Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (96)

Search Parameters:
Keywords = cortical actin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4998 KiB  
Article
The p.R66W Variant in RAC3 Causes Severe Fetopathy Through Variant-Specific Mechanisms
by Ryota Sugawara, Hidenori Ito, Hidenori Tabata, Hiroshi Ueda, Marcello Scala and Koh-ichi Nagata
Cells 2024, 13(23), 2032; https://doi.org/10.3390/cells13232032 - 9 Dec 2024
Viewed by 572
Abstract
RAC3 encodes a small GTPase of the Rho family that plays a critical role in actin cytoskeleton remodeling and intracellular signaling regulation. Pathogenic variants in RAC3, all of which reported thus far affect conserved residues within its functional domains, have been linked [...] Read more.
RAC3 encodes a small GTPase of the Rho family that plays a critical role in actin cytoskeleton remodeling and intracellular signaling regulation. Pathogenic variants in RAC3, all of which reported thus far affect conserved residues within its functional domains, have been linked to neurodevelopmental disorders characterized by diverse phenotypic features, including structural brain anomalies and facial dysmorphism (NEDBAF). Recently, a novel de novo RAC3 variant (NM_005052.3): c.196C>T, p.R66W was identified in a prenatal case with fetal akinesia deformation sequence (a spectrum of conditions that interfere with the fetus’s ability to move), and complex brain malformations featuring corpus callosum agenesis, diencephalosynapsis, kinked brainstem, and vermian hypoplasia. To investigate the mechanisms underlying the association between RAC3 deficiency and this unique, distinct clinical phenotype, we explored the pathophysiological significance of the p.R66W variant in brain development. Biochemical assays revealed a modest enhancement in intrinsic GDP/GTP exchange activity and an inhibitory effect on GTP hydrolysis. Transient expression studies in COS7 cells demonstrated that RAC3-R66W interacts with the downstream effectors PAK1, MLK2, and N-WASP but fails to activate SRF-, AP1-, and NFkB-mediated transcription. Additionally, overexpression of RAC3-R66W significantly impaired differentiation in primary cultured hippocampal neurons. Acute expression of RAC3-R66W in vivo by in utero electroporation resulted in impairments in cortical neuron migration and axonal elongation during corticogenesis. Collectively, these findings suggest that the p.R66W variant may function as an activated version in specific signaling pathways, leading to a distinctive and severe prenatal phenotype through variant-specific mechanisms. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Graphical abstract

22 pages, 4662 KiB  
Article
An Immune-Independent Mode of Action of Tacrolimus in Promoting Human Extravillous Trophoblast Migration Involves Intracellular Calcium Release and F-Actin Cytoskeletal Reorganization
by Ahmad J. H. Albaghdadi, Wei Xu and Frederick W. K. Kan
Int. J. Mol. Sci. 2024, 25(22), 12090; https://doi.org/10.3390/ijms252212090 - 11 Nov 2024
Viewed by 725
Abstract
We have previously reported that the calcineurin inhibitor macrolide immunosuppressant Tacrolimus (TAC, FK506) can promote the migration and invasion of the human-derived extravillous trophoblast cells conducive to preventing implantation failure in immune-complicated gestations manifesting recurrent implantation failure. Although the exact mode of action [...] Read more.
We have previously reported that the calcineurin inhibitor macrolide immunosuppressant Tacrolimus (TAC, FK506) can promote the migration and invasion of the human-derived extravillous trophoblast cells conducive to preventing implantation failure in immune-complicated gestations manifesting recurrent implantation failure. Although the exact mode of action of TAC in promoting implantation has yet to be elucidated, the integral association of its binding protein FKBP12 with the inositol triphosphate receptor (IP3R) regulated intracellular calcium [Ca2+]i channels in the endoplasmic reticulum (ER), suggesting that TAC can mediate its action through ER release of [Ca2+]i. Using the immortalized human-derived first-trimester extravillous trophoblast cells HTR8/SVneo, our data indicated that TAC can increase [Ca2+]I, as measured by fluorescent live-cell imaging using Fluo-4. Concomitantly, the treatment of HTR8/SVneo with TAC resulted in a major dynamic reorganization in the actin cytoskeleton, favoring a predominant distribution of cortical F-actin networks in these trophoblasts. Notably, the findings that TAC was unable to recover [Ca2+]i in the presence of the IP3R inhibitor 2-APB indicate that this receptor may play a crucial role in the mechanism of action of TAC. Taken together, our results suggest that TAC has the potential to influence trophoblast migration through downstream [Ca2+]i-mediated intracellular events and mechanisms involved in trophoblast migration, such as F-actin redistribution. Further research into the mono-therapeutic use of TAC in promoting trophoblast growth and differentiation in clinical settings of assisted reproduction is warranted. Full article
(This article belongs to the Special Issue Physiology and Pathophysiology of Placenta 2.0)
Show Figures

Figure 1

17 pages, 11515 KiB  
Article
Actin Cytoskeleton and Integrin Components Are Interdependent for Slit Diaphragm Maintenance in Drosophila Nephrocytes
by Megan Delaney, Yunpo Zhao, Joyce van de Leemput, Hangnoh Lee and Zhe Han
Cells 2024, 13(16), 1350; https://doi.org/10.3390/cells13161350 - 14 Aug 2024
Cited by 1 | Viewed by 978
Abstract
In nephrotic syndrome, the podocyte filtration structures are damaged in a process called foot process effacement. This is mediated by the actin cytoskeleton; however, which actins are involved and how they interact with other filtration components, like the basement membrane, remains poorly understood. [...] Read more.
In nephrotic syndrome, the podocyte filtration structures are damaged in a process called foot process effacement. This is mediated by the actin cytoskeleton; however, which actins are involved and how they interact with other filtration components, like the basement membrane, remains poorly understood. Here, we used the well-established Drosophila pericardial nephrocyte—the equivalent of podocytes in flies—knockdown models (RNAi) to study the interplay of the actin cytoskeleton (Act5C, Act57B, Act42A, and Act87E), alpha- and beta-integrin (basement membrane), and the slit diaphragm (Sns and Pyd). Knockdown of an actin gene led to variations of formation of actin stress fibers, the internalization of Sns, and a disrupted slit diaphragm cortical pattern. Notably, deficiency of Act5C, which resulted in complete absence of nephrocytes, could be partially mitigated by overexpressing Act42A or Act87E, suggesting at least partial functional redundancy. Integrin localized near the actin cytoskeleton as well as slit diaphragm components, but when the nephrocyte cytoskeleton or slit diaphragm was disrupted, this switched to colocalization, both at the surface and internalized in aggregates. Altogether, the data show that the interdependence of the slit diaphragm, actin cytoskeleton, and integrins is key to the structure and function of the Drosophila nephrocyte. Full article
(This article belongs to the Special Issue Drosophila Model in Molecular Mechanisms of Kidney Dysfunction)
Show Figures

Figure 1

28 pages, 6856 KiB  
Article
Regulatory Role and Cytoprotective Effects of Exogenous Recombinant SELENOM under Ischemia-like Conditions and Glutamate Excitotoxicity in Cortical Cells In Vitro
by Egor A. Turovsky, Egor Y. Plotnikov and Elena G. Varlamova
Biomedicines 2024, 12(8), 1756; https://doi.org/10.3390/biomedicines12081756 - 5 Aug 2024
Viewed by 1026
Abstract
Despite the successes in the prevention and treatment of strokes, it is still necessary to search for effective cytoprotectors that can suppress the damaging factors of cerebral ischemia. Among the known neuroprotectors, there are a number of drugs with a protein nature. In [...] Read more.
Despite the successes in the prevention and treatment of strokes, it is still necessary to search for effective cytoprotectors that can suppress the damaging factors of cerebral ischemia. Among the known neuroprotectors, there are a number of drugs with a protein nature. In the present study, we were able to obtain recombinant SELENOM, a resident of the endoplasmic reticulum that exhibits antioxidant properties in its structure and functions. The resulting SELENOM was tested in two brain injury (in vitro) models: under ischemia-like conditions (oxygen-glucose deprivation/reoxygenation, OGD/R) and glutamate excitotoxicity (GluTox). Using molecular biology methods, fluorescence microscopy, and immunocytochemistry, recombinant SELENOM was shown to dose-dependently suppress ROS production in cortical cells in toxic models, reduce the global increase in cytosolic calcium ([Ca2+]i), and suppress necrosis and late stages of apoptosis. Activation of SELENOM’s cytoprotective properties occurs due to its penetration into cortical cells through actin-dependent transport and activation of the Ca2+ signaling system. The use of SELENOM resulted in increased antioxidant protection of cortical cells and suppression of the proinflammatory factors and cytokines expression. Full article
(This article belongs to the Special Issue Advanced Research in Neuroprotection)
Show Figures

