Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = land-use regression (LUR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 5657 KiB  
Article
Winter and Summer PM2.5 Land Use Regression Models for the City of Novi Sad, Serbia
by Sonja Dmitrašinović, Jelena Radonić, Marija Živković, Željko Ćirović, Milena Jovašević-Stojanović and Miloš Davidović
Sustainability 2024, 16(13), 5314; https://doi.org/10.3390/su16135314 - 21 Jun 2024
Viewed by 1275
Abstract
In this study, we describe the development of seasonal winter and summer (heating and non-heating season) land use regression (LUR) models for PM2.5 mass concentration for the city of Novi Sad, Serbia. The PM2.5 data were obtained through an extensive seasonal [...] Read more.
In this study, we describe the development of seasonal winter and summer (heating and non-heating season) land use regression (LUR) models for PM2.5 mass concentration for the city of Novi Sad, Serbia. The PM2.5 data were obtained through an extensive seasonal measurement campaign conducted at 21 locations in urban, urban/industrial, industrial and background areas in the period from February 2020–July 2021. At each location, PM2.5 samples were collected on quartz fibre filters for 10 days per season using a reference gravimetric pump. The developed heating season model had two predictors, the first can be associated with domestic heating over a larger area and the second with local traffic. These predictors contributed to the adjusted R2 of 0.33 and 0.55, respectively. The developed non-heating season model had one predictor which can be associated with local traffic, which contributed to the adjusted R2 of 0.40. Leave-one-out cross-validation determined RMSE/mean absolute error for the heating and non-heating season model were 4.04/4.80 μg/m3 and 2.80/3.17 μg/m3, respectively. For purposes of completeness, developed LUR models were also compared to a simple linear model which utilizes satellite aerosol optical depth data for PM2.5 estimation, and showed superior performance. The developed LUR models can help with quantification of differences between seasonal levels of air pollution, and, consequently, air pollution exposure and association between seasonal long-term exposure and possible health risk implications. Full article
Show Figures

Figure 1

15 pages, 6589 KiB  
Article
Application of Integrated Land Use Regression and Geographic Information Systems for Modeling the Spatial Distribution of Chromium in Agricultural Topsoil
by Meng Cao, Daoyuan Wang, Yichun Qian, Ruyue Yu, Aizhong Ding and Yuanfang Huang
Sustainability 2024, 16(13), 5299; https://doi.org/10.3390/su16135299 - 21 Jun 2024
Viewed by 717
Abstract
Chromium (Cr) contamination is widely distributed in agricultural soil and poses a threat to agricultural sustainability. Developing integrated models based on soil survey data can be an effective measure to accurately predict the spatial distribution of Cr. Focused on an agriculturally dominated area, [...] Read more.
Chromium (Cr) contamination is widely distributed in agricultural soil and poses a threat to agricultural sustainability. Developing integrated models based on soil survey data can be an effective measure to accurately predict the spatial distribution of Cr. Focused on an agriculturally dominated area, this study presents a novel hybrid mapping model that combines land use regression (LUR) and geostatistical methods to predict Cr distribution in topsoil and examines the influence of various influencing factors on Cr content. The LUR model was first adopted to screen the influencing factors for Cr predictions. Then LUR, was combined with ordinary Kriging (OK_LUR) and geographically weighted regression Kriging (GWRK_LUR) to describe the spatial distribution of Cr. Results showed that Cr distribution was profoundly influenced by soil Cu and Zn content, the distance between the soil sampling and livestock farm, orchard areas within 100 m, and population density within 1000 m. The developed GWRK_LUR model significantly improved the prediction accuracy of the OK_LUR and LUR models (by 9% and 16%, respectively). This model provides a novel route to account for the spatial distribution of Cr in agricultural topsoil at a regional scale, which has potential application in pollution remediation. Full article
Show Figures

