Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (343)

Search Parameters:
Keywords = IMERG

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 11175 KiB  
Article
Performance Evaluation of Satellite Precipitation Products During Extreme Events—The Case of the Medicane Daniel in Thessaly, Greece
by Dimitrios Katsanos, Adrianos Retalis, John Kalogiros, Basil E. Psiloglou, Nikolaos Roukounakis and Marios Anagnostou
Remote Sens. 2024, 16(22), 4216; https://doi.org/10.3390/rs16224216 - 12 Nov 2024
Viewed by 280
Abstract
Mediterranean tropical-like cyclones, or Medicanes, present unique challenges for precipitation estimations due to their rapid development and localized impacts. This study evaluates the performance of satellite precipitation products in capturing the precipitation associated with Medicane Daniel that struck Greece in early September 2023. [...] Read more.
Mediterranean tropical-like cyclones, or Medicanes, present unique challenges for precipitation estimations due to their rapid development and localized impacts. This study evaluates the performance of satellite precipitation products in capturing the precipitation associated with Medicane Daniel that struck Greece in early September 2023. Utilizing a combination of ground-based observations, reanalysis, and satellite-derived precipitation data, we assess the accuracy and spatial distribution of the satellite precipitation products GPM IMERG, GSMaP, and CMOPRH during the cyclone event, which formed in the Eastern Mediterranean from 4 to 7 September 2023, hitting with unprecedented, enormous amounts of rainfall, especially in the region of Thessaly in central Greece. The results indicate that, while satellite precipitation products demonstrate overall skill in capturing the broad-scale precipitation patterns associated with Medicane Daniel, discrepancies exist in estimating localized intense rainfall rates, particularly in convective cells within the cyclone’s core. Indeed, most of the satellite precipitation products studied in this work showed a misplacement of the highest amounts of associated rainfall, a significant underestimation of the event, and large unbiased root mean square error in the areas of heavy precipitation. The total precipitation field from IMERG Late Run and CMORPH showed the smallest bias (but significant) and good temporal correlation against rain gauges and ERA5-Land reanalysis data as a reference, while IMERG Final Run and GSMaP showed the largest underestimation and overestimation, respectively. Further investigation is needed to improve the representation of extreme precipitation events associated with tropical-like cyclones in satellite precipitation products. Full article
Show Figures

Figure 1

21 pages, 15148 KiB  
Article
Evaluation of Three High-Resolution Satellite and Meteorological Reanalysis Precipitation Datasets over the Yellow River Basin in China
by Meixia Xie, Zhenhua Di, Jianguo Liu, Wenjuan Zhang, Huiying Sun, Xinling Tian, Hao Meng and Xurui Wang
Water 2024, 16(22), 3183; https://doi.org/10.3390/w16223183 - 7 Nov 2024
Viewed by 453
Abstract
Recently, Integrated Multi-satellite Retrievals for the Global Precipitation Measurement (IMERG) mission and European Centre for Medium-Range Weather Forecasts Reanalysis v5 (ERA5) precipitation datasets have been widely used in remote sensing and atmospheric studies, respectively, because of their high accuracy. A dataset of 268 [...] Read more.
Recently, Integrated Multi-satellite Retrievals for the Global Precipitation Measurement (IMERG) mission and European Centre for Medium-Range Weather Forecasts Reanalysis v5 (ERA5) precipitation datasets have been widely used in remote sensing and atmospheric studies, respectively, because of their high accuracy. A dataset of 268 site-gauge precipitation measurements over the Yellow River Basin in China was used in this study to comprehensively evaluate the performance of three high-resolution precipitation products, each with a spatial resolution of 0.1°, consisting of two satellite-derived datasets, IMERG and multisource weighted-ensemble precipitation (MSWEP), and one ERA5-derived dataset, ERA5-Land. The results revealed that the spatial distribution of IMERG annual precipitation closely resembled that of the observed rainfall and generally exhibited a downward trend from southeast to northwest. Among the three products, IMERG had the best performance at the annual scale, whereas ERA5-Land had the worst performance due to significant overestimation. Specifically, IMERG demonstrated the highest correlation coefficient (CC) above 0.8 and the lowest BIAS and root mean square error (RMSE), with values in most regions of 24.79 mm/a and less than 100 mm/a, respectively, whereas ERA5-Land presented the highest RMSE exceeding 500 mm/a, BIAS of 1265.7 mm/a, and the lowest CC below 0.2 in most regions. At the season scale, IMERG also exhibited the best performance across all four seasons, with a maximum of 17.99 mm/a in summer and a minimum of 0.55 mm/a in winter. Following IMERG, the MSWEP data closely aligned with the observations over the entire area in summer, southern China in spring and winter, and middle China in autumn. In addition, IMERG presented the highest Kling–Gupta efficiency coefficient (KGE) of 0.823 at the annual scale and the highest KGE (>0.77) across all four seasons among the three products compared with ERA5-Land and MSWEP, which had KEG values of −2.718 and −0.403, respectively. Notably, ERA5-Land exhibited a significant positive deviation from the observations at both the annual and seasonal scales, whereas the other products presented relatively smaller biases. Full article
Show Figures