Figure 1

23 pages, 58669 KiB  
Article
Development of Novel Antibacterial Ti-Nb-Ga Alloys with Low Stiffness for Medical Implant Applications
by Rhianna McHendrie, Ngoc Huu Nguyen, Manh Tuong Nguyen, Khosro Fallahnezhad, Krasimir Vasilev, Vi Khanh Truong and Reza Hashemi
J. Funct. Biomater. 2024, 15(6), 167; https://doi.org/10.3390/jfb15060167 - 17 Jun 2024
Viewed by 2122
Abstract
With the rising demand for medical implants and the dominance of implant-associated failures including infections, extensive research has been prompted into the development of novel biomaterials that can offer desirable characteristics. This study develops and evaluates new titanium-based alloys containing gallium additions with [...] Read more.
With the rising demand for medical implants and the dominance of implant-associated failures including infections, extensive research has been prompted into the development of novel biomaterials that can offer desirable characteristics. This study develops and evaluates new titanium-based alloys containing gallium additions with the aim of offering beneficial antibacterial properties while having a reduced stiffness level to minimise the effect of stress shielding when in contact with bone. The focus is on the microstructure, mechanical properties, antimicrobial activity, and cytocompatibility to inform the suitability of the designed alloys as biometals. Novel Ti-33Nb-xGa alloys (x = 3, 5 wt%) were produced via casting followed by homogenisation treatment, where all results were compared to the currently employed alloy Ti-6Al-4V. Optical microscopy, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) results depicted a single beta (β) phase microstructure in both Ga-containing alloys, where Ti-33Nb-5Ga was also dominated by dendritic alpha (α) phase grains in a β-phase matrix. EDS analysis indicated that the α-phase dendrites in Ti-33Nb-5Ga were enriched with titanium, while the β-phase was richer in niobium and gallium elements. Mechanical properties were measured using nanoindentation and microhardness methods, where the Young’s modulus for Ti-33Nb-3Ga and Ti-33Nb-5Ga was found to be 75.4 ± 2.4 and 67.2 ± 1.6 GPa, respectively, a significant reduction of 37% and 44% with respect to Ti-6Al-4V. This reduction helps address the disproportionate Young’s modulus between titanium implant components and cortical bone. Importantly, both alloys successfully achieved superior antimicrobial properties against Gram-negative P. aeruginosa and Gram-positive S. aureus bacteria. Antibacterial efficacy was noted at up to 90 ± 5% for the 3 wt% alloy and 95 ± 3% for the 5 wt% alloy. These findings signify a substantial enhancement of the antimicrobial performance when compared to Ti-6Al-4V which exhibited very small rates (up to 6.3 ± 1.5%). No cytotoxicity was observed in hGF cell lines over 24 h. Cell morphology and cytoskeleton distribution appeared to depict typical morphology with a prominent nucleus, elongated fibroblastic spindle-shaped morphology, and F-actin filamentous stress fibres in a well-defined structure of parallel bundles along the cellular axis. The developed alloys in this work have shown very promising results and are suggested to be further examined towards the use of orthopaedic implant components. Full article
Show Figures