Figure 1

13 pages, 3121 KiB  
Article
Comparison of NO2 and BC Predictions Estimated Using Google Street View-Based and Conventional European-Wide LUR Models in Copenhagen, Denmark
by Shali Tayebi, Jules Kerckhoffs, Jibran Khan, Kees de Hoogh, Jie Chen, Seyed Mahmood Taghavi-Shahri, Marie L. Bergmann, Thomas Cole-Hunter, Youn-Hee Lim, Laust H. Mortensen, Ole Hertel, Rasmus Reeh, Joel Schwartz, Gerard Hoek, Roel Vermeulen, Zorana Jovanovic Andersen, Steffen Loft and Heresh Amini
Atmosphere 2023, 14(11), 1602; https://doi.org/10.3390/atmos14111602 - 26 Oct 2023
Viewed by 1268
Abstract
A widely used method for estimating fine scale long-term spatial variation in air pollution, especially for epidemiology studies, is land use regression (LUR) modeling using fixed off-road monitors. More recently, LUR models have been developed using data from mobile monitors that repeatedly measure [...] Read more.
A widely used method for estimating fine scale long-term spatial variation in air pollution, especially for epidemiology studies, is land use regression (LUR) modeling using fixed off-road monitors. More recently, LUR models have been developed using data from mobile monitors that repeatedly measure road pollutants and mixed-effects modeling. Here, nitrogen dioxide (NO2) and black carbon (BC) predictions from two independent models were compared across streets (defined as 30–60 m road segments) (N = 30,312) and residences (N = 76,752) in Copenhagen, Denmark. The first model was Google Street View (GSV)-based mixed-effects LUR models (Google-MM) that predicted 2019 mean NO2 and BC levels, and the second was European-wide (EUW) LUR models that predicted annual mean 2010 levels at 100 m spatial resolution. Across street segments, the Spearman correlation coefficient between the 2019 NO2 from Google-MM-LUR and 2010 NO2 from EUW-LUR was 0.66, while at residences, this was 0.60. For BC, these were 0.51 across street segments and 0.40 at the residential level. The ratio of percentile 97.5 to 2.5 for NO2 across the study area streets using Google-MM NO2 was 4.5, while using EUW-LUR, this was 2.1. These NO2 ratios at residences were 3.1 using Google-MM LUR, and 1.7 using EUW-LUR. Such ratios for BC across street segments were 3.4 using Google-MM LUR and 2.3 using EUW-LUR, while at the residential level, they were 2.4 and 1.9, respectively. In conclusion, Google-MM-LUR NO2 for 2019 was moderately correlated with EUW-LUR NO2 developed in 2010 across Copenhagen street segments and residences. For BC, while Google-MM-LUR was moderately correlated with EUW-LUR across Copenhagen streets, the correlation was lower at the residential level. Overall, Google-MM-LUR revealed larger spatial contrasts than EUW-LUR. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

17 pages, 31613 KiB  
Article
Land Use Regression Models for Particle Number Concentration and Black Carbon in Lanzhou, Northwest of China
by Shuya Fang, Tian Zhou, Limei Jin, Xiaowen Zhou, Xingran Li, Xiaokai Song and Yufei Wang
Sustainability 2023, 15(17), 12828; https://doi.org/10.3390/su151712828 - 24 Aug 2023
Viewed by 998
Abstract
It is necessary to predict the spatial variation in particle number concentration (PNC) and black carbon (BC) because they are considered air pollutants associated with traffic and many diseases. In this study, land use regression (LUR) models for PNC and BC were developed [...] Read more.
It is necessary to predict the spatial variation in particle number concentration (PNC) and black carbon (BC) because they are considered air pollutants associated with traffic and many diseases. In this study, land use regression (LUR) models for PNC and BC were developed based on a mobile monitoring campaign in January 2020 in Lanzhou, and the performance of models was evaluated with hold-out validation (HV) and leave-one-out cross-validation (LOOCV). The results show that the adjusted R2 of the LUR models for PNC and BC are 0.51 and 0.53, respectively. The R2 of HV and LOOCV are 0.43 and 0.44, respectively, for the PNC model and 0.42 and 0.50, respectively, for the BC model. The performances of the LUR models are of a moderate level. The spatial distribution of the predicted PNC is related to the distance from water bodies. The high PNC is related to industrial pollution. The BC concentration decreases from south to north. High BC concentrations are associated with freight distribution centres and coal-fired power plants. The range of PNC particle sizes in this study is larger than in most studies. As one of few studies in Lanzhou to develop LUR models of air pollutants, it is important to accurately estimate pollutant concentrations to improve air quality and provide health benefits for residents. Full article
Show Figures