Figure 1

25 pages, 10198 KiB  
Article
Estimating Rainfall Anomalies with IMERG Satellite Data: Access via the IPE Web Application
by Kenneth Okechukwu Ekpetere, Amita V. Mehta, James Matthew Coll, Chen Liang, Sandra Ogugua Onochie and Michael Chinedu Ekpetere
Remote Sens. 2024, 16(22), 4137; https://doi.org/10.3390/rs16224137 - 6 Nov 2024
Viewed by 618
Abstract
This study assesses the possibilities of the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG-GPM) to estimate extreme rainfall anomalies. A web application, the IMERG Precipitation Extractor (IPE), was developed which allows for the querying, visualization, and downloading of time-series satellite precipitation data [...] Read more.
This study assesses the possibilities of the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG-GPM) to estimate extreme rainfall anomalies. A web application, the IMERG Precipitation Extractor (IPE), was developed which allows for the querying, visualization, and downloading of time-series satellite precipitation data for points, watersheds, country extents, and digitized areas. The tool supports different temporal resolutions ranging from 30 min to 1 week and facilitates advanced analyses such as anomaly detection and storm tracking, an important component for climate change study. To validate the IMERG precipitation data for anomaly estimation over a 22-year period (2001 to 2022), the Rainfall Anomaly Index (RAI) was calculated and compared with RAI data from 2360 NOAA stations across the conterminous United States (CONUS), considering both dry and wet climate regions. In the dry region, the results showed an average correlation coefficient (CC) of 0.94, a percentage relative bias (PRB) of −22.32%, a root mean square error (RMSE) of 0.96, a mean bias ratio (MBR) of 0.74, a Nash–Sutcliffe Efficiency (NSE) of 0.80, and a Kling–Gupta Efficiency (KGE) of 0.52. In the wet region, the average CC of 0.93, PRB of 24.82%, RMSE of 0.96, MBR of 0.79, NSE of 0.80, and KGE of 0.18 were computed. Median RAI indices from both the IMERG and NOAA indicated an increase in rainfall intensity and frequency since 2010, highlighting growing concerns about climate change. The study suggests that IMERG data can serve as a valuable alternative for modeling extreme rainfall anomalies in data-scarce areas, noting its possibilities, limitations, and uncertainties. The IPE web application also offers a platform for extending research beyond CONUS and advocating for further global climate change studies. Full article
Show Figures

Figure 1

16 pages, 4495 KiB  
Article
How Do Satellite Precipitation Products Affect Water Quality Simulations? A Comparative Analysis of Rainfall Datasets for River Flow and Riverine Nitrate Load in an Agricultural Watershed
by Mahesh R. Tapas
Nitrogen 2024, 5(4), 1015-1030; https://doi.org/10.3390/nitrogen5040065 - 1 Nov 2024
Viewed by 426
Abstract
Excessive nitrate loading from agricultural runoff leads to substantial environmental and economic harm, and although hydrological models are used to mitigate these effects, the influence of various satellite precipitation products (SPPs) on nitrate load simulations is often overlooked. This study addresses this research [...] Read more.
Excessive nitrate loading from agricultural runoff leads to substantial environmental and economic harm, and although hydrological models are used to mitigate these effects, the influence of various satellite precipitation products (SPPs) on nitrate load simulations is often overlooked. This study addresses this research gap by evaluating the impacts of using different satellite precipitation products—ERA5, IMERG, and gridMET—on flow and nitrate load simulations with the Soil and Water Assessment Tool Plus (SWAT+), using the Tar-Pamlico watershed as a case study. Although agricultural activities are higher in the summer, this study found the lowest nitrate load during this season due to reduced runoff. In contrast, the nitrate load was higher in the winter because of increased runoff, highlighting the dominance of water flow in driving riverine nitrate load. This study found that although IMERG predicts the highest annual average flow (120 m3/s in Pamlico Sound), it unexpectedly results in the lowest annual average nitrate load (1750 metric tons/year). In contrast, gridMET estimates significantly higher annual average nitrate loads (3850 metric tons/year). This discrepancy underscores the crucial impact of rainfall datasets on nitrate transport predictions and highlights how the choice of dataset can significantly influence nitrate load simulations. Full article
Show Figures