Figure 1

25 pages, 3239 KiB  
Review
Wound Repair of the Cell Membrane: Lessons from Dictyostelium Cells
by Shigehiko Yumura
Cells 2024, 13(4), 341; https://doi.org/10.3390/cells13040341 - 14 Feb 2024
Viewed by 2274
Abstract
The cell membrane is frequently subjected to damage, either through physical or chemical means. The swift restoration of the cell membrane’s integrity is crucial to prevent the leakage of intracellular materials and the uncontrolled influx of extracellular ions. Consequently, wound repair plays a [...] Read more.
The cell membrane is frequently subjected to damage, either through physical or chemical means. The swift restoration of the cell membrane’s integrity is crucial to prevent the leakage of intracellular materials and the uncontrolled influx of extracellular ions. Consequently, wound repair plays a vital role in cell survival, akin to the importance of DNA repair. The mechanisms involved in wound repair encompass a series of events, including ion influx, membrane patch formation, endocytosis, exocytosis, recruitment of the actin cytoskeleton, and the elimination of damaged membrane sections. Despite the absence of a universally accepted general model, diverse molecular models have been proposed for wound repair in different organisms. Traditional wound methods not only damage the cell membrane but also impact intracellular structures, including the underlying cortical actin networks, microtubules, and organelles. In contrast, the more recent improved laserporation selectively targets the cell membrane. Studies on Dictyostelium cells utilizing this method have introduced a novel perspective on the wound repair mechanism. This review commences by detailing methods for inducing wounds and subsequently reviews recent developments in the field. Full article
Show Figures

Figure 1

17 pages, 1620 KiB  
Article
Differentiation States of Phenotypic Transition of Melanoma Cells Are Revealed by 3D Cell Cultures
by Fabrizio Fontana, Michele Sommariva, Martina Anselmi, Francesca Bianchi, Patrizia Limonta and Nicoletta Gagliano
Cells 2024, 13(2), 181; https://doi.org/10.3390/cells13020181 - 17 Jan 2024
Cited by 1 | Viewed by 1852
Abstract
Melanoma is characterized by high metastatic potential favored by the epithelial-to-mesenchymal transition (EMT), leading melanoma cells to exhibit a spectrum of typical EMT markers. This study aimed to analyze the expression of EMT markers in A375 and BLM melanoma cell lines cultured in [...] Read more.
Melanoma is characterized by high metastatic potential favored by the epithelial-to-mesenchymal transition (EMT), leading melanoma cells to exhibit a spectrum of typical EMT markers. This study aimed to analyze the expression of EMT markers in A375 and BLM melanoma cell lines cultured in 2D monolayers and 3D spheroids using morphological and molecular methods. The expression of EMT markers was strongly affected by 3D arrangement and revealed a hybrid phenotype for the two cell lines. Indeed, although E-cadherin was almost undetectable in both A375 and BLM cells, cortical actin was detected in A375 2D monolayers and 3D spheroids and was strongly expressed in BLM 3D spheroids. The mesenchymal marker N-cadherin was significantly up-regulated in A375 3D spheroids while undetectable in BLM cells, but vimentin was similarly expressed in both cell lines at the gene and protein levels. This pattern suggests that A375 cells exhibit a more undifferentiated/mesenchymal phenotype, while BLM cells have more melanocytic/differentiated characteristics. Accordingly, the Zeb1 and 2, Slug, Snail and Twist gene expression analyses showed that they were differentially expressed in 2D monolayers compared to 3D spheroids, supporting this view. Furthermore, A375 cells are characterized by a greater invasive potential, strongly influenced by 3D arrangement, compared to the BLM cell line, as evaluated by SDS-zymography and TIMPs gene expression analysis. Finally, TGF-β1, a master controller of EMT, and lysyl oxidase (LOX), involved in melanoma progression, were strongly up-regulated by 3D arrangement in the metastatic BLM cells alone, likely playing a role in the metastatic phases of melanoma progression. Overall, these findings suggest that A375 and BLM cells possess a hybrid/intermediate phenotype in relation to the expression of EMT markers. The former is characterized by a more mesenchymal/undifferentiated phenotype, while the latter shows a more melanocytic/differentiated phenotype. Our results contribute to the characterization of the role of EMT in melanoma cells and confirm that a 3D cell culture model could provide deeper insight into our understanding of the biology of melanoma. Full article
(This article belongs to the Section Cell Motility and Adhesion)
Show Figures

