psf2023008012
APA StyleBodek, A., & Christy, M. E. (2023). Transverse Enhancement, Longitudinal Quenching and Coulomb Sum Rule in e-12C and e-16O Quasielastic Scattering. Physical Sciences Forum, 8(1), 12. https://doi.org/10.3390/psf2023008012