Figure 1

18 pages, 5420 KiB  
Article
Artificial Intelligence-Based Precipitation Estimation Method Using Fengyun-4B Satellite Data
by Nianqing Liu, Jianying Jiang, Dongyan Mao, Meng Fang, Yun Li, Bowei Han and Suling Ren
Remote Sens. 2024, 16(21), 4076; https://doi.org/10.3390/rs16214076 - 31 Oct 2024
Viewed by 482
Abstract
This paper proposes a novel precipitation estimation method based on FY-4B meteorological satellite data (FY-4B_AI). This method facilitates the spatiotemporal matching of 125 features derived from the multi-temporal and multi-channel data of the FY-4B satellite with precipitation data at stations. Subsequently, a precipitation [...] Read more.
This paper proposes a novel precipitation estimation method based on FY-4B meteorological satellite data (FY-4B_AI). This method facilitates the spatiotemporal matching of 125 features derived from the multi-temporal and multi-channel data of the FY-4B satellite with precipitation data at stations. Subsequently, a precipitation model was constructed using the light gradient boosting machine (LGBM) algorithm. A comparative analysis of FY-4B_AI and GPM/IMERG-L products for over 450 million station cases throughout 2023 revealed the following: (1) The results demonstrate that FY-4B_AI is more accurate than GPM/IMERG-L. Six of the eight evaluation indices exhibit superior performance for FY-4B_AI in comparison to GPM/IMERG-L. These indices include the mean absolute error (MAE), root mean square error (RMSE), relative error (RE), correlation coefficient (CC), probability of detection (POD), and critical success index (CSI). As for the MAE, the results are 1.67 (FY-4B_AI) and 1.92 (GPM/IMERG-L), respectively. The RMSEs are 3.68 and 4.07, respectively. The REs are 17.72% and 26.28%, respectively. The CCs are 0.44 and 0.36, respectively. The PODs are 61.84% and 47.31%, respectively. The CSIs are 0.30 and 0.27, respectively. However, with regard to the mean errors (MEs) and false alarm rates (FARs), FY-4B_AI (−0.88 and 62.85%, respectively) displays a slight degree of inferiority in comparison to GPM/IMERG-L (−0.80 and 62.21%, respectively). (2) An evaluation of two strong weather events to represent the spatial distribution of precipitation in different climatic zones revealed that both FY-4B_AI and GPM/IMERG-L are equally capable of accurately representing these phenomena, irrespective of whether the region in question is humid, as is the case in the southeast, or dry, as is the case in the northwest. Full article
Show Figures

Figure 1

18 pages, 6763 KiB  
Article
Performance Assessment of Satellite-Based Precipitation Products in the 2023 Summer Extreme Precipitation Events over North China
by Zhi Li, Haixia Liang, Sheng Chen, Xiaoyu Li, Yanping Li and Chunxia Wei
Atmosphere 2024, 15(11), 1315; https://doi.org/10.3390/atmos15111315 - 31 Oct 2024
Viewed by 500
Abstract
In the summer of 2023, North China experienced a rare extreme precipitation storm due to Typhoons Doksuri and Khanun, leading to significant secondary disasters and highlighting the urgent need for accurate rainfall forecasting. Satellite-based quantitative precipitation estimation (QPE) products like Integrated Multi-Satellite Retrievals [...] Read more.
In the summer of 2023, North China experienced a rare extreme precipitation storm due to Typhoons Doksuri and Khanun, leading to significant secondary disasters and highlighting the urgent need for accurate rainfall forecasting. Satellite-based quantitative precipitation estimation (QPE) products like Integrated Multi-Satellite Retrievals for GPM (IMERG) and Global Satellite Mapping of Precipitation (GSMaP) from the Global Precipitation Measurement (GPM) Mission have great potential for enhancing forecasts, necessitating a quantitative evaluation before deployment. This study uses a dense rain gauge as a benchmark to assess the accuracy and capability of the latest version 7B IMERG and version 8 GSMaP satellite-based QPE products for the 2023 summer extreme precipitation in North China. These satellite-based QPE products include four satellite-only products, namely IMERG early run (IMERG_ER) and IMERG late run (IMERG_LR), GSMaP near-real-time (GSMaP_NRT), and GSMaP microwave-infrared reanalyzed (GSMaP_MVK), along with two gauge-corrected products, namely IMERG final run (IMERG_FR) and GSMaP gauge adjusted (GSMaP_Gauge). The results show that (1) GSMaP_MVK, IMERG_LR, and IMERG_FR effectively capture the space distribution of the extreme rainfall, with relatively high correlation coefficients (CCs) of approximately 0.77, 0.75, and 0.79. The IMERG_ER, GSMaP_NRT, and GSMaP_Gauge products exhibit a less accurate spatial pattern capture (CCs about 0.66, 0.73, and 0.67, respectively). Each of the six QPE products tends to underestimate rainfall (RBs < 0%). (2) The IMERG products surpass the corresponding GSMaP products in serial rainfall measurement. IMERG_LR demonstrates superior performance with the lowest root-mean-square error (RMSE) (about 0.38 mm), the highest CC (0.97), and less underestimation (RB about −6.37%). (3) The IMERG products at rainfall rates ≥ 30 mm/h, GSMaP_NRT and GSMaP_MVK products at rainfall rates ≥ 55 mm/h, and GSMaP_Gauge products at ≥ 40 mm/h showed marked limitations in event detection, with a near-zero probability of detection (POD) and a nearly 100% false alarm ratio (FAR). In this extreme precipitation event, caution is needed when using the IMERG and GSMaP products. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