Figure 1

22 pages, 7650 KiB  
Article
Novel Insights into the Wattle and Daub Model of Entamoeba Cyst Wall Formation and the Importance of Actin Cytoskeleton
by Deepak Krishnan, Meenakshi Pandey, Santoshi Nayak and Sudip K. Ghosh
Pathogens 2024, 13(1), 20; https://doi.org/10.3390/pathogens13010020 - 24 Dec 2023
Cited by 2 | Viewed by 1873
Abstract
The “Wattle and Daub” model of cyst wall formation in Entamoeba invadens has been used to explain encystment in Entamoeba histolytica, the causal agent of amoebiasis, and this process could be a potential target for new antiamoebic drugs. In this study, we [...] Read more.
The “Wattle and Daub” model of cyst wall formation in Entamoeba invadens has been used to explain encystment in Entamoeba histolytica, the causal agent of amoebiasis, and this process could be a potential target for new antiamoebic drugs. In this study, we studied the morphological stages of chitin wall formation in E. invadens in more detail using fluorescent chitin-binding dyes and the immunolocalization of cyst wall proteins. It was found that chitin deposition was mainly initiated on the cell surface at a specific point or at different points at the same time. The cystic wall grew outward and gradually covered the entire surface of the cyst over time, following the model of Wattle and Daub. The onset of chitin deposition was guided by the localization of chitin synthase 1 to the plasma membrane, occurring on the basis of the Jacob lectin in the cell membrane. During encystation, F-actin was reorganized into the cortical region within the early stages of encystation and remained intact until the completion of the chitin wall. The disruption of actin polymerization in the cortical region inhibited proper wall formation, producing wall-less cysts or cysts with defective chitin walls, indicating the importance of the cortical actin cytoskeleton for proper cyst wall formation. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Graphical abstract

15 pages, 6442 KiB  
Article
LLGL2 Inhibits Ovarian Cancer Metastasis by Regulating Cytoskeleton Remodeling via ACTN1
by Qiu-Ying Gu, Yue-Xi Liu, Jin-Long Wang, Xiao-Lan Huang, Ruo-Nan Li and Hua Linghu
Cancers 2023, 15(24), 5880; https://doi.org/10.3390/cancers15245880 - 18 Dec 2023
Cited by 2 | Viewed by 1636
Abstract
Epithelial ovarian cancer is the most lethal gynecological malignant tumor. Although debulking surgery, chemotherapy, and PARP inhibitors have greatly improved survival, the prognosis for patients with advanced EOC without HRD is still poor. LLGL2, as a cell polarity factor, is involved in [...] Read more.
Epithelial ovarian cancer is the most lethal gynecological malignant tumor. Although debulking surgery, chemotherapy, and PARP inhibitors have greatly improved survival, the prognosis for patients with advanced EOC without HRD is still poor. LLGL2, as a cell polarity factor, is involved in maintaining cell polarity and asymmetric cell division. In the study of zebrafish development, LLGL2 regulated the proliferation and migration of epidermal cells and the formation of cortical F-actin. However, the role of LLGL2 in ovarian cancer has not been described. Our study found, through bioinformatics analysis, that low expression of LLGL2 was significantly associated with a more advanced stage and a higher grade of EOC and a poorer survival of patients. Functional experiments that involved LLGL2 overexpression and knockdown showed that LLGL2 inhibited the migration and invasion abilities of ovarian cancer cells in vitro, without affecting their proliferation. LLGL2-overexpressing mice had fewer metastatic implant foci than the controls in vivo. Mechanistically, immunoprecipitation combined with mass spectrometry analysis suggested that LLGL2 regulated cytoskeletal remodeling by interacting with ACTN1. LLGL2 altered the intracellular localization and function of ACTN1 without changing its protein and mRNA levels. Collectively, we uncovered that LLGL2 impaired actin filament aggregation into bundles by interacting with ACTN1, which led to cytoskeleton remodeling and inhibition of the invasion and metastasis of ovarian cancer cells. Full article
(This article belongs to the Section Cancer Metastasis)
Show Figures

