Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,006)

Search Parameters:
Keywords = biosensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 986 KiB  
Article
Electrochemical Aptamer-Based Biosensor for Detecting Pap31, a Biomarker for Carrion’s Disease
by Keaton Silver, Andrew Smith, Haley V. Colling, Nico Tenorio, Teisha J. Rowland and Andrew J. Bonham
Sensors 2024, 24(22), 7295; https://doi.org/10.3390/s24227295 (registering DOI) - 15 Nov 2024
Abstract
Carrion’s disease, caused by infection with the bacterium Bartonella bacilliformis (B. bacilliformis), is effectively treated with antibiotics, but reaches fatality rates of ~90% if untreated. Current diagnostic methods are limited, insufficiently sensitive, or require laboratory technology unavailable in endemic areas. Electrochemical aptamer-based [...] Read more.
Carrion’s disease, caused by infection with the bacterium Bartonella bacilliformis (B. bacilliformis), is effectively treated with antibiotics, but reaches fatality rates of ~90% if untreated. Current diagnostic methods are limited, insufficiently sensitive, or require laboratory technology unavailable in endemic areas. Electrochemical aptamer-based (E-AB) biosensors provide a potential solution for this unmet need, as these biosensors are portable, sensitive, and can rapidly report the detection of small molecule targets. Here, we developed an E-AB biosensor to detect Pap31, a biomarker of Carrion’s disease and an outer membrane protein in B. bacilliformis. We identified an aptamer with Pap31-specific binding affinity using a magnetic pull-down assay with magnetic bead-bound Pap31 and an aptamer library followed by electrophoretic mobility shift assays. We incorporated the Pap31-binding aptamer into a DNA oligonucleotide that changes conformation upon binding Pap31. The resultant Pap31 E-AB biosensor produced a rapid, significant, and target-specific electrical current readout in the buffer, demonstrating an apparent KD of 0.95 nM with a limit of detection of 0.1 nM, and no significant signal change when challenged with off-target proteins. This proof-of-concept Pap31 biosensor design is a first step toward the development of more rapid, sensitive, and portable diagnostic tools for detecting Carrion’s disease. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

14 pages, 2350 KiB  
Article
Ultra-Selective and Sensitive Fluorescent Chemosensor Based on Phage Display-Derived Peptide with an N-Terminal Cu(II)-Binding Motif
by Marta Sosnowska, Tomasz Łęga, Dawid Nidzworski, Marcin Olszewski and Beata Gromadzka
Biosensors 2024, 14(11), 555; https://doi.org/10.3390/bios14110555 - 14 Nov 2024
Viewed by 67
Abstract
Copper, along with gold, was among the first metals that humans employed. Thus, the copper pollution of the world’s water resources is escalating, posing a significant threat to human health and aquatic ecosystems. It is crucial to develop detection technology that is both [...] Read more.
Copper, along with gold, was among the first metals that humans employed. Thus, the copper pollution of the world’s water resources is escalating, posing a significant threat to human health and aquatic ecosystems. It is crucial to develop detection technology that is both low-cost and feasible, as well as ultra-selective and sensitive. This study explored the use of the NH2-Xxx-His motif-derived peptide from phage display technology for ultra-selective Cu2+ detection. Various Cu-binding M13 phage clones were isolated, and their affinity and cross-reactivity for different metal ions were determined. A detailed analysis of the amino acid sequence of the unique Cu-binding peptides was employed. For the development of an optical chemosensor, a peptide with an NH2-Xxx-His motif was selected. The dansyl group was incorporated during solid-phase peptide synthesis, and fluorescence detection assays were employed. The efficacy of the Cu2+-binding peptide was verified through spectroscopic measurements. In summary, we developed a highly selective and sensitive fluorescent chemosensor for Cu2+ detection based on a peptide sequence from a phage display library that carries the N-terminal Xxx-His motif. Full article
(This article belongs to the Special Issue Application of Biosensors in Environmental Monitoring)
Show Figures