Figure 1

15 pages, 2950 KiB  
Article
Application of Functional Principal Component Analysis in the Spatiotemporal Land-Use Regression Modeling of PM2.5
by Mahmood Taghavi, Ghader Ghanizadeh, Mohammad Ghasemi, Alessandro Fassò, Gerard Hoek, Kiavash Hushmandi and Mehdi Raei
Atmosphere 2023, 14(6), 926; https://doi.org/10.3390/atmos14060926 - 25 May 2023
Cited by 2 | Viewed by 1194
Abstract
Functional data are generally curves indexed over a time domain, and land-use regression (LUR) is a promising spatial technique for generating high-resolution spatial estimation of retrospective long-term air pollutants. We developed a methodology for the novel functional land-use regression (FLUR) model, which provides [...] Read more.
Functional data are generally curves indexed over a time domain, and land-use regression (LUR) is a promising spatial technique for generating high-resolution spatial estimation of retrospective long-term air pollutants. We developed a methodology for the novel functional land-use regression (FLUR) model, which provides high-resolution spatial and temporal estimations of retrospective pollutants. Long-term fine particulate matter (PM2.5) in the megacity of Tehran, Iran, was used as the practical example. The hourly measured PM2.5 concentrations were averaged for each hour and in each air monitoring station. Penalized smoothing was employed to construct the smooth PM2.5 diurnal curve using averaged hourly data in each of the 30 stations. Functional principal component analysis (FPCA) was used to extract FPCA scores from pollutant curves, and LUR models were fitted on FPCA scores. The mean of all PM2.5 diurnal curves had a maximum of 39.58 µg/m3 at 00:26 a.m. and a minimum of 29.27 µg/m3 at 3:57 p.m. The FPCA explained about 99.5% of variations in the observed diurnal curves across the city using just three components. The evaluation of spatially predicted long-term PM2.5 diurnal curves every 15 min provided a series of 96 high-resolution exposure maps. The presented methodology and results could benefit future environmental epidemiological studies. Full article
(This article belongs to the Special Issue Spatio-Temporal Analysis of Air Pollution)
Show Figures

Figure 1

15 pages, 4099 KiB  
Article
Development of Phase and Seasonally Dependent Land-Use Regression Models to Predict Atmospheric PAH Levels
by Ayibota Tuerxunbieke, Xiangyu Xu, Wen Pei, Ling Qi, Ning Qin and Xiaoli Duan
Toxics 2023, 11(4), 316; https://doi.org/10.3390/toxics11040316 - 28 Mar 2023
Cited by 1 | Viewed by 1245
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are an important class of pollutants in China. The land use regression (LUR) model has been used to predict the selected PAH concentrations and screen the key influencing factors. However, most previous studies have focused on particle-associated PAHs, and [...] Read more.
Polycyclic aromatic hydrocarbons (PAHs) are an important class of pollutants in China. The land use regression (LUR) model has been used to predict the selected PAH concentrations and screen the key influencing factors. However, most previous studies have focused on particle-associated PAHs, and research on gaseous PAHs was limited. This study measured representative PAHs in both gaseous phases and particle-associated during the windy, non-heating and heating seasons from 25 sampling sites in different areas of Taiyuan City. We established separate prediction models of 15 PAHs. Acenaphthene (Ace), Fluorene (Flo), and benzo [g,h,i] perylene (BghiP) were selected to analyze the relationship between PAH concentration and influencing factors. The stability and accuracy of the LUR models were quantitatively evaluated using leave-one-out cross-validation. We found that Ace and Flo models show good performance in the gaseous phase (Ace: adj. R2 = 0.14–0.82; Flo: adj. R2 = 0.21–0.85), and the model performance of BghiP is better in the particle phase (adj. R2 = 0.20–0.42). Additionally, better model performance was observed in the heating season (adj R2 = 0.68–0.83) than in the non-heating (adj R2 = 0.23–0.76) and windy seasons (adj R2 = 0.37–0.59). Those gaseous PAHs were highly affected by traffic emissions, elevation, and latitude, whereas BghiP was affected by point sources. This study reveals the strong seasonal and phase dependence of PAH concentrations. Building separate LUR models in different phases and seasons improves the prediction accuracy of PAHs. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Figure 1