Figure 1

24 pages, 38016 KiB  
Article
Dithiothreitol Affects the Fertilization Response in Immature and Maturing Starfish Oocytes
by Nunzia Limatola, Jong Tai Chun, Kazuyoshi Chiba and Luigia Santella
Biomolecules 2023, 13(11), 1659; https://doi.org/10.3390/biom13111659 - 17 Nov 2023
Cited by 1 | Viewed by 1623
Abstract
Immature starfish oocytes isolated from the ovary are susceptible to polyspermy due to the structural organization of the vitelline layer covering the oocyte plasma membrane, as well as the distribution and biochemical properties of the actin cytoskeleton of the oocyte cortex. After the [...] Read more.
Immature starfish oocytes isolated from the ovary are susceptible to polyspermy due to the structural organization of the vitelline layer covering the oocyte plasma membrane, as well as the distribution and biochemical properties of the actin cytoskeleton of the oocyte cortex. After the resumption of the meiotic cycle of the oocyte triggered by the hormone 1-methyladenine, the maturing oocyte reaches fertilizable conditions to be stimulated by only one sperm with a normal Ca2+ response and cortical reaction. This cytoplasmic ripening of the oocyte, resulting in normal fertilization and development, is due to the remodeling of the cortical actin cytoskeleton and germinal vesicle breakdown (GVBD). Since disulfide-reducing agents such as dithiothreitol (DTT) are known to induce the maturation and GVBD of oocytes in many species of starfish, we analyzed the pattern of the fertilization response displayed by Astropecten aranciacus oocytes pre-exposed to DTT with or without 1-MA stimulation. Short treatment of A. aranciacus immature oocytes with DTT reduced the rate of polyspermic fertilization and altered the sperm-induced Ca2+ response by changing the morphology of microvilli, cortical granules, and biochemical properties of the cortical F-actin. At variance with 1-MA, the DTT treatment of immature starfish oocytes for 70 min did not induce GVBD. On the other hand, the DTT treatment caused an alteration in microvilli morphology and a drastic depolymerization of the cortical F-actin, which impaired the sperm-induced Ca2+ response at fertilization and the subsequent embryonic development. Full article
(This article belongs to the Special Issue Gametogenesis and Gamete Interaction)
Show Figures

Figure 1

18 pages, 22452 KiB  
Article
Characterization of the Abracl-Expressing Cell Populations in the Embryonic Mammalian Telencephalon
by Dimitrios Troumpoukis, Andreas Rafail Vasileiou, Nikistratos Siskos, Electra Stylianopoulou, Petros Ypsilantis, George Skavdis and Maria E. Grigoriou
Biomolecules 2023, 13(9), 1337; https://doi.org/10.3390/biom13091337 - 31 Aug 2023
Viewed by 1922
Abstract
Abracl (ABRA C-terminal-like protein) is a small, non-typical winged-helix protein that shares similarity with the C-terminal domain of the protein ABRA (Actin-Binding Rho-Activating protein). The role of Abracl in the cell remains elusive, although in cancer cells, it has been implicated in proliferation, [...] Read more.
Abracl (ABRA C-terminal-like protein) is a small, non-typical winged-helix protein that shares similarity with the C-terminal domain of the protein ABRA (Actin-Binding Rho-Activating protein). The role of Abracl in the cell remains elusive, although in cancer cells, it has been implicated in proliferation, migration and actin dynamics. Our previous study showed that Abracl mRNA was expressed in the dividing cells of the subpallial subventricular zone (SVZ), in the developing cortical plate (CP), and in the diencephalic SVZ; however, the molecular identities of the Abracl-expressing cell populations were not defined in that work. In this study, we use double immunofluorescence to characterize the expression of Abracl on sections of embryonic murine (E11.5-E18.5) and feline (E30/31-E33/34) telencephalon; to this end, we use a battery of well-known molecular markers of cycling (Ki67, Ascl1, Dlx2) or post-mitotic (Tubb3, Gad65/67, Lhx6 and Tbr1) cells. Our experiments show that Abracl protein has, compared to the mRNA, a broader expression domain, including, apart from proliferating cells of the subpallial and diencephalic SVZ, post-mitotic cells occupying the subpallial and pallial mantle (including the CP), as well as subpallial-derived migrating interneurons. Interestingly, in late embryonic developmental stages, Abracl was also transiently detected in major telencephalic fiber tracts. Full article
Show Figures