Figure 1

18 pages, 8743 KiB  
Article
Highly Sensitive Trimetazidine Determination Using Composite Yttria-Stabilized Zirconia Doped with Titanium Oxide–Carbon Black Biosensor
by Małgorzata Suchanek, Agata Krakowska, Beata Paczosa-Bator and Robert Piech
Materials 2024, 17(22), 5556; https://doi.org/10.3390/ma17225556 - 14 Nov 2024
Viewed by 132
Abstract
A novel composite voltammetric biosensor has been developed for the first time, utilizing a glassy carbon electrode modified with yttria-stabilized zirconia doped with titanium dioxide and carbon black (YSZTiO2-CB/GCE), specifically designed for the detection of trimetazidine (TMZ). The measurement conditions, including [...] Read more.
A novel composite voltammetric biosensor has been developed for the first time, utilizing a glassy carbon electrode modified with yttria-stabilized zirconia doped with titanium dioxide and carbon black (YSZTiO2-CB/GCE), specifically designed for the detection of trimetazidine (TMZ). The measurement conditions, including both the supporting electrolyte and instrumental settings, were optimized to enhance performance. In the concentration range of 0.5 to 7 µM, it is not necessary to use preconcentration time for the determination of TMZ. The limit of detection (for 60 s of preconcentration time) was equal to 5.5 nM (1.87 ng mL−1), outperforming other voltammetric methods in terms of sensitivity. The reproducibility of the trimetazidine signal (with a concentration of 0.05 µM) exhibited a relative standard deviation (RSD) of 3.3% over 10 measurements. Additionally, our biosensor is characterized by excellent stability, ease of use, and straightforward preparation. The proposed biosensor and method have proven effective in analyzing TMZ in a variety of matrices, including urine, blood plasma, pharmaceutical formulations, as well as gastric and intestinal fluids, yielding recovery rates ranging from 97.7 to 102.3%. Full article
Show Figures

Figure 1

37 pages, 3817 KiB  
Review
A Comprehensive Review of Biomarker Sensors for a Breathalyzer Platform
by Pardis Sadeghi, Rania Alshawabkeh, Amie Rui and Nian Xiang Sun
Sensors 2024, 24(22), 7263; https://doi.org/10.3390/s24227263 - 13 Nov 2024
Viewed by 201
Abstract
Detecting volatile organic compounds (VOCs) is increasingly recognized as a pivotal tool in non-invasive disease diagnostics. VOCs are metabolic byproducts, mostly found in human breath, urine, feces, and sweat, whose profiles may shift significantly due to pathological conditions. This paper presents a thorough [...] Read more.
Detecting volatile organic compounds (VOCs) is increasingly recognized as a pivotal tool in non-invasive disease diagnostics. VOCs are metabolic byproducts, mostly found in human breath, urine, feces, and sweat, whose profiles may shift significantly due to pathological conditions. This paper presents a thorough review of the latest advancements in sensor technologies for VOC detection, with a focus on their healthcare applications. It begins by introducing VOC detection principles, followed by a review of the rapidly evolving technologies in this area. Special emphasis is given to functionalized molecularly imprinted polymer-based biochemical sensors for detecting breath biomarkers, owing to their exceptional selectivity. The discussion examines SWaP-C considerations alongside the respective advantages and disadvantages of VOC sensing technologies. The paper also tackles the principal challenges facing the field and concludes by outlining the current status and proposing directions for future research. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