18 pages, 10792 KiB  
Article
Precipitation Retrieval from FY-3G/MWRI-RM Based on SMOTE-LGBM
by Yanfang Lv, Lanjie Zhang, Wen Fan and Yibo Zhang
Atmosphere 2024, 15(11), 1268; https://doi.org/10.3390/atmos15111268 - 23 Oct 2024
Viewed by 345
Abstract
Using the FY-3G/MWRI-RM observations, this paper proposes a precipitation retrieval method that combines the Synthetic Minority Over-sampling Technique with Light Gradient Boosting Machine (SMOTE-LGBM) and analyzes the impact of MWRI-RM channel settings on precipitation retrieval. The SMOTE-LGBM-based model consists of two LGBM models [...] Read more.
Using the FY-3G/MWRI-RM observations, this paper proposes a precipitation retrieval method that combines the Synthetic Minority Over-sampling Technique with Light Gradient Boosting Machine (SMOTE-LGBM) and analyzes the impact of MWRI-RM channel settings on precipitation retrieval. The SMOTE-LGBM-based model consists of two LGBM models for precipitation identification and estimation, respectively. The SMOTE method is used to address the imbalance between precipitation and non-precipitation samples. Using the Integrated Multi-Satellite Retrievals for the Global Precipitation Measurement (IMERG) product as a reference, we validate the retrieved precipitation by the SMOTE-LGBM-based model with an independent testing dataset. The critical success indexes are 0.483 and 0.526, and the Pearson correlation coefficients are 0.611 and 0.645 for the ocean and land regions, respectively. The spatial distributions of the retrieved and IMERG accumulated precipitation in the testing dataset are similar. In addition, we visualize and analyze the cases of Meiyu and two typhoons. The results indicate that the SMOTE-LGBM-based model effectively represents the spatial distribution characteristics of precipitation and achieves high agreement with IMERG precipitation products. Overall, the SMOTE-LGBM-based model successfully retrieves precipitation from MWRI-RM and provides accurate precipitation products for FY-3G/MWRI-RM for the first time. Full article
(This article belongs to the Special Issue Precipitation Monitoring and Databases)
Show Figures

Figure 1

18 pages, 9125 KiB  
Article
Spatial-Temporal Evaluation of Satellite-Derived Rainfall Estimations for Water Resource Applications in the Upper Congo River Basin
by Alaba Boluwade
Remote Sens. 2024, 16(20), 3868; https://doi.org/10.3390/rs16203868 - 18 Oct 2024
Viewed by 512
Abstract
Satellite rainfall estimates are robust alternatives to gauge precipitation, especially in Africa, where several watersheds and regional water basins are poorly gauged or ungauged. In this study, six satellite precipitation products, the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS); Tropical Applications of [...] Read more.
Satellite rainfall estimates are robust alternatives to gauge precipitation, especially in Africa, where several watersheds and regional water basins are poorly gauged or ungauged. In this study, six satellite precipitation products, the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS); Tropical Applications of Meteorology Using Satellite and Ground-based Observations (TAMSAT); TRMM Multi-satellite Precipitation Analysis (TMPA); and the National Aeronautics and Space Administration’s new Integrated Multi-SatellitE Retrievals for Global Precipitation Measurement (GPM) early run (IMERG-ER), late run (IMERG-LR), and final run (IMERG-FR), were used to force a gauge-calibrated Soil & Water Assessment Tool (SWAT) model for the Congo River Basin, Central Africa. In this study, the National Centers for Environmental Prediction’s Climate Forecast System Reanalysis (CFSR) calibrated version of the SWAT was used as the benchmark/reference, while scenario versions were created as configurations using each satellite product identified above. CFSR was used as an independent sample to prevent bias toward any of the satellite products. The calibrated CFSR model captured and reproduced the hydrology (timing, peak flow, and seasonality) of this basin using the average monthly discharge from January 1984–December 1991. Furthermore, the results show that TMPA, IMERG-FR, and CHIRPS captured the peak flows and correctly reproduced the seasonality and timing of the monthly discharges (January 2007–December 2010). In contrast, TAMSAT, IMERG-ER, and IMERG-LR overestimated the peak flows. These results show that some of these precipitation products must be bias-corrected before being used for practical applications. The results of this study will be significant in integrated water resource management in the Congo River Basin and other regional river basins in Africa. Most importantly, the results obtained from this study have been hosted in a repository for free access to all interested in hydrology and water resource management in Africa. Full article
(This article belongs to the Special Issue Synergetic Remote Sensing of Clouds and Precipitation II)
Show Figures

Graphical abstract

21 pages, 7364 KiB  
Article
Deriving Tropical Cyclone-Associated Flood Hazard Information Using Clustered GPM-IMERG Rainfall Signatures: Case Study in Dominica
by Catherine Nabukulu, Victor G. Jetten, Janneke Ettema, Bastian van den Bout and Reindert J. Haarsma
Atmosphere 2024, 15(9), 1042; https://doi.org/10.3390/atmos15091042 - 29 Aug 2024
Viewed by 997
Abstract
Various stakeholders seek effective methods to communicate the potential impacts of tropical cyclone (TC) rainfall and subsequent flood hazards. While current methods, such as Intensity–Duration–Frequency curves, offer insights, they do not fully capture TC rainfall complexity and variability. This research introduces an innovative [...] Read more.
Various stakeholders seek effective methods to communicate the potential impacts of tropical cyclone (TC) rainfall and subsequent flood hazards. While current methods, such as Intensity–Duration–Frequency curves, offer insights, they do not fully capture TC rainfall complexity and variability. This research introduces an innovative workflow utilizing GPM-IMERG satellite precipitation estimates to cluster TC rainfall spatial–temporal patterns, thereby illustrating their potential for flood hazard assessment by simulating associated flood responses. The methodology is tested using rainfall time series from a single TC as it traversed a 500 km diameter buffer zone around Dominica. Spatial partitional clustering with K-means identified the spatial clusters of rainfall time series with similar temporal patterns. The optimal value of K = 4 was most suitable for grouping the rainfall time series of the tested TC. Representative precipitation signals (RPSs) from the quantile analysis generalized the cluster temporal patterns. RPSs served as the rainfall input for the openLISEM, an event-based hydrological model simulating related flood characteristics. The tested TC exhibited three spatially distinct levels of rainfall magnitude, i.e., extreme, intermediate, and least intense, each resulting in different flood responses. Therefore, TC rainfall varies in space and time, affecting local flood hazards; flood assessments should incorporate variability to improve response and recovery. Full article
(This article belongs to the Special Issue Advances in Rainfall-Induced Hazard Research)
Show Figures