Figure 1

10 pages, 7414 KiB  
Article
F-Actin Organization and Epidermal Cell Morphogenesis in the Brown Alga Sargassum vulgare
by Emmanuel Panteris and Dimitris Pappas
Int. J. Mol. Sci. 2023, 24(17), 13234; https://doi.org/10.3390/ijms241713234 - 26 Aug 2023
Viewed by 1170
Abstract
The ordinary epidermal cells of various vascular plants are characterized by wavy anticlinal wall contours. This feature has not yet been reported in multicellular algal species. Here, we found that, in the leaf-like blades of the brown alga Sargassum vulgare, epidermal cells [...] Read more.
The ordinary epidermal cells of various vascular plants are characterized by wavy anticlinal wall contours. This feature has not yet been reported in multicellular algal species. Here, we found that, in the leaf-like blades of the brown alga Sargassum vulgare, epidermal cells exhibit prominent waviness. Initially, the small meristodermal cells exhibit straight anticlinal contour, which during their growth becomes wavy, in a pattern highly reminiscent of that found in land plants. Waviness is restricted close to the external periclinal wall, while at inner levels the anticlinal walls become thick and even. The mechanism behind this shape relies on cortical F-actin organization. Bundles of actin filaments are organized, extending under the external periclinal wall and connecting its junctions with the anticlinal walls, constituting an interconnected network. These bundles define the sites of local thickening deposition at the anticlinal/periclinal wall junctions. These thickenings are interconnected by cellulose microfibril extensions under the external periclinal wall. Apart from the wavy anticlinal contour, outward protrusions also arise on the external periclinal wall, thus the whole epidermis exhibits a quilted appearance. Apart from highlighting a new role for F-actin in cell shaping, the comparison of this morphogenetic mechanism to that of vascular plants reveals a case of evolutionary convergence among photosynthetic organisms. Full article
(This article belongs to the Special Issue Plant Cytoskeleton: Advances and Novel Functions)
Show Figures

Figure 1

24 pages, 13674 KiB  
Article
Pilot Study of Cytoprotective Mechanisms of Selenium Nanorods (SeNrs) under Ischemia-like Conditions on Cortical Astrocytes
by Elena G. Varlamova, Egor Y. Plotnikov, Ilya V. Baimler, Sergey V. Gudkov and Egor A. Turovsky
Int. J. Mol. Sci. 2023, 24(15), 12217; https://doi.org/10.3390/ijms241512217 - 30 Jul 2023
Cited by 7 | Viewed by 1607
Abstract
The cytoprotective properties of the trace element selenium, its nanoparticles, and selenium nanocomplexes with active compounds are shown using a number of models. To date, some molecular mechanisms of the protective effect of spherical selenium nanoparticles under the action of ischemia/reoxygenation on brain [...] Read more.
The cytoprotective properties of the trace element selenium, its nanoparticles, and selenium nanocomplexes with active compounds are shown using a number of models. To date, some molecular mechanisms of the protective effect of spherical selenium nanoparticles under the action of ischemia/reoxygenation on brain cells have been studied. Among other things, the dependence of the effectiveness of the neuroprotective properties of nanoselenium on its diameter, pathways, and efficiency of penetration into astrocytes was established. In general, most research in the field of nanomedicine is focused on the preparation and study of spherical nanoparticles of various origins due to the ease of their preparation; in addition, spherical nanoparticles have a large specific surface area. However, obtaining and studying the mechanisms of action of nanoparticles of a new form are of great interest since nanorods, having all the positive properties of spherical nanoparticles, will also have a number of advantages. Using the laser ablation method, we managed to obtain and characterize selenium nanorods (SeNrs) with a length of 1 μm and a diameter of 100 nm. Using fluorescence microscopy and inhibitory analysis, we were able to show that selenium nanorods cause the generation of Ca2+ signals in cortical astrocytes in an acute experiment through the mobilization of Ca2+ ions from the thapsigargin-sensitive pool of the endoplasmic reticulum. Chronic use of SeNrs leads to a change in the expression pattern of genes encoding proteins that regulate cell fate and protect astrocytes from ischemia-like conditions and reoxygenation through the inhibition of a global increase in the concentration of cytosolic calcium ([Ca2+]i). An important component of the cytoprotective effect of SeNrs during ischemia/reoxygenation is the induction of reactive A2-type astrogliosis in astrocytes, leading to an increase in both baseline and ischemia/reoxygenation-induced phosphoinositide 3-kinase (PI3K) activity and suppression of necrosis and apoptosis. The key components of this cytoprotective action of SeNrs are the actin-dependent process of endocytosis of nanoparticles into cells and activation of the Ca2+ signaling system of astrocytes. Full article
(This article belongs to the Special Issue Advances in the Prevention and Treatment of Ischemic Diseases)
Show Figures