29 pages, 4900 KiB  
Article
Physicochemical Rationale of Matrix Effects Involved in the Response of Hydrogel-Embedded Luminescent Metal Biosensors
by Elise Rotureau, Christophe Pagnout and Jérôme F. L. Duval
Biosensors 2024, 14(11), 552; https://doi.org/10.3390/bios14110552 - 13 Nov 2024
Viewed by 379
Abstract
There is currently a critical need for understanding how the response and activity of whole-cell bacterial reporters positioned in a complex biological or environmental matrix are impacted by the physicochemical properties of their micro-environment. Accordingly, a comprehensive analysis of the bioluminescence response of [...] Read more.
There is currently a critical need for understanding how the response and activity of whole-cell bacterial reporters positioned in a complex biological or environmental matrix are impacted by the physicochemical properties of their micro-environment. Accordingly, a comprehensive analysis of the bioluminescence response of Cd(II)-inducible PzntA-luxCDABE Escherichia coli biosensors embedded in silica-based hydrogels is reported to decipher how metal bioavailability, cell photoactivity and ensuing light bioproduction are impacted by the hydrogel environment and the associated matrix effects. The analysis includes the account of (i) Cd speciation and accumulation in the host hydrogels, in connection with their reactivity and electrostatic properties, and (ii) the reduced bioavailability of resources for the biosensors confined (deep) inside the hydrogels. The measurements of the bioluminescence response of the Cd(II) inducible-lux biosensors in both hydrogels and free-floating cell suspensions are completed by those of the constitutive rrnB P1-luxCDABE E. coli so as to probe cell metabolic activity in these two situations. The approach contributes to unraveling the connections between the electrostatic hydrogel charge, the nutrient/metal bioavailabilities and the resulting Cd-triggered bioluminescence output. Biosensors are hosted in hydrogels with thickness varying between 0 mm (the free-floating cell situation) and 1.6 mm, and are exposed to total Cd concentrations from 0 to 400 nM. The partitioning of bioavailable metals at the hydrogel/solution interface following intertwined metal speciation, diffusion and Boltzmann electrostatic accumulation is addressed by stripping chronopotentiometry. In turn, we detail how the bioluminescence maxima generated by the Cd-responsive cells under all tested Cd concentration and hydrogel thickness conditions collapse remarkably well on a single plot featuring the dependence of bioluminescence on free Cd concentration at the individual cell level. Overall, the construction of this master curve integrates the contributions of key and often overlooked processes that govern the bioavailability properties of metals in 3D matrices. Accordingly, the work opens perspectives for quantitative and mechanistic monitoring of metals by biosensors in environmental systems like biofilms or sediments. Full article
(This article belongs to the Section Environmental Biosensors and Biosensing)
Show Figures

Graphical abstract

16 pages, 2070 KiB  
Article
Evaluation of BLE Star Network for Wireless Wearable Prosthesis/Orthosis Controller
by Kiriaki J. Rajotte, Anson Wooding, Benjamin E. McDonald, Todd R. Farrell, Jianan Li, Xinming Huang and Edward A. Clancy
Appl. Sci. 2024, 14(22), 10455; https://doi.org/10.3390/app142210455 - 13 Nov 2024
Viewed by 301
Abstract
Concomitant improvements in wireless communication and sensor technologies have increased capabilities of wearable biosensors. These improvements have not transferred to wireless prosthesis/orthosis controllers, in part due to strict latency and power consumption requirements. We used a Bluetooth Low Energy 5.3 (BLE) network to [...] Read more.
Concomitant improvements in wireless communication and sensor technologies have increased capabilities of wearable biosensors. These improvements have not transferred to wireless prosthesis/orthosis controllers, in part due to strict latency and power consumption requirements. We used a Bluetooth Low Energy 5.3 (BLE) network to study the influence of the connection interval (10–100 ms) and event length (2500–7500 μs), ranges appropriate for real-time myoelectric prosthesis/orthosis control on the maximum network size, power consumption, and latency. The number of connections increased from 4 to 12 as the connection interval increased from 10 to 50 ms (event length of 2500 μs). For connection intervals ≤50 ms, the number of connections reduced by ≥50% with the increasing event length. At a connection interval of 100 ms, little change was observed in the number of connections vs. event length. Across event lengths, increasing the connection interval from 10 to 100 ms decreased the average power consumed by approximately 16%. Latency measurements showed that an average of one connection interval (maximum of just over two) elapses between the application of the signal at the peripheral node ADC input and its detection on the central node. Overall, reducing the latency using shorter connection intervals reduces the maximum number of connections and increases power consumption. Full article
(This article belongs to the Special Issue New Insights into Embedded Systems for Wearables)
Show Figures