Figure 1

30 pages, 6101 KiB  
Article
Exploring the Added Value of Sub-Daily Bias Correction of High-Resolution Gridded Rainfall Datasets for Rainfall Erosivity Estimation
by Roland Yonaba, Lawani Adjadi Mounirou, Amadou Keïta, Tazen Fowé, Cheick Oumar Zouré, Axel Belemtougri, Moussa Bruno Kafando, Mahamadou Koïta, Harouna Karambiri and Hamma Yacouba
Hydrology 2024, 11(9), 132; https://doi.org/10.3390/hydrology11090132 - 23 Aug 2024
Viewed by 1083
Abstract
This study evaluates the impact of sub-daily bias correction of gridded rainfall products (RPs) on the estimation rainfall erosivity in Burkina Faso (West African Sahel). Selected RPs, offering half-hourly to hourly rainfall, are assessed against 10 synoptic stations over the period 2001–2020 to [...] Read more.
This study evaluates the impact of sub-daily bias correction of gridded rainfall products (RPs) on the estimation rainfall erosivity in Burkina Faso (West African Sahel). Selected RPs, offering half-hourly to hourly rainfall, are assessed against 10 synoptic stations over the period 2001–2020 to appraise their accuracy. The optimal product (the integrated multi-satellite retrievals for GPM, IMERG) is further used as a reference for bias correction, to adjust the rainfall distribution in the remaining RPs. RPs-derived rainfall erosivity is compared to the global rainfall erosivity database (GloREDa) estimates. The findings indicate that bias correction improves the rainfall accuracy estimation for all RPs, in terms of quantitative, categorial metrics and spatial patterns. It also improved the distributions of rainfall event intensities and duration across all products, which further significantly improved the annual rainfall erosivity estimates at various timescales along with spatial patterns across the country, as compared to raw RPs. The study also highlights that bias correction is effective at aligning annual trends in rainfall with those in rainfall erosivity derived from RPs. The study therefore underscores the added value of bias correction as a practice for improving the rainfall representation in high-resolution RPs before long-term rainfall erosivity assessment, particularly in data-scarce regions vulnerable to land degradation. Full article
Show Figures

Figure 1

30 pages, 12891 KiB  
Article
Evaluation of GPM IMERG Early, Late, and Final Run in Representing Extreme Rainfall Indices in Southwestern Iran
by Mohammad Sadegh Keikhosravi-Kiany and Robert C. Balling
Remote Sens. 2024, 16(15), 2779; https://doi.org/10.3390/rs16152779 - 30 Jul 2024
Viewed by 693
Abstract
The growing concerns about floods have highlighted the need for accurate and detailed precipitation data as extreme precipitation occurrences can lead to catastrophic floods, resulting in significant economic losses and casualties. Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM IMERG) is a [...] Read more.
The growing concerns about floods have highlighted the need for accurate and detailed precipitation data as extreme precipitation occurrences can lead to catastrophic floods, resulting in significant economic losses and casualties. Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM IMERG) is a commonly used high-resolution gridded precipitation dataset and is recognized as trustworthy alternative sources of precipitation data. The aim of this study is to comprehensively evaluate the performance of GPM IMERG Early (IMERG-E), Late (IMERG-L), and Final Run (IMERG-F) in precipitation estimation and their capability in detecting extreme rainfall indices over southwestern Iran during 2001–2020. The Asfezari gridded precipitation data, which are developed using a dense of ground-based observation, were utilized as the reference dataset. The findings indicate that IMERG-F performs reasonably well in capturing many extreme precipitation events (defined by various indices). All three products showed a better performance in capturing fixed and non-threshold precipitation indices across the study region. The findings also revealed that both IMERG-E and IMERG-L have problems in rainfall estimation over elevated areas showing values of overestimations. Examining the effect of land cover type on the accuracy of the precipitation products suggests that both IMERG-E and IMERG-L show large and highly unrealistic overestimations over inland water bodies and permanent wetlands. The results of the current study highlight the potential of IMERG-F as a valuable source of data for precipitation monitoring in the region. Full article
(This article belongs to the Special Issue Remote Sensing of Precipitation Extremes)
Show Figures