Figure 1

17 pages, 3271 KiB  
Article
Cell Surface Vibrations Distinguish Malignant from Benign Cells
by Ishay Wohl, Julia Sajman and Eilon Sherman
Cells 2023, 12(14), 1901; https://doi.org/10.3390/cells12141901 - 21 Jul 2023
Viewed by 1668
Abstract
The mechanical properties of living cells, including their shape, rigidity, and internal dynamics play a crucial role in their physiology and pathology. Still, the relations between the physiological cell state and its rigidity and surface vibrations remain poorly understood. Here, we have employed [...] Read more.
The mechanical properties of living cells, including their shape, rigidity, and internal dynamics play a crucial role in their physiology and pathology. Still, the relations between the physiological cell state and its rigidity and surface vibrations remain poorly understood. Here, we have employed AFM measurements on T cells and found a negative relation between cell surface stiffness and its vibrations. Blocking T-type Ca++-channels using Mibefradil reduced cortical actin tension in these cells and enhanced their membrane vibrations and dissipation of intracellular mechanical work to the cell surroundings. We also found increased vibrations of cell membranes in five different malignant cells lines derived from T cell leukemia, lung, prostate, bladder, and melanoma cancers, as compared to their corresponding benign cells. This was demonstrated by utilizing TIRF microscopy in single cells and dynamic laser speckles measurements in an in vitro model of multiple cells in a tissue. Our results show that cell membrane vibrations and dissipation of mechanical work are higher in malignant cells relative to benign cells. Accordingly, these properties may be used to detect and monitor cellular and tissue malignancies. Full article
(This article belongs to the Special Issue Actin-Myosin Cytoskeleton Regulation and Function Series 2)
Show Figures

Graphical abstract

21 pages, 5113 KiB  
Article
A Shared Pathogenic Mechanism for Valproic Acid and SHROOM3 Knockout in a Brain Organoid Model of Neural Tube Defects
by Taylor N. Takla, Jinghui Luo, Roksolana Sudyk, Joy Huang, John Clayton Walker, Neeta L. Vora, Jonathan Z. Sexton, Jack M. Parent and Andrew M. Tidball
Cells 2023, 12(13), 1697; https://doi.org/10.3390/cells12131697 - 23 Jun 2023
Cited by 10 | Viewed by 3041
Abstract
Neural tube defects (NTDs), including anencephaly and spina bifida, are common major malformations of fetal development resulting from incomplete closure of the neural tube. These conditions lead to either universal death (anencephaly) or severe lifelong complications (spina bifida). Despite hundreds of genetic mouse [...] Read more.
Neural tube defects (NTDs), including anencephaly and spina bifida, are common major malformations of fetal development resulting from incomplete closure of the neural tube. These conditions lead to either universal death (anencephaly) or severe lifelong complications (spina bifida). Despite hundreds of genetic mouse models of neural tube defect phenotypes, the genetics of human NTDs are poorly understood. Furthermore, pharmaceuticals, such as antiseizure medications, have been found clinically to increase the risk of NTDs when administered during pregnancy. Therefore, a model that recapitulates human neurodevelopment would be of immense benefit to understand the genetics underlying NTDs and identify teratogenic mechanisms. Using our self-organizing single rosette cortical organoid (SOSR-COs) system, we have developed a high-throughput image analysis pipeline for evaluating the SOSR-CO structure for NTD-like phenotypes. Similar to small molecule inhibition of apical constriction, the antiseizure medication valproic acid (VPA), a known cause of NTDs, increases the apical lumen size and apical cell surface area in a dose-responsive manner. GSK3β and HDAC inhibitors caused similar lumen expansion; however, RNA sequencing suggests VPA does not inhibit GSK3β at these concentrations. The knockout of SHROOM3, a well-known NTD-related gene, also caused expansion of the lumen, as well as reduced f-actin polarization. The increased lumen sizes were caused by reduced cell apical constriction, suggesting that impingement of this process is a shared mechanism for VPA treatment and SHROOM3-KO, two well-known causes of NTDs. Our system allows the rapid identification of NTD-like phenotypes for both compounds and genetic variants and should prove useful for understanding specific NTD mechanisms and predicting drug teratogenicity. Full article
Show Figures

Figure 1

Back to TopTop