26 pages, 4839 KiB  
Article
Does It Measure Up? A Comparison of Pollution Exposure Assessment Techniques Applied across Hospitals in England
by Laure de Preux, Dheeya Rizmie, Daniela Fecht, John Gulliver and Weiyi Wang
Int. J. Environ. Res. Public Health 2023, 20(5), 3852; https://doi.org/10.3390/ijerph20053852 - 21 Feb 2023
Cited by 1 | Viewed by 2116
Abstract
Weighted averages of air pollution measurements from monitoring stations are commonly assigned as air pollution exposures to specific locations. However, monitoring networks are spatially sparse and fail to adequately capture the spatial variability. This may introduce bias and exposure misclassification. Advanced methods of [...] Read more.
Weighted averages of air pollution measurements from monitoring stations are commonly assigned as air pollution exposures to specific locations. However, monitoring networks are spatially sparse and fail to adequately capture the spatial variability. This may introduce bias and exposure misclassification. Advanced methods of exposure assessment are rarely practicable in estimating daily concentrations over large geographical areas. We propose an accessible method using temporally adjusted land use regression models (daily LUR). We applied this to produce daily concentration estimates for nitrogen dioxide, ozone, and particulate matter in a healthcare setting across England and compared them against geographically extrapolated measurements (inverse distance weighting) from air pollution monitors. The daily LUR estimates outperformed IDW. The precision gains varied across air pollutants, suggesting that, for nitrogen dioxide and particulate matter, the health effects may be underestimated. The results emphasised the importance of spatial heterogeneity in investigating the societal impacts of air pollution, illustrating improvements achievable at a lower computational cost. Full article
(This article belongs to the Section Health Economics)
Show Figures

Figure 1

17 pages, 6664 KiB  
Article
Linear and Nonlinear Land Use Regression Approach for Modelling PM2.5 Concentration in Ulaanbaatar, Mongolia during Peak Hours
by Odbaatar Enkhjargal, Munkhnasan Lamchin, Jonathan Chambers and Xue-Yi You
Remote Sens. 2023, 15(5), 1174; https://doi.org/10.3390/rs15051174 - 21 Feb 2023
Cited by 1 | Viewed by 2048
Abstract
In recent decades, air pollution in Ulaanbaatar has become a challenge regarding the health of the citizens of Ulaanbaatar, due to coal combustion in the ger area. Households burn fuel for cooking and to warm their houses in the morning and evening. This [...] Read more.
In recent decades, air pollution in Ulaanbaatar has become a challenge regarding the health of the citizens of Ulaanbaatar, due to coal combustion in the ger area. Households burn fuel for cooking and to warm their houses in the morning and evening. This creates a difference between daytime and nighttime air pollution levels. The accurate mapping of air pollution and assessment of exposure to air pollution have thus become important study objects for researchers. The city center is where most air quality monitoring stations are located, but they are unable to monitor every residential region, particularly the ger area, which is where most particulate matter pollution originates. Due to this circumstance, it is difficult to construct an LUR model for the entire capital city’s residential region. This study aims to map peak PM2.5 dispersion during the day using the Linear and Nonlinear Land Use Regression (LUR) model (Multi-Linear Regression Model (MLRM) and Generalized Additive Model (GAM)) for Ulaanbaatar, with monitoring station measurements and mobile device (DUST TRUK II) measurements. LUR models are frequently used to map small-scale spatial variations in element levels for various types of air pollution, based on measurements and geographical predictors. PM2.5 measurement data were collected and analyzed in the R statistical software and ArcGIS. The results showed the dispersion map MLRM R2 = 0.84, adjusted R2 = 0.83, RMSE = 53.25 µg/m3 and GAM R2 = 0.89, and adjusted R2 = 0.87, RMSE = 44 µg/m3. In order to validate the models, the LOOCV technique was run on both the MLRM and GAM. Their performance was also high, with LOOCV R2 = 0.83, RMSE = 55.6 µg/m3, MAE = 38.7 µg/m3, and GAM LOOCV R2 = 0.77, RMSE = 65.5 µg/m3, MAE = 47.7 µg/m3. From these results, the LUR model’s performance is high, especially the GAM model, which works better than MRLM. Full article
Show Figures

Graphical abstract

16 pages, 1951 KiB  
Article
Air Pollution Increased the Demand for Gym Sports under COVID-19: Evidence from Beijing, China
by Xin Dong, Shili Yang and Chunxiao Zhang
Int. J. Environ. Res. Public Health 2022, 19(19), 12614; https://doi.org/10.3390/ijerph191912614 - 2 Oct 2022
Viewed by 1743
Abstract
Air pollution may change people’s gym sports behavior. To test this claim, first, we used big data crawler technology and ordinary least square (OLS) models to investigate the effect of air pollution on people’ gym visits in Beijing, China, especially under the COVID-19 [...] Read more.
Air pollution may change people’s gym sports behavior. To test this claim, first, we used big data crawler technology and ordinary least square (OLS) models to investigate the effect of air pollution on people’ gym visits in Beijing, China, especially under the COVID-19 pandemic of 2019–2020, and the results showed that a one-standard-deviation increase in PM2.5 concentration (fine particulate matter with diameters equal to or smaller than 2.5 μm) derived from the land use regression model (LUR) was positively associated with a 0.119 and a 0.171 standard-deviation increase in gym visits without or with consideration of the COVID-19 variable, respectively. Second, using spatial autocorrelation analysis and a series of spatial econometric models, we provided consistent evidence that the gym industry of Beijing had a strong spatial dependence, and PM2.5 and its spatial spillover effect had a positive impact on the demand for gym sports. Such a phenomenon offers us a new perspective that gym sports can be developed into an essential activity for the public due to this avoidance behavior regarding COVID-19 virus contact and pollution exposure. Full article
(This article belongs to the Special Issue COVID-19 and Environment: Impacts of a Global Pandemic)
Show Figures

Figure 1

18 pages, 5924 KiB  
Article
Three-Dimensional Landscape Pattern Characteristics of Land Function Zones and Their Influence on PM2.5 Based on LUR Model in the Central Urban Area of Nanchang City, China
by Wenbo Chen, Fuqing Zhang, Saiwei Luo, Taojie Lu, Jiao Zheng and Lei He
Int. J. Environ. Res. Public Health 2022, 19(18), 11696; https://doi.org/10.3390/ijerph191811696 - 16 Sep 2022
Cited by 4 | Viewed by 1927
Abstract
China’s rapid urbanization and industrialization process has triggered serious air pollution. As a main air pollutant, PM2.5 is affected not only by meteorological conditions, but also by land use in urban area. The impacts of urban landscape on PM2.5 become more [...] Read more.
China’s rapid urbanization and industrialization process has triggered serious air pollution. As a main air pollutant, PM2.5 is affected not only by meteorological conditions, but also by land use in urban area. The impacts of urban landscape on PM2.5 become more complicated from a three-dimensional (3D) and land function zone point of view. Taking the urban area of Nanchang city, China, as a case and, on the basis of the identification of urban land function zones, this study firstly constructed a three-dimensional landscape index system to express the characteristics of 3D landscape pattern. Then, the land-use regression (LUR) model was applied to simulate PM2.5 distribution with high precision, and a geographically weighted regression model was established. The results are as follows: (1) the constructed 3D landscape indices could reflect the 3D characteristics of urban landscape, and the overall 3D landscape indices of different urban land function zones were significantly different; (2) the effects of 3D landscape spatial pattern on PM2.5 varied significantly with land function zone type; (3) the effects of 3D characteristics of landscapes on PM2.5 in different land function zones are expressed in different ways and exhibit a significant spatial heterogeneity. This study provides a new idea for reducing air pollution by optimizing the urban landscape pattern. Full article
Show Figures