Figure 1

21 pages, 6948 KiB  
Article
Has IMERG_V07 Improved the Precision of Precipitation Retrieval in Mainland China Compared to IMERG_V06?
by Hao Guo, Yunfei Tian, Junli Li, Chunrui Guo, Xiangchen Meng, Wei Wang and Philippe De Maeyer
Remote Sens. 2024, 16(14), 2671; https://doi.org/10.3390/rs16142671 - 22 Jul 2024
Viewed by 711
Abstract
Integrated Multi-satellitE Retrievals for GPM (Global Precipitation Measurement) (IMERG) is the primary high spatiotemporal resolution precipitation product of the GPM era. To assess the applicability of the latest released IMERG_V07 in mainland China, this study systematically evaluates the error characteristics of IMERG_V07 from [...] Read more.
Integrated Multi-satellitE Retrievals for GPM (Global Precipitation Measurement) (IMERG) is the primary high spatiotemporal resolution precipitation product of the GPM era. To assess the applicability of the latest released IMERG_V07 in mainland China, this study systematically evaluates the error characteristics of IMERG_V07 from the perspective of different seasons, precipitation intensity, topography, and climate regions on an hourly scale. Ground-based meteorological observations are used as the reference, and the performance improvement of IMERG_V07 relative to IMERG_V06 is verified. Error evaluation is conducted in terms of precipitation amount and precipitation frequency, and an improved error component procedure is utilized to trace the error sources. The results indicate that IMERG_V07 exhibits a smaller RMSE in mainland China, especially with significant improvements in the southeastern region. IMERG_V07 shows better consistency with ground station data. IMERG_V07 shows an overall improvement of approximately 4% in capturing regional average precipitation events compared to IMERG_V06, with the northwest region showing particularly notable enhancement. The error components of IMERG_V06 and IMERG_V07 exhibit similar spatial distributions. IMERG_V07 outperforms V06 in terms of lower Missed bias but slightly underperforms in Hit bias and False bias compared to IMERG_V06. IMERG_V07 shows improved ability in capturing precipitation frequency for different intensities, but challenges remain in capturing heavy precipitation events, missing light precipitation, and winter precipitation events. Both IMERG_V06 and IMERG_V07 exhibit notable topography dependency in terms of Total bias and error components. False bias is the primary error source for both versions, except in winter, where high-altitude regions (DEM > 1200 m) primarily contribute to Missed bias. IMERG_V07 has enhanced the accuracy of precipitation retrieval in high-altitude areas, but there are still limitations in capturing precipitation events. Compared to IMERG_V06, IMERG_V07 demonstrates more concentrated error component values in the four climatic regions, with reduced data dispersion and significant improvement in Missed bias. The algorithm improvements in IMERG_V07 have the most significant impact in arid regions. False bias serves as the primary error source for both satellite-based precipitation estimations in the four climatic regions, with a secondary contribution from Hit bias. The evaluation results of this study offer scientific references for enhancing the algorithm of IMERG products and enhancing users’ understanding of error characteristics and sources in IMERG. Full article
Show Figures

Figure 1

22 pages, 5448 KiB  
Article
IMERG in the Canadian Precipitation Analysis (CaPA) System for Winter Applications
by Stéphane Bélair, Pei-Ning Feng, Franck Lespinas, Dikra Khedhaouiria, David Hudak, Daniel Michelson, Catherine Aubry, Florence Beaudry, Marco L. Carrera and Julie M. Thériault
Atmosphere 2024, 15(7), 763; https://doi.org/10.3390/atmos15070763 - 27 Jun 2024
Viewed by 776
Abstract
Several configurations of the Canadian Precipitation Analysis system (CaPA) currently produce precipitation analyses at Environment and Climate Change Canada (ECCC). To improve CaPA’s performance during the winter season, the impact of assimilating the IMERG V06 product (IMERG: Integrated Multi-satellitE Retrievals for GPM—Global Precipitation [...] Read more.
Several configurations of the Canadian Precipitation Analysis system (CaPA) currently produce precipitation analyses at Environment and Climate Change Canada (ECCC). To improve CaPA’s performance during the winter season, the impact of assimilating the IMERG V06 product (IMERG: Integrated Multi-satellitE Retrievals for GPM—Global Precipitation Measurement mission) into CaPA is examined in this study. Tests are conducted with CaPA’s 10 km deterministic version, evaluated over Canada and the northern part of the United States (USA). Maps from a case study show that IMERG plays a contradictory role in the production of CaPA’s precipitation analyses for a synoptic-scale winter storm over North America’s eastern coast. While its contribution appears to be physically correct over southern portions of the meteorological system, and early in its intensification phase, IMERG displays unrealistic spatial structures over land later in the system’s life cycle when it is located over northern (colder) areas. Objective evaluation of CaPA’s analyses when IMERG is assimilated without any restrictions shows an overall decrease in precipitation, which has a mixed effect (positive and negative) on the bias indicators. But IMERG’s influence on the Equitable Threat Score (ETS), a measure of CaPA’s analyses accuracy, is clearly negative. Using IMERG’s quality index (QI) to filter out areas where it is less accurate improves CaPA’s objective evaluation, leading to better ETS versus the control experiment in which no IMERG data are assimilated. Several diagnostics provide insight into the nature of IMERG’s contribution to CaPA. For the most successful configuration, with a QI threshold of 0.3, IMERG’s impact is mostly found in the warmer parts of the domain, i.e., in northern US states and in British Columbia. Spatial means of the temporal sums of absolute differences between CaPA’s analyses with and without IMERG indicate that this product also contributes meaningfully over land areas covered by snow, and areas where air temperature is below −2 °C (where precipitation is assumed to be in solid phase). Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