Figure 1

15 pages, 1885 KiB  
Article
Innovative Peptide-Based Plasmonic Optical Biosensor for the Determination of Cholesterol
by Ana Lia Bernardo, Anne Parra, Virginia Cebrián, Óscar Ahumada, Sergio Oddi and Enrico Dainese
Biosensors 2024, 14(11), 551; https://doi.org/10.3390/bios14110551 - 13 Nov 2024
Viewed by 247
Abstract
Plasmonic-based biosensors have gained prominence as potent optical biosensing platforms in both scientific and medical research, attributable to their enhanced sensitivity and precision in detecting biomolecular and chemical interactions. However, the detection of low molecular weight analytes with high sensitivity and specificity remains [...] Read more.
Plasmonic-based biosensors have gained prominence as potent optical biosensing platforms in both scientific and medical research, attributable to their enhanced sensitivity and precision in detecting biomolecular and chemical interactions. However, the detection of low molecular weight analytes with high sensitivity and specificity remains a complex and unresolved issue, posing significant limitations for the advancement of clinical diagnostic tools and medical device technologies. Notably, abnormal cholesterol levels are a well-established indicator of various pathological conditions; yet, the quantitative detection of the free form of cholesterol is complicated by its small molecular size, pronounced hydrophobicity, and the necessity for mediator molecules to achieve efficient sensing. In the present study, a novel strategy for cholesterol quantification was developed, leveraging a plasmonic optical readout in conjunction with a highly specific cholesterol-binding peptide (C-pept) as a biorecognition element, anchored on a functionalized silica substrate. The resulting biosensor exhibited an exceptionally low detection limit of 21.95 µM and demonstrated a linear response in the 10–200 µM range. This peptide-integrated plasmonic sensor introduces a novel one-step competitive method for cholesterol quantification, positioning itself as a highly sensitive biosensing modality for implementation within the AVAC platform, which operates using reflective dark-field microscopy. Full article
(This article belongs to the Special Issue Nanotechnology-Enabled Biosensors)
Show Figures

Graphical abstract

20 pages, 2452 KiB  
Review
Functional Organic Electrochemical Transistor-Based Biosensors for Biomedical Applications
by Zhiyao Wang, Minggao Liu, Yundi Zhao, Yating Chen, Beenish Noureen, Liping Du and Chunsheng Wu
Chemosensors 2024, 12(11), 236; https://doi.org/10.3390/chemosensors12110236 - 13 Nov 2024
Viewed by 270
Abstract
Organic electrochemical transistors (OECTs), as an emerging device for the development of novel biosensors, have attracted more and more attention in recent years, demonstrating their promising prospects and commercial potential. Functional OECTs have been widely applied in the field of biosensors due to [...] Read more.
Organic electrochemical transistors (OECTs), as an emerging device for the development of novel biosensors, have attracted more and more attention in recent years, demonstrating their promising prospects and commercial potential. Functional OECTs have been widely applied in the field of biosensors due to their decisive advantages, such as high transconductance, easy functionalization, and high integration capability. Therefore, this review aims to provide a comprehensive summary of the most recent advances in the application of functional OECT-based biosensors in biomedicine, especially focusing on those biosensors for the detection of physiological and biochemical parameters that are critical for the health of human beings. First, the main components and basic working principles of OECTs will be briefly introduced. In the following, the strategies and key technologies for the preparation of functional OECT-based biosensors will be outlined and discussed with regard to the applications of the detection of various targets, including metabolites, ions, neurotransmitters, electrophysiological parameters, and immunological molecules. Finally, the current main issues and future development trends of functional OECT-based biosensors will be proposed and discussed. The breakthrough in functional OECT-based biosensors is believed to enable such devices to achieve higher performance, and thus, this technology could provide new insight into the future field of medical and life sciences. Full article
(This article belongs to the Special Issue Advancements of Chemical and Biosensors in China—2nd Edition)
Show Figures

Figure 1

22 pages, 1683 KiB  
Review
Algal Biosensors for Detection of Potentially Toxic Pollutants and Validation by Advanced Methods: A Brief Review
by Diego Serrasol do Amaral, Luana Vaz Tholozan, Daisa Hakbart Bonemann, Cristina Jansen-Alves, Wiliam Boschetti, Diogo La Rosa Novo, Neftali Lenin Villarreal Carreno and Claudio Martin Pereira de Pereira
Chemosensors 2024, 12(11), 235; https://doi.org/10.3390/chemosensors12110235 - 13 Nov 2024
Viewed by 251
Abstract
The presence of potentially toxic pollutants, such as pesticides and metal ions, even at low concentrations, can significantly impact aquatic environmental health. This pollution is a globally widespread problem and requires fast and reliable analysis, especially for in-situ identification/quantification. Atomic absorption spectrometry and [...] Read more.
The presence of potentially toxic pollutants, such as pesticides and metal ions, even at low concentrations, can significantly impact aquatic environmental health. This pollution is a globally widespread problem and requires fast and reliable analysis, especially for in-situ identification/quantification. Atomic absorption spectrometry and plasma-based spectrometry techniques have been considered the most analytical tools used to monitor potentially toxic metal ions in aquatic media and other related matrices. The dynamics of global climate change and its correlation with pollution, especially from anthropogenic sources, have encouraged the development of other faster analytical tools for monitoring these pollutants. A noteworthy alternative for determining potentially toxic pollutants is using algae-based biosensors, resulting in a cost reduction and simplification of environmental analysis, enabling a more reliable comprehension of the role of humans in climate change. These biosensors, which may not have the highest sensitivity in quantification, have demonstrated remarkable potential in the identification of potentially toxic pollutants and several field applications. Biosensors can be an excellent biotechnology solution for monitoring global environmental changes. Thus, this review highlights the main advances in developing and comparing algae-based biosensors and other analytical possibilities for the identification of potentially toxic pollutants and their possible applications in environmental analysis. Full article
(This article belongs to the Collection pH Sensors, Biosensors and Systems)
Show Figures