Figure 1

15 pages, 4368 KiB  
Article
Estimating PM2.5 Concentrations Using an Improved Land Use Regression Model in Zhejiang, China
by Sheng Zheng, Chengjie Zhang and Xue Wu
Atmosphere 2022, 13(8), 1273; https://doi.org/10.3390/atmos13081273 - 11 Aug 2022
Cited by 4 | Viewed by 1815
Abstract
Fine particulate matter (PM2.5) pollution affects the environment and poses threat to human health. The study of the influence of land use and other factors on PM2.5 is crucial for the rational development and utilization of territorial space. To explore [...] Read more.
Fine particulate matter (PM2.5) pollution affects the environment and poses threat to human health. The study of the influence of land use and other factors on PM2.5 is crucial for the rational development and utilization of territorial space. To explore the intrinsic mechanism between PM2.5 pollution and related factors, this study used the land use regression (LUR) model, and introduced geographically weighted regression (GWR), and random forest (RF) to optimize the basic LUR model. The basic LUR model was constructed to predict the annual average PM2.5 concentrations using three elements: artificial surfaces, forest land, and wind speed as explanatory variables, with adjusted R2 of 0.645. The improved LUR models based on GWR and RF, with an adjusted R2 of 0.767 and 0.821, respectively, show better fitting effects. The LUR simulation results show that the PM2.5 pollution in the northern Zhejiang is more serious and concentrated. The concentrations are also higher in regions such as the river valley plains in central Zhejiang and the coastal plains in southeastern Zhejiang. These findings show that pollution emissions should be further reduced and environmental protection should be strengthened. Full article
Show Figures

Figure 1

14 pages, 6470 KiB  
Article
What You See Is What You Breathe? Estimating Air Pollution Spatial Variation Using Street-Level Imagery
by Esra Suel, Meytar Sorek-Hamer, Izabela Moise, Michael von Pohle, Adwait Sahasrabhojanee, Ata Akbari Asanjan, Raphael E. Arku, Abosede S. Alli, Benjamin Barratt, Sierra N. Clark, Ariane Middel, Emily Deardorff, Violet Lingenfelter, Nikunj C. Oza, Nishant Yadav, Majid Ezzati and Michael Brauer
Remote Sens. 2022, 14(14), 3429; https://doi.org/10.3390/rs14143429 - 17 Jul 2022
Cited by 6 | Viewed by 3563
Abstract
High spatial resolution information on urban air pollution levels is unavailable in many areas globally, partially due to the high input data needs of existing estimation approaches. We introduced a computer vision method to estimate annual means for air pollution levels from street-level [...] Read more.
High spatial resolution information on urban air pollution levels is unavailable in many areas globally, partially due to the high input data needs of existing estimation approaches. We introduced a computer vision method to estimate annual means for air pollution levels from street-level images. We used annual mean estimates of NO2 and PM2.5 concentrations from locally calibrated models as labels from London, New York, and Vancouver to allow for compilation of a sufficiently large dataset (~250 k images for each city). Our experimental setup is designed to quantify intra- and intercity transferability of image-based model estimates. Performances were high and comparable to traditional land-use regression (LUR) and dispersion models when training and testing images from the same city (R2 values between 0.51 and 0.95 when validated on data from ground monitoring stations). Similar to LUR models, transferability of models between cities in different geographies is more difficult. Specifically, transferability between the three cities (London, New York, and Vancouver), which have similar pollution source profiles, was moderately successful (R2 values between zero and 0.67). Comparatively, performances when transferring models trained on cities with very different source profiles, such as Accra in Ghana and Hong Kong, were lower (R2 between zero and 0.21). This suggests a need for local calibration, using additional measurement data from cities that share similar source profiles. Full article
(This article belongs to the Special Issue Urban Sensing Methods and Technologies)
Show Figures

