Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,885)

Search Parameters:
Keywords = magnetic field

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2297 KiB  
Article
Structural, Optical, Magnetic, and Dielectric Investigations of Pure and Co-Doped La0.67Sr0.33Mn1-x-yZnxCoyO3 Manganites with (0.00 < x + y < 0.20)
by Mansour Mohamed, A. Sedky, Abdullah S. Alshammari, Z. R. Khan, M. Bouzidi and Marzook S. Alshammari
Crystals 2024, 14(11), 981; https://doi.org/10.3390/cryst14110981 - 14 Nov 2024
Abstract
Here, we report the structural, optical, magnetic, and dielectric properties of La0.67Sr0.33Mn1-x-yZnxCoