Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,690)

Search Parameters:
Keywords = Landsat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6256 KiB  
Article
Developing a Method to Estimate Above-Ground Carbon Stock of Forest Tree Species Pinus densata Using Remote Sensing and Climatic Data
by Kai Luo, Yafei Feng, Yi Liao, Jialong Zhang, Bo Qiu, Kun Yang, Chenkai Teng and Tangyan Yin
Forests 2024, 15(11), 2023; https://doi.org/10.3390/f15112023 (registering DOI) - 16 Nov 2024
Abstract
Forest above-ground carbon stock (AGCS) is one of the primary ecological evaluation indicators, so it is crucial to estimate the AGCS accurately. In this research, we added the climatic and topographic factors to the estimation process by a remote sensing approach to explore [...] Read more.
Forest above-ground carbon stock (AGCS) is one of the primary ecological evaluation indicators, so it is crucial to estimate the AGCS accurately. In this research, we added the climatic and topographic factors to the estimation process by a remote sensing approach to explore their impact and to achieve more precise estimations. We hope to develop a more accurate estimation method for AGCS based on remote sensing data and climate data. The random forest (RF) method has good robustness and wide applicability. Therefore, we modeled and predicted the AGCS by RF based on sixty field sample plots of Pinus densata pure forests in southwest China and the factors extracted from Landsat 8 OLI images (source I), Sentinel-2A images (source II), and combined Landsat 8 OLI and Sentinel-2A images (source III). We added the topographic and climatic factors to establish the AGCS estimation model and compared the results. The topographic factors contain elevation, slope, and aspect. Climatic factors contain mean annual temperature, annual precipitation, annual potential evapotranspiration, and monthly mean potential evapotranspiration. It was found that the R2 and RMSE of the model based on source III were better than the R2 and RMSE of the models based on source I and source II. Compared to the models based on source I and source II, the model based on source III improved R2 by up to 0.08, reduced RMSE by up to 2.88 t/ha, and improved P by up to 4.29%. Among the models without adding factors, the model based on source III worked the best, with an R2 of 0.87, an RMSE of 10.81 t/ha, an rRMSE of 23.19%, and a P of 79.71%. Among the models that added topographic factors, the model based on source III worked best after adding elevation, with an R2 of 0.89, an RMSE of 10.01 t/ha, an rRMSE of 21.47%, and a P of 82.17%. Among the models that added climatic factors, the model that added the annual precipitation factor had the best modeling result, with an R2 of 0.90, an RMSE of 9.53 t/ha, an rRMSE of 20.59%, and a P of 83.00%. The prediction result exhibited that the AGCS of the Pinus densata forest in 2021 was 9,737,487.52 t. The combination of Landsat 8 OLI and Sentinel-2A could improve the prediction accuracy of the AGCS. The addition of annual precipitation can effectively improve the accuracy of AGCS estimation. Higher resolution of climate data is needed to enhance the modeling in future work. Full article
25 pages, 20123 KiB  
Article
EDWNet: A Novel Encoder–Decoder Architecture Network for Water Body Extraction from Optical Images
by Tianyi Zhang, Wenbo Ji, Weibin Li, Chenhao Qin, Tianhao Wang, Yi Ren, Yuan Fang, Zhixiong Han and Licheng Jiao
Remote Sens. 2024, 16(22), 4275; https://doi.org/10.3390/rs16224275 (registering DOI) - 16 Nov 2024
Abstract
Automated water body (WB) extraction is one of the hot research topics in the field of remote sensing image processing. To address the challenges of over-extraction and incomplete extraction in complex water scenes, we propose an encoder–decoder architecture semantic segmentation network for high-precision [...] Read more.
Automated water body (WB) extraction is one of the hot research topics in the field of remote sensing image processing. To address the challenges of over-extraction and incomplete extraction in complex water scenes, we propose an encoder–decoder architecture semantic segmentation network for high-precision extraction of WBs called EDWNet. We integrate the Cross-layer Feature Fusion (CFF) module to solve difficulties in segmentation of WB edges, utilizing the Global Attention Mechanism (GAM) module to reduce information diffusion, and combining with the Deep Attention Module (DAM) module to enhance the model’s global perception ability and refine WB features. Additionally, an auxiliary head is incorporated to optimize the model’s learning process. In addition, we analyze the feature importance of bands 2 to 7 in Landsat 8 OLI images, constructing a band combination (RGB 763) suitable for algorithm’s WB extraction. When we compare EDWNet with various other semantic segmentation networks, the results on the test dataset show that EDWNet has the highest accuracy. EDWNet is applied to accurately extract WBs in the Weihe River basin from 2013 to 2021, and we quantitatively analyzed the area changes of the WBs during this period and their causes. The results show that EDWNet is suitable for WB extraction in complex scenes and demonstrates great potential in long time-series and large-scale WB extraction. Full article
Show Figures

Figure 1

17 pages, 15062 KiB  
Article
Dynamics of Irrigated Land Expansion in the Ouémé River Basin Using Field and Remote Sensing Data in the Google Earth Engine
by David Houéwanou Ahoton, Taofic Bacharou, Aymar Yaovi Bossa, Luc Ollivier Sintondji, Benjamin Bonkoungou and Voltaire Midakpo Alofa
Land 2024, 13(11), 1926; https://doi.org/10.3390/land13111926 (registering DOI) - 15 Nov 2024
Viewed by 351
Abstract
The availability of reliable and quantified information on the spatiotemporal distribution of irrigated land at the river basin scale is an essential step towards sustainable management of water resources. This research aims to assess the spatiotemporal extent of irrigated land in the Ouémé [...] Read more.
The availability of reliable and quantified information on the spatiotemporal distribution of irrigated land at the river basin scale is an essential step towards sustainable management of water resources. This research aims to assess the spatiotemporal extent of irrigated land in the Ouémé River basin using Landsat multi-temporal images and ground truth data. A methodology was built around the use of supervised classification and the application of an algorithm based on the logical expression and thresholding of a combination of surface temperature (Ts) and normalized difference vegetation index (NDVI). The findings of the supervised classification showed that agricultural areas were 16,003 km2, 19,732 km2, and 22,850 km2 for the years 2014, 2018, and 2022, respectively. The irrigated land areas were 755 km2, 1143 km2, and 1883 km2 for the same years, respectively. A significant increase in irrigated areas was recorded throughout the study period. The overall accuracy values of 79%, 82%, and 83% obtained during validation of the irrigated land maps indicate a good performance of the algorithm. The results suggest a promising application of the algorithm to obtain up-to-date information on the distribution of irrigated land in several regions of Africa. Full article
(This article belongs to the Special Issue Water Resources and Land Use Planning II)
Show Figures

Figure 1

21 pages, 9120 KiB  
Article
Differentiating Cheatgrass and Medusahead Phenological Characteristics in Western United States Rangelands
by Trenton D. Benedict, Stephen P. Boyte and Devendra Dahal
Remote Sens. 2024, 16(22), 4258; https://doi.org/10.3390/rs16224258 - 15 Nov 2024
Viewed by 222
Abstract
Expansions in the extent and infestation levels of exotic annual grass (EAG) within the rangelands of the western United States are well documented. Land managers are tasked with developing plans to limit EAG spread and prevent irreversible ecosystem deterioration. The most common EAG [...] Read more.
Expansions in the extent and infestation levels of exotic annual grass (EAG) within the rangelands of the western United States are well documented. Land managers are tasked with developing plans to limit EAG spread and prevent irreversible ecosystem deterioration. The most common EAG species and the subject of extensive study is Bromus tectorum (cheatgrass). Cheatgrass has spread rapidly in western rangelands since its initial invasion more than 100 years ago. Another concerning aggressive EAG, Taeniatherum caput-medusae (medusahead), is also commonly found in some of these areas. To control the spread of EAGs, researchers have investigated applying several control methods during different developmental stages of cheatgrass and medusahead. These control strategies require accurate maps of the timing and spatial patterns of the developmental stages to apply mitigation strategies in the correct areas at the right time. In this study, we developed annual phenological datasets for cheatgrass and medusahead with two objectives. The first objective was to determine if cheatgrass and medusahead can be differentiated at 30 m resolution using their phenological differences. The second objective was to establish an annual phenology metric regression tree model used to map the growing seasons of cheatgrass and medusahead. Harmonized Landsat and Sentinel-2 (HLS)-derived predicted weekly cloud-free 30 m normalized difference vegetation index (NDVI) images were used to develop these metric maps. The result of this effort was maps that identify the start and end of sustained growing season time for cheatgrass and medusahead at 30 m for the Snake River Plain and Northern Basin and Range ecoregions. These phenological datasets also identify the start and end-of-season NDVI values, along with maximum NDVI throughout the study period. These metrics may be utilized to characterize annual growth patterns for cheatgrass and medusahead. This approach can be utilized to plan time-sensitive control measures such as herbicide applications or cattle grazing. Full article
Show Figures