Figure 1

16 pages, 7688 KiB  
Article
Enhanced Detection of Vibrio harveyi Using a Dual-Composite DNAzyme-Based Biosensor
by Siying Li, Shuai Zhang, Weihong Jiang, Yuying Wang, Mingwang Liu, Mingsheng Lyu and Shujun Wang
Biosensors 2024, 14(11), 548; https://doi.org/10.3390/bios14110548 - 13 Nov 2024
Viewed by 289
Abstract
Vibrio harveyi is a serious bacterial pathogen which can infect a wide range of marine organisms, such as marine fish, invertebrates, and shrimp, in aquaculture, causing severe losses. In addition, V. harveyi can be transmitted through food and water, infecting humans and posing [...] Read more.
Vibrio harveyi is a serious bacterial pathogen which can infect a wide range of marine organisms, such as marine fish, invertebrates, and shrimp, in aquaculture, causing severe losses. In addition, V. harveyi can be transmitted through food and water, infecting humans and posing a serious threat to public safety. Therefore, rapid and accurate detection of this pathogen is key for the prevention and control of related diseases. In this study, nine rounds of in vitro screening were conducted with Systematic Evolution of Ligands by Exponential Enrichment (SELEX) technology using unmodified DNA libraries, targeting the crude extracellular matrix (CEM) of V. harveyi. Two DNAzymes, named DVh1 and DVh3, with high activity and specificity were obtained. Furthermore, a fluorescent biosensor with dual DNAzymes was constructed which exhibited improved detection efficiency. The sensor showed a good fluorescence response to multiple aquatic products (i.e., fish, shrimp, and shellfish) infected with V. harveyi, with a detection limit below 11 CFU/mL. The fluorescence signal was observed within 30 min of reaction after target addition. This simple, inexpensive, highly effective, and easy to operate DNAzymes biosensor can be used for field detection of V. harveyi. Full article
(This article belongs to the Section Optical and Photonic Biosensors)
Show Figures

Graphical abstract

34 pages, 4136 KiB  
Review
Synthesis, Functionalization, and Biomedical Applications of Iron Oxide Nanoparticles (IONPs)
by Mostafa Salehirozveh, Parisa Dehghani and Ivan Mijakovic
J. Funct. Biomater. 2024, 15(11), 340; https://doi.org/10.3390/jfb15110340 - 12 Nov 2024
Viewed by 436
Abstract
Iron oxide nanoparticles (IONPs) have garnered significant attention in biomedical applications due to their unique magnetic properties, biocompatibility, and versatility. This review comprehensively examines the synthesis methods, surface functionalization techniques, and diverse biomedical applications of IONPs. Various chemical and physical synthesis techniques, including [...] Read more.
Iron oxide nanoparticles (IONPs) have garnered significant attention in biomedical applications due to their unique magnetic properties, biocompatibility, and versatility. This review comprehensively examines the synthesis methods, surface functionalization techniques, and diverse biomedical applications of IONPs. Various chemical and physical synthesis techniques, including coprecipitation, sol–gel processes, thermal decomposition, hydrothermal synthesis, and sonochemical routes, are discussed in detail, highlighting their advantages and limitations. Surface functionalization strategies, such as ligand exchange, encapsulation, and silanization, are explored to enhance the biocompatibility and functionality of IONPs. Special emphasis is placed on the role of IONPs in biosensing technologies, where their magnetic and optical properties enable significant advancements, including in surface-enhanced Raman scattering (SERS)-based biosensors, fluorescence biosensors, and field-effect transistor (FET) biosensors. The review explores how IONPs enhance sensitivity and selectivity in detecting biomolecules, demonstrating their potential for point-of-care diagnostics. Additionally, biomedical applications such as magnetic resonance imaging (MRI), targeted drug delivery, tissue engineering, and stem cell tracking are discussed. The challenges and future perspectives in the clinical translation of IONPs are also addressed, emphasizing the need for further research to optimize their properties and ensure safety and efficacy in medical applications. This review aims to provide a comprehensive understanding of the current state and future potential of IONPs in both biosensing and broader biomedical fields. Full article
(This article belongs to the Section Biomaterials and Devices for Healthcare Applications)
Show Figures

Figure 1

12 pages, 1852 KiB  
Article
Development of an Escherichia coli Cell-Based Biosensor for Aspirin Monitoring by Genetic Engineering of MarR
by Yeonhong Kim, Yangwon Jeon, Kyeoungseok Song, Haekang Ji, Soon-Jin Hwang and Youngdae Yoon
Biosensors 2024, 14(11), 547; https://doi.org/10.3390/bios14110547 - 12 Nov 2024
Viewed by 430
Abstract
Multiple antibiotic resistance regulators (MarRs) control the transcription of genes in the mar operon of Escherichia coli in the presence of salicylic acid (SA). The interaction with SA induces conformational changes in the MarR released from the promoter of the mar operon, turning [...] Read more.
Multiple antibiotic resistance regulators (MarRs) control the transcription of genes in the mar operon of Escherichia coli in the presence of salicylic acid (SA). The interaction with SA induces conformational changes in the MarR released from the promoter of the mar operon, turning on transcription. We constructed an SA-specific E. coli cell-based biosensor by fusing the promoter of the mar operon (PmarO) and the gene that encodes an enhanced green fluorescent protein (egfp). Because SA and aspirin are structurally similar, a biosensor for monitoring aspirin can be obtained by genetically engineering MarR to be aspirin (ASP)-responsive. To shift the selectivity of MarR toward ASP, we changed the residues around the ligand-binding sites by site-directed mutagenesis. We examined the effects of genetic engineering on MarR by introducing MarRs with PmarO-egfp into E. coli. Among the tested mutants, MarR T72A improved the ASP responses by approximately 3 times compared to the wild-type MarR, while still showing an SA response. Although the MarR T72A biosensor exhibited mutual interference between SA and ASP, it accurately determined the ASP concentration in spiked water and medicine samples with over 90% accuracy. While the ASP biosensors still require improvement, our results provide valuable insights for developing E. coli cell-based biosensors for ASP and transcription factor-based biosensors in general. Full article
(This article belongs to the Special Issue Cell-Based Biosensors for Rapid Detection and Monitoring)
Show Figures

Figure 1

10 pages, 2982 KiB  
Communication
Preliminary Investigation of a Potential Optical Biosensor Using the Diamond™ Nucleic Acid Dye Applied to DNA and Friction Ridge Analysis from Fingerprint Traces
by Martyna Czarnomska, Aneta Lewkowicz, Emilia Gruszczyńska, Katarzyna Walczewska-Szewc, Zygmunt Gryczyński, Piotr Bojarski and Sławomir Steinborn
Biosensors 2024, 14(11), 546; https://doi.org/10.3390/bios14110546 - 11 Nov 2024
Viewed by 431
Abstract
Developments in science and technology lead to an increasing use of scientific evidence in litigation. Interdisciplinary research can improve current procedures and introduce new ones for the disclosure and examination of evidence. The dactyloscopic trace is used for personal identification by matching minutiae [...] Read more.
Developments in science and technology lead to an increasing use of scientific evidence in litigation. Interdisciplinary research can improve current procedures and introduce new ones for the disclosure and examination of evidence. The dactyloscopic trace is used for personal identification by matching minutiae (the minimum required may vary by country) or for extracting DNA material from the trace under investigation. The research presented in this article aims to propose the merging of two currently used personal identification methods, DNA analysis and dactyloscopic trace analysis, which are currently treated as separate forensic traces found at a crime scene. Namely, the forensic trace to be analyzed is the dactyloscopic trace containing DNA, and both sources of information needed for identification are examined as one. Promega’s Diamond™ Nucleic Acid Dye, presented as a safe alternative to ethidium bromide, works by binding to single- and double-stranded DNA and is used to visualize the separation of material in a gel and to detect DNA in forensic samples. Spectroscopic studies as absorption and emission spectra and fluorescence microscopy observations presented in our research confirm that Diamond™ Nucleic Acid Dye can also be used to visualize fingerprints on non-absorbent surfaces and that combining the two methods into one can significantly increase the evidential value and contribute to the design of an innovative fast-acting optical biosensor. Full article
(This article belongs to the Special Issue Advanced Materials in Nano-Photonics and Biosensor Systems)
Show Figures