Graphical abstract

18 pages, 5600 KiB  
Article
Influence of Spatial Resolution on Satellite-Based PM2.5 Estimation: Implications for Health Assessment
by Heming Bai, Yuli Shi, Myeongsu Seong, Wenkang Gao and Yuanhui Li
Remote Sens. 2022, 14(12), 2933; https://doi.org/10.3390/rs14122933 - 19 Jun 2022
Cited by 8 | Viewed by 2387
Abstract
Satellite-based PM2.5 estimation has been widely used to assess health impact associated with PM2.5 exposure and might be affected by spatial resolutions of satellite input data, e.g., aerosol optical depth (AOD). Here, based on Multi-Angle Implementation of Atmospheric Correction (MAIAC) AOD [...] Read more.
Satellite-based PM2.5 estimation has been widely used to assess health impact associated with PM2.5 exposure and might be affected by spatial resolutions of satellite input data, e.g., aerosol optical depth (AOD). Here, based on Multi-Angle Implementation of Atmospheric Correction (MAIAC) AOD in 2020 over the Yangtze River Delta (YRD) and three PM2.5 retrieval models, i.e., the mixed effects model (ME), the land-use regression model (LUR) and the Random Forest model (RF), we compare these model performances at different spatial resolutions (1, 3, 5 and 10 km). The PM2.5 estimations are further used to investigate the impact of spatial resolution on health assessment. Our cross-validated results show that the model performance is not sensitive to spatial resolution change for the ME and LUR models. By contrast, the RF model can create a more accurate PM2.5 prediction with a finer AOD spatial resolution. Additionally, we find that annual population-weighted mean (PWM) PM2.5 concentration and attributable mortality strongly depend on spatial resolution, with larger values estimated from coarser resolution. Specifically, compared to PWM PM2.5 at 1 km resolution, the estimation at 10 km resolution increases by 7.8%, 22.9%, and 9.7% for ME, LUR, and RF models, respectively. The corresponding increases in mortality are 7.3%, 18.3%, and 8.4%. Our results also show that PWM PM2.5 at 10 km resolution from the three models fails to meet the national air quality standard, whereas the estimations at 1, 3 and 5 km resolutions generally meet the standard. These findings suggest that satellite-based health assessment should consider the spatial resolution effect. Full article
Show Figures

Figure 1

15 pages, 935 KiB  
Article
An Investigation into Which Methods Best Explain Children’s Exposure to Traffic-Related Air Pollution
by Keith Van Ryswyk, Amanda J. Wheeler, Alice Grgicak-Mannion, Xiaohong Xu, Jason Curran, Gianni Caravaggio, Ajae Hall, Penny MacDonald and Jeffrey R. Brook
Toxics 2022, 10(6), 284; https://doi.org/10.3390/toxics10060284 - 26 May 2022
Viewed by 1850
Abstract
There have been several methods employed to quantify individual-level exposure to ambient traffic-related air pollutants (TRAP). These include an individual’s residential proximity to roads, measurement of individual pollutants as surrogates or markers, as well as dispersion and land use regression (LUR) models. Hopanes [...] Read more.
There have been several methods employed to quantify individual-level exposure to ambient traffic-related air pollutants (TRAP). These include an individual’s residential proximity to roads, measurement of individual pollutants as surrogates or markers, as well as dispersion and land use regression (LUR) models. Hopanes are organic compounds still commonly found on ambient particulate matter and are specific markers of combustion engine primary emissions, but they have not been previously used in personal exposure studies. In this paper, children’s personal exposures to TRAP were evaluated using hopanes determined from weekly integrated filters collected as part of a personal exposure study in Windsor, Canada. These hopane measurements were used to evaluate how well other commonly used proxies of exposure to TRAP performed. Several of the LUR exposure estimates for a range of air pollutants were associated with the children’s summer personal hopane exposures (r = 0.41–0.74). However, all personal hopane exposures in summer were more strongly associated with the length of major roadways within 500 m of their homes. In contrast, metrics of major roadways and LUR estimates were poorly correlated with any winter personal hopanes. Our findings suggest that available TRAP exposure indicators have the potential for exposure misclassification in winter vs. summer and more so for LUR than for metrics of major road density. As such, limitations are evident when using traditional proxy methods for assigning traffic exposures and these may be especially important when attempting to assign exposures for children’s key growth and developmental windows. If long-term chronic exposures are being estimated, our data suggest that measures of major road lengths in proximity to homes are a more-specific approach for assigning personal TRAP exposures. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
Show Figures

Figure 1

20 pages, 6763 KiB  
Article
Spatio-Temporal Characteristics of PM2.5 Concentrations in China Based on Multiple Sources of Data and LUR-GBM during 2016–2021
by Hongbin Dai, Guangqiu Huang, Jingjing Wang, Huibin Zeng and Fangyu Zhou
Int. J. Environ. Res. Public Health 2022, 19(10), 6292; https://doi.org/10.3390/ijerph19106292 - 22 May 2022
Cited by 17 | Viewed by 2252
Abstract
Fine particulate matter (PM2.5) has a continuing impact on the environment, climate change and human health. In order to improve the accuracy of PM2.5 estimation and obtain a continuous spatial distribution of PM2.5 concentration, this paper proposes a LUR-GBM [...] Read more.
Fine particulate matter (PM2.5) has a continuing impact on the environment, climate change and human health. In order to improve the accuracy of PM2.5 estimation and obtain a continuous spatial distribution of PM2.5 concentration, this paper proposes a LUR-GBM model based on land-use regression (LUR), the Kriging method and LightGBM (light gradient boosting machine). Firstly, this study modelled the spatial distribution of PM2.5 in the Chinese region by obtaining PM2.5 concentration data from monitoring stations in the Chinese study region and established a PM2.5 mass concentration estimation method based on the LUR-GBM model by combining data on land use type, meteorology, topography, vegetation index, population density, traffic and pollution sources. Secondly, the performance of the LUR-GBM model was evaluated by a ten-fold cross-validation method based on samples, stations and time. Finally, the results of the model proposed in this paper are compared with those of the back propagation neural network (BPNN), deep neural network (DNN), random forest (RF), XGBoost and LightGBM models. The results show that the prediction accuracy of the LUR-GBM model is better than other models, with the R2 of the model reaching 0.964 (spring), 0.91 (summer), 0.967 (autumn), 0.98 (winter) and 0.976 (average for 2016–2021) for each season and annual average, respectively. It can be seen that the LUR-GBM model has good applicability in simulating the spatial distribution of PM2.5 concentrations in China. The spatial distribution of PM2.5 concentrations in the Chinese region shows a clear characteristic of high in the east and low in the west, and the spatial distribution is strongly influenced by topographical factors. The seasonal variation in mean concentration values is marked by low summer and high winter values. The results of this study can provide a scientific basis for the prevention and control of regional PM2.5 pollution in China and can also provide new ideas for the acquisition of data on the spatial distribution of PM2.5 concentrations within cities. Full article
(This article belongs to the Special Issue Atmospheric Boundary Layer and Air Pollution Modelling)
Show Figures

Figure 1

Back to TopTop