Figure 1

21 pages, 7459 KiB  
Article
Deep Learning for Urban Tree Canopy Coverage Analysis: A Comparison and Case Study
by Grayson R. Morgan, Danny Zlotnick, Luke North, Cade Smith and Lane Stevenson
Geomatics 2024, 4(4), 412-432; https://doi.org/10.3390/geomatics4040022 - 14 Nov 2024
Viewed by 233
Abstract
Urban tree canopy (UTC) coverage, or area, is an important metric for monitoring changes in UTC over large areas within a municipality. Several methods have been used to obtain these data, but remote sensing image classification is one of the fastest and most [...] Read more.
Urban tree canopy (UTC) coverage, or area, is an important metric for monitoring changes in UTC over large areas within a municipality. Several methods have been used to obtain these data, but remote sensing image classification is one of the fastest and most reliable over large areas. However, most studies have tested only one or two classification methods to accomplish this while using costly satellite imagery or LiDAR data. This study seeks to compare three urban tree canopy cover classifiers by testing a deep learning U-Net convolutional neural network (CNN), support vector machine learning classifier (SVM) and a random forests machine learning classifier (RF) on cost-free 2012 aerial imagery over a small southern USA city and midsize, growing southern USA city. The results of the experiment are then used to decide the best classifier and apply it to more recent aerial imagery to determine canopy changes over a 10-year period. The changes are subsequently compared visually and statistically with recent urban heat maps derived from thermal Landsat 9 satellite data to compare the means of temperatures within areas of UTC loss and no change. The U-Net CNN classifier proved to provide the best overall accuracy for both cities (89.8% and 91.4%), while also requiring the most training and classification time. When compared spatially with city heat maps, city periphery regions were most impacted by substantial changes in UTC area as cities grow and the outer regions get warmer. Furthermore, areas of UTC loss had higher temperatures than those areas with no canopy change. The broader impacts of this study reach the urban forestry managers at the local, state/province, and national levels as they seek to provide data-driven decisions for policy makers. Full article
(This article belongs to the Topic Geocomputation and Artificial Intelligence for Mapping)
Show Figures

Figure 1

23 pages, 2055 KiB  
Article
Automating the Derivation of Sugarcane Growth Stages from Earth Observation Time Series
by Neha Joshi, Daniel M. Simms and Paul J. Burgess
Remote Sens. 2024, 16(22), 4244; https://doi.org/10.3390/rs16224244 - 14 Nov 2024
Viewed by 387
Abstract
Sugarcane is a high-impact crop used in the majority of global sugar production, with India being the second largest global producer. Understanding the timing and length of sugarcane growth stages is critical to improving the sustainability of sugarcane management. Earth observation (EO) data [...] Read more.
Sugarcane is a high-impact crop used in the majority of global sugar production, with India being the second largest global producer. Understanding the timing and length of sugarcane growth stages is critical to improving the sustainability of sugarcane management. Earth observation (EO) data have been shown to be sensitive to the variation in sugarcane growth, but questions remain as to how to reliably extract sugarcane phenology over wide areas so that this information can be used for effective management. This study develops an automated approach to derive sugarcane growth stages using EO data from Landsat-8 and Sentinel-2 satellite data in the Indian state of Andhra Pradesh. The developed method is then evaluated in the State of Telangana. Normalised difference vegetation index (NDVI) EO data from Landsat-8 and Sentinel-2 were pre-processed to filter out clouds and to harmonise sensor response. Pixel-based cloud filtering was selected over filtering by scene in order to increase the temporal frequency of observations. Harmonising data from two different sensors further increased temporal resolution to 3–6 days (70% of sampled fields). To automate seasonal decomposition, harmonised signals were resampled at 14 days, and low-frequency components, related to seasonal growth, were extracted using a fast Fourier transform. The start and end of each season were extracted from the time series using difference of Gaussian and were compared to assessments based on visual observation for both Unit 1 (R2 = 0.72–0.84) and Unit 2 (R2 = 0.78–0.82). A trapezoidal growth model was then used to derive crop growth stages from satellite-measured phenology for better crop management information. Automated assessments of the start and the end of mid-season growth stages were compared to visual observations in Unit 1 (R2 = 0.56–0.72) and Unit 2 (R2 = 0.36–0.79). Outliers were found to result from cloud cover that was not removed by the initial screening as well as multiple crops or harvesting dates within a single field. These results demonstrate that EO time series can be used to automatically determine the growth stages of sugarcane in India over large areas, without the need for prior knowledge of planting and harvest dates, as a tool for improving sustainable production. Full article
Show Figures

Figure 1

26 pages, 19147 KiB  
Article
Ecological Gate Water Control and Its Influence on Surface Water Dynamics and Vegetation Restoration: A Case Study from the Middle Reaches of the Tarim River
by Jie Wu, Fan Gao, Bing He, Fangyu Sheng, Hailiang Xu, Kun Liu and Qin Zhang
Forests 2024, 15(11), 2005; https://doi.org/10.3390/f15112005 - 14 Nov 2024
Viewed by 305
Abstract
Ecological sluices were constructed along the Tarim River to supplement the ecosystem’s water supply. However, the impact of water regulation by these sluices on the surface water area (SWA) and its relationship with the vegetation response remain unclear. To increase the efficiency of [...] Read more.
Ecological sluices were constructed along the Tarim River to supplement the ecosystem’s water supply. However, the impact of water regulation by these sluices on the surface water area (SWA) and its relationship with the vegetation response remain unclear. To increase the efficiency of ecological water use, it is crucial to study the response of SWA to water control by the ecological gates and its relationship with vegetation restoration. We utilized the Google Earth Engine (GEE) cloud platform, which integrates Landsat-5/7/8 satellite imagery and employs methods such as automated waterbody extraction via mixed index rule sets, field investigation data, Sen + MK trend analysis, mutation analysis, and correlation analysis. Through these techniques, the spatiotemporal variations in SWA in the middle reaches of the Tarim River (MROTR) from 1990–2022 were analyzed, along with the relationships between these variations and vegetation restoration. From 1990–2022, the SWA in the MROTR showed an increasing trend, with an average annual growth rate of 12.47 km2 per year. After the implementation of ecological gates water regulations, the SWA significantly increased, with an average annual growth rate of 28.8 km2 per year, while the ineffective overflow within 8 km of the riverbank notably decreased. The NDVI in the MROTR exhibited an upward trend, with a significant increase in vegetation on the northern bank after ecological sluice water regulation. This intervention also mitigated the downward trend of the medium and high vegetation coverage types. The SWA showed a highly significant negative correlation with low-coverage vegetation within a 5-km range of the river channel in the same year and a significant positive correlation with high-coverage vegetation within a 15-km range. The lag effect of SWA influenced the growth of medium- and high-coverage vegetation. These findings demonstrated that the large increase in SWA induced by ecological gate water regulation positively impacted vegetation restoration. This study provides a scientific basis for water resource regulation and vegetation restoration in arid regions globally. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Vegetation Dynamic and Ecology)
Show Figures