Figure 1

39 pages, 19969 KiB  
Review
Sonochemical Synthesis of Low-Dimensional Nanostructures and Their Applications—A Review
by Grzegorz Matyszczak, Krzysztof Krawczyk, Albert Yedzikhanau, Konrad Głuc, Miłosz Szymajda, Aleksandra Sobiech and Zuzanna Gackowska
Materials 2024, 17(22), 5488; https://doi.org/10.3390/ma17225488 - 10 Nov 2024
Viewed by 609
Abstract
Sonochemical synthesis is becoming a popular method of preparing various nanomaterials, including metals, carbons, oxides, and chalcogenides. This method is relatively cheap and responds to the challenges of green chemistry as it typically does not involve high temperatures, high pressures, inert atmospheres, or [...] Read more.
Sonochemical synthesis is becoming a popular method of preparing various nanomaterials, including metals, carbons, oxides, and chalcogenides. This method is relatively cheap and responds to the challenges of green chemistry as it typically does not involve high temperatures, high pressures, inert atmospheres, or long reaction times in comparison to other conventional methods. The utilization of ultrasound in synthesis makes the elimination of toxic solvents possible, as well as the execution of the synthesis without the use of reducing and stabilizing agents, while receiving products with the same or even better properties. The application of ultrasound allows for the synthesis of various nanomaterials with different properties for use in fields such as catalysis, electrochemistry, medicine, and biosensors. The final product is influenced by multiple variables such as temperature, pH, reagents, capping agents, time of reaction, and the addition of dopants. Full article
Show Figures

Figure 1

12 pages, 2926 KiB  
Article
Rapid Microfluidic Biosensor for Point-of-Care Determination of Rheumatoid Arthritis via Anti-Cyclic Citrullinated Peptide Antibody Detection
by Wei-Yu Tai, To-Lin Chen, Hsing-Meng Wang and Lung-Ming Fu
Biosensors 2024, 14(11), 545; https://doi.org/10.3390/bios14110545 - 10 Nov 2024
Viewed by 426
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder that causes extensive damage to multiple organs and tissues and has no known cure. This study introduces a microfluidic detection platform that combines a microfluidic reaction chip with a micro-spectrometer to accurately detect the anti-cyclic [...] Read more.
Rheumatoid arthritis (RA) is a chronic autoimmune disorder that causes extensive damage to multiple organs and tissues and has no known cure. This study introduces a microfluidic detection platform that combines a microfluidic reaction chip with a micro-spectrometer to accurately detect the anti-cyclic citrullinated peptide antibody (anti-CCP Ab) biomarker, commonly associated with arthritis. The surface of the microfluidic reaction chip is functionalized using streptavidin to enable the subsequent immobilization of biotinylated-labeled cyclic citrullinated peptide (biotin–CCP) molecules through a streptavidin–biotin reaction. The modified chip is then exposed to anti-CCP Ab, second antibody conjugated with horseradish peroxidase (HRP) (2nd Ab-HRP), 3,3′,5,5′-tetramethylbenzidine (TMB), and a stop solution. Finally, the concentration of the anti-CCP Ab biomarker is determined by analyzing the optical density (OD) of the colorimetric reaction product at 450 nm using a micro-spectrometer. The detection platform demonstrated a strong correlation (R2 = 0.9966) between OD and anti-CCP Ab concentration. This was based on seven control samples with anti-CCP Ab concentrations ranging from 0.625 to 100 ng/mL. Moreover, for 30 artificial serum samples with unknown anti-CCP Ab concentrations, the biosensor achieves a correlation coefficient of (R2 = 0.9650). The proposed microfluidic detection platform offers a fast and effective method for accurately identifying and quantifying the anti-CCP Ab biomarker. Thus, it offers a valuable tool for the early diagnosis and monitoring of RA and its progression in point-of-care settings. Full article
Show Figures

Figure 1

Back to TopTop