17 pages, 5118 KiB  
Article
Evaluation of GPM IMERG Satellite Precipitation Products in Event-Based Flood Modeling over the Sunshui River Basin in Southwestern China
by Xiaoyu Lyu, Zhanling Li and Xintong Li
Remote Sens. 2024, 16(13), 2333; https://doi.org/10.3390/rs16132333 - 26 Jun 2024
Viewed by 1325
Abstract
This study evaluates the applicability of hourly Global Precipitation Measurement Mission (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG) data for event-based flood modeling in the Sunshui River Basin, southwestern China, using the hydrologic modeling system (HEC-HMS) model. The accuracies of IMERG V6, IMERG [...] Read more.
This study evaluates the applicability of hourly Global Precipitation Measurement Mission (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG) data for event-based flood modeling in the Sunshui River Basin, southwestern China, using the hydrologic modeling system (HEC-HMS) model. The accuracies of IMERG V6, IMERG V7, and the corrected IMERG V7 satellite precipitation products (SPPs) were assessed against ground rainfall observations. The performance of flood modeling based on the original and the corrected SPPs was then evaluated and compared. In addition, the ability of different numbers (one–eight) of ground stations to correct IMERG V7 data for flood modeling was investigated. The results indicate that IMERG V6 data generally underestimate the actual rainfall of the study area, while IMERG V7 and the corrected IMERG V7 data using the geographical discrepancy analysis (GDA) method overestimate rainfall. The corrected IMERG V7 data performed best in capturing the actual rainfall events, followed by IMERG V7 and IMERG V6 data, respectively. The IMERG V7-generated flood hydrographs exhibited the same trend as those of the measured data, yet the former generally overestimated the flood peak due to its overestimation of rainfall. The corrected IMERG V7 data led to superior event-based flood modeling performance compared to the other datasets. Furthermore, when the number of ground stations used to correct the IMERG V7 data in the study area was greater than or equal to four, the flood modeling performance was satisfactory. The results confirm the applicability of IMERG V7 data for fine time scales in event-based flood modeling and reveal that using the GDA method to correct SPPs can greatly enhance the accuracy of flood modeling. This study can act as a basis for flood research in data-scarce areas. Full article
Show Figures

Figure 1

21 pages, 6109 KiB  
Article
Evaluating the Performance and Applicability of Satellite Precipitation Products over the Rio Grande–San Juan Basin in Northeast Mexico
by Dariela A. Vázquez-Rodríguez, Víctor H. Guerra-Cobián, José L. Bruster-Flores, Carlos R. Fonseca and Fabiola D. Yépez-Rincón
Atmosphere 2024, 15(7), 749; https://doi.org/10.3390/atmos15070749 - 22 Jun 2024
Viewed by 793
Abstract
Accurate observation of precipitation data is crucial for hydrometeorological applications, requiring temporal and spatial precision. Satellite precipitation products offer a promising solution for obtaining precipitation estimates, facilitating long-term observations from global to local scales. However, assessing their accuracy compared to rain gauge observations [...] Read more.
Accurate observation of precipitation data is crucial for hydrometeorological applications, requiring temporal and spatial precision. Satellite precipitation products offer a promising solution for obtaining precipitation estimates, facilitating long-term observations from global to local scales. However, assessing their accuracy compared to rain gauge observations is essential. This study aims to assess the accuracy and applicability of precipitation data from CMORPH, IMERG, and PERSIANN CCS in the Rio Grande–San Juan Basin in northeast Mexico. The evaluation of estimated precipitation was assessed using the Pearson and Spearman correlations, RMSE, MAE, and BIAS for both monthly and yearly averages. CMORPH showed minimal errors and low underestimation, while IMERG exhibited high correlations with consistent underestimation. PERSIANN CCS had lower correlations, significant overestimation, and higher errors. The Mann–Kendall (MK) test was used to determinate the precipitation trends of observed and estimated data. The observed data showed a significant positive trend in monthly averages, which is not reflected in the annual trend. Furthermore, negative annual trends were found in at least 10 stations across the basin. The application of satellite precipitation data yielded mixed outcomes, with CMORPH showing the highest level of agreement with the trend analysis results from rain gauge data. This demonstrates its reliability for weather and climate studies and suggests the potential for CMORPH to be used as an input in hydrological modeling. Full article
(This article belongs to the Topic Hydrology and Water Resources Management)
Show Figures

Figure 1

Back to TopTop