Figure 1

16 pages, 7870 KiB  
Article
Analyzing the Contribution of Urban Land Uses to the Formation of Urban Heat Islands in Urmia City
by Raziyeh Teimouri and Pooran Karbasi
Urban Sci. 2024, 8(4), 208; https://doi.org/10.3390/urbansci8040208 - 13 Nov 2024
Viewed by 524
Abstract
An Urban Heat Island (UHI) is an important variable in climate and environmental studies. Nowadays, population growth and urbanization development are the most important factors affecting the temperature increase in urban areas, which cause the creation of heat islands in urban areas. (1) [...] Read more.
An Urban Heat Island (UHI) is an important variable in climate and environmental studies. Nowadays, population growth and urbanization development are the most important factors affecting the temperature increase in urban areas, which cause the creation of heat islands in urban areas. (1) Background: This study explores the influence of major land uses on the creation of Urban Heat Islands in Urmia city, Iran. (2) Methods: To achieve the aim of this study, Landsat satellite data including Landsat 5 and 8 imageries from the time periods of 1990 and 2023 were used. With the series of data processing and analyses on vegetation cover and land surface temperature, the impact of main land uses on the creation of Urban Heat Islands and the intensification of their effects have been investigated. (3) Results: The analysis reveals that barren lands consistently exhibit the highest temperature, while garden lands show the lowest temperature across both periods. In addition, the spatial distribution of Urban Heat Islands demonstrates a clustered pattern throughout the study period, with hot spots mainly located in the northwestern and southwestern areas. (4) Conclusions: This study’s findings can be helpful for urban policymakers and planners to develop practical strategies to mitigate UHIs and improve climate resilience in cities. Full article
Show Figures

Figure 1

21 pages, 10234 KiB  
Article
Three Years of Google Earth Engine-Based Archaeological Surveys in Iraqi Kurdistan: Results from the Ground
by Riccardo Valente, Eleonora Maset and Marco Iamoni
Remote Sens. 2024, 16(22), 4229; https://doi.org/10.3390/rs16224229 - 13 Nov 2024
Viewed by 346
Abstract
This paper presents the results of a three-year survey (2021–2023), conducted in an area of approximately 356 km2 in Iraqi Kurdistan with the aim of identifying previously undetected archaeological sites. Thanks to the development of a multi-temporal approach based on open multispectral [...] Read more.
This paper presents the results of a three-year survey (2021–2023), conducted in an area of approximately 356 km2 in Iraqi Kurdistan with the aim of identifying previously undetected archaeological sites. Thanks to the development of a multi-temporal approach based on open multispectral satellite data, greater effectiveness was achieved for the recognition of archaeological sites when compared to the use of single archival or freely accessible satellite images, which are typically employed in archaeological research. In particular, the Google Earth Engine services allowed for the efficient utilization of cloud computing resources to handle hundreds of remote sensing images. Using different datasets, namely Landsat 5, Landsat 7 and Sentinel-2, several products were obtained by processing entire stacks of images acquired at different epochs, thus minimizing the adverse effects on site visibility caused by vegetation, crops and cloud coverage and permitting an effective visual inspection and site recognition. Furthermore, spectral signature analysis of every potential site complemented the method. The developed approach was tested on areas that belong to the Land of Nineveh Archaeological Project (LoNAP) and the Upper Greater Zab Archaeological Reconnaissance (UGZAR) project, which had been intensively surveyed in the recent past. This represented an additional challenge to the method, as the most visible and extensive sites (tells) had already been detected. Three years of direct ground-truthing in the field enabled assessment of the outcomes of the remote sensing-based analysis, discovering more than 60 previously undetected sites and confirming the utility of the method for archaeological research in the area of Northern Mesopotamia. Full article
Show Figures

Figure 1

15 pages, 4301 KiB  
Article
Spatial Distribution of Burned Areas from 1986 to 2023 Using Cloud Computing: A Case Study in Amazonas (Peru)
by Elgar Barboza, Efrain Y. Turpo, Aqil Tariq, Rolando Salas López, Samuel Pizarro, Jhon A. Zabaleta-Santisteban, Angel J. Medina-Medina, Katerin M. Tuesta-Trauco, Manuel Oliva-Cruz and Héctor V. Vásquez
Fire 2024, 7(11), 413; https://doi.org/10.3390/fire7110413 - 13 Nov 2024
Viewed by 519
Abstract
Wildfire represents a significant threat to ecosystems and communities in the Department of Amazonas, Peru, causing losses in biodiversity and land degradation and affecting socioeconomic security. The objective of this study was to analyze the spatial and temporal distribution of burned areas (BAs) [...] Read more.
Wildfire represents a significant threat to ecosystems and communities in the Department of Amazonas, Peru, causing losses in biodiversity and land degradation and affecting socioeconomic security. The objective of this study was to analyze the spatial and temporal distribution of burned areas (BAs) from 1986 to 2023 to identify recurrence patterns and their impact on different types of land use and land cover (LULC). Landsat 5, 7, and 8 satellite images, processed by Google Earth Engine (GEE) using a decision tree approach, were used to map and quantify the affected areas. The results showed that the BAs were mainly concentrated in the provinces of Utcubamba, Luya, and Rodríguez de Mendoza, with a total of 1208.85 km2 burned in 38 years. The most affected land covers were pasture/grassland (38.25%), natural cover (forest, dry forest, and shrubland) (29.55%) and agricultural areas (14.74%). Fires were most frequent between June and November, with the highest peaks in September and August. This study provides crucial evidence for the implementation of sustainable management strategies, fire prevention, and restoration of degraded areas, contributing to the protection and resilience of Amazonian ecosystems against future wildfire threats. Full article
Show Figures

Figure 1

22 pages, 16916 KiB  
Article
Estimation of Understory Fine Dead Fuel Moisture Content in Subtropical Forests of Southern China Based on Landsat Images
by Zhengjie Li, Zhiwei Wu, Shihao Zhu, Xiang Hou and Shun Li
Forests 2024, 15(11), 2002; https://doi.org/10.3390/f15112002 - 13 Nov 2024
Viewed by 225
Abstract
The understory fine dead fuel moisture content (DFMC) is an important reference indicator for regional forest fire warnings and risk assessments, and determining it on a large scale is a critical goal. It is difficult to estimate understory fine DFMC directly from satellite [...] Read more.
The understory fine dead fuel moisture content (DFMC) is an important reference indicator for regional forest fire warnings and risk assessments, and determining it on a large scale is a critical goal. It is difficult to estimate understory fine DFMC directly from satellite images due to canopy shading. To address this issue, we used canopy meteorology estimated by Landsat images in combination with explanatory variables to construct random forest models of in-forest meteorology, and then construct random forest models by combining the meteorological factors and explanatory variables with understory fine DFMC obtained from the monitoring device to (1) investigate the feasibility of Landsat images for estimating in-forest meteorology; (2) explore the feasibility of canopy or in-forest meteorology and explanatory variables for estimating understory fine DFMC; and (3) compare the effects of each factor on model accuracy and its effect on understory fine DFMC. The results showed that random forest models improved in-forest meteorology estimation, enhancing in-forest relative humidity, vapor pressure deficit, and temperature by 50%, 34%, and 2.2%, respectively, after adding a topography factor. For estimating understory fine DFMC, models using vapor pressure deficit improved fit by 10.2% over those using relative humidity. Using in-forest meteorology improved fits by 36.2% compared to canopy meteorology. Including topographic factors improved the average fit of understory fine DFMC models by 123.1%. The most accurate model utilized in-forest vapor pressure deficit, temperature, topographic factors, vegetation index, precipitation data, and seasonal factors. Correlations indicated that slope, in-forest vapor pressure deficit, and slope direction were most closely related to understory fine DFMC. The regional understory fine-grained DFMC distribution mapped according to our method can provide important decision support for forest fire risk early warning and fire management. Full article
(This article belongs to the Special Issue Forest Disturbance and Management)
Show Figures

Figure 1

21 pages, 5113 KiB  
Article
A 35-Year Analysis of Vegetation Cover in Rare-Earth Mining Areas Using Landsat Data
by Zhubin Zheng, Yuqing Liu, Na Chen, Ge Liu, Shaohua Lei, Jie Xu, Jianzhong Li, Jingli Ren and Chao Huang
Forests 2024, 15(11), 1999; https://doi.org/10.3390/f15111999 - 13 Nov 2024
Viewed by 208
Abstract
Fractional vegetation cover (FVC) plays a significant role in assessing ecological quality and protection, as well as soil and water conservation. As a typical rare-earth resource county in China, Dingnan County has experienced rapid development due to rare-earth mining, resulting in significant alterations [...] Read more.
Fractional vegetation cover (FVC) plays a significant role in assessing ecological quality and protection, as well as soil and water conservation. As a typical rare-earth resource county in China, Dingnan County has experienced rapid development due to rare-earth mining, resulting in significant alterations to vegetation cover. To elucidate the spatio-temporal changes in vegetation within Dingnan County over the past 35 years and the effects of natural and human factors on these changes, the spatial and temporal variations in FVC were analyzed using Landsat-TM/OLI multispectral images taken in 1988, 1995, 1997, 2002, 2006, 2013, 2017, and 2023. The findings indicate that (1) vegetation coverage in Dingnan County decreased from 1988 to 2002, followed by a gradual increase; (2) high vegetation cover is predominantly found in forested areas that maintain their natural state, while the central town and mining areas exhibit generally low coverage; (3) there are regional differences in the relationship between vegetation cover and environmental factors in Dingnan County. This research facilitates the alignment of ion-type rare-earth mining with ecological protection, thereby promoting the sustainable development of the mining area and providing scientific guidance for local governments to formulate more effective management and protection strategies for the mining ecosystem. Additionally, this research offers a scientific foundation for mining areas globally to develop sustainable policies and informed decision-making regarding environmental protection and sustainable development. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

30 pages, 1419 KiB  
Review
Review of Recent Advances in Remote Sensing and Machine Learning Methods for Lake Water Quality Management
by Ying Deng, Yue Zhang, Daiwei Pan, Simon X. Yang and Bahram Gharabaghi
Remote Sens. 2024, 16(22), 4196; https://doi.org/10.3390/rs16224196 - 11 Nov 2024
Viewed by 795
Abstract
This review examines the integration of remote sensing technologies and machine learning models for efficient monitoring and management of lake water quality. It critically evaluates the performance of various satellite platforms, including Landsat, Sentinel-2, MODIS, RapidEye, and Hyperion, in assessing key water quality [...] Read more.
This review examines the integration of remote sensing technologies and machine learning models for efficient monitoring and management of lake water quality. It critically evaluates the performance of various satellite platforms, including Landsat, Sentinel-2, MODIS, RapidEye, and Hyperion, in assessing key water quality parameters including chlorophyll-a (Chl-a), turbidity, and colored dissolved organic matter (CDOM). This review highlights the specific advantages of each satellite platform, considering factors like spatial and temporal resolution, spectral coverage, and the suitability of these platforms for different lake sizes and characteristics. In addition to remote sensing platforms, this paper explores the application of a wide range of machine learning models, from traditional linear and tree-based methods to more advanced deep learning techniques like convolutional neural networks (CNNs), recurrent neural networks (RNNs), and generative adversarial networks (GANs). These models are analyzed for their ability to handle the complexities inherent in remote sensing data, including high dimensionality, non-linear relationships, and the integration of multispectral and hyperspectral data. This review also discusses the effectiveness of these models in predicting various water quality parameters, offering insights into the most appropriate model–satellite combinations for different monitoring scenarios. Moreover, this paper identifies and discusses the key challenges associated with data quality, model interpretability, and integrating remote sensing imagery with machine learning models. It emphasizes the need for advancements in data fusion techniques, improved model generalizability, and the developing robust frameworks for integrating multi-source data. This review concludes by offering targeted recommendations for future research, highlighting the potential of interdisciplinary collaborations to enhance the application of these technologies in sustainable lake water quality management. Full article
(This article belongs to the Special Issue Remote Sensing Band Ratios for the Assessment of Water Quality)
Show Figures

Figure 1

21 pages, 5589 KiB  
Article
Urban Growth and Land Artificialization in Secondary African Cities: A Spatiotemporal Analysis of Ho (Ghana) and Kpalimé (Togo)
by Tchakouni Sondou, Kouassi Rodolphe Anoumou, Coffi Cyprien Aholou, Jérôme Chenal and Vitor Pessoa Colombo
Urban Sci. 2024, 8(4), 207; https://doi.org/10.3390/urbansci8040207 - 11 Nov 2024
Viewed by 824
Abstract
While many studies have used Earth observations to quantify urbanization in Africa, there is still a lack of empirical evidence on the role of secondary cities in the fastest urbanizing region in the world. Moreover, the diversity of urbanization processes in Africa, which [...] Read more.
While many studies have used Earth observations to quantify urbanization in Africa, there is still a lack of empirical evidence on the role of secondary cities in the fastest urbanizing region in the world. Moreover, the diversity of urbanization processes in Africa, which can be more or less compact in terms of land consumption, remains insufficiently acknowledged and under-documented. This empirical study employed mixed methods to address these research gaps. We analyzed and compared the spatiotemporal dynamics of two secondary African cities, Ho (Ghana) and Kpalimé (Togo), between 1985 and 2020. We compared their spatial growth (the rate of urbanization of land) with their respective population growth rates using Landsat TM and ETM+ imagery, and population data. To understand the factors behind eventual differences between the spatial patterns of urbanization of the two cities, our quantitative analysis based on remote sensing was confronted with qualitative data from individual interviews with key stakeholders. Our results showed two distinct urbanization trajectories between 1985 and 2010, with Ho following a more compact pattern than Kpalimé. Since 2010, however, both cities have tended towards urban sprawl, with an urbanization rate greater than the population growth rate. According to the interviews, the main determinants of urban sprawl in these two secondary cities were the absence of housing policies for low-income groups, the absence or inefficacy of urban master plans, the preponderance of single-family housing, and land speculation. Full article
Show Figures

Figure 1

16 pages, 5136 KiB  
Article
Spatiotemporal Dynamic Analysis of Eutrophication Status Based on Machine Learning-Based Retrieval Algorithm: Case Study in Liangzi Lake, Hubei, China
by Peifeng Li, Fanghua Hao, Hao Wu and Hanjiang Nie
Remote Sens. 2024, 16(22), 4192; https://doi.org/10.3390/rs16224192 - 11 Nov 2024
Viewed by 534
Abstract
The routine monitoring of eutrophication is an important measure for observing the variation in water quality and protecting the ecological health of lakes. However, in situ information reflects eutrophication levels within a limited distance and period. In this study, we retrieved the trophic [...] Read more.
The routine monitoring of eutrophication is an important measure for observing the variation in water quality and protecting the ecological health of lakes. However, in situ information reflects eutrophication levels within a limited distance and period. In this study, we retrieved the trophic level index (TLI) based on Landsat 8 remote sensing images and using a machine learning (ML) method in Liangzi Lake in Hubei Province, China. The results showed that random forest (RF) outperformed other ML algorithms in estimating the TLI, evaluated by its higher fitness through the Monte Carlo method (median values of R2, RMSE, and MAE are 0.54, 0.047, and 0.037, respectively). In general, 8% of the areas of Liangzi Lake presented an increasing eutrophication level from 2014 to 2022, and 20.1% of the areas reached a mild eutrophication level in 2022. In addition, we found that temperature and anthropogenic activities may impact the eutrophication conditions of the lake. This work uses remote sensing imagery and a ML method to monitor the dynamics of the lake’s eutrophication status, thereby providing a valuable reference for pollution control measures and enhancing the efficiency of water resource management. Full article
Show Figures

Figure 1

Back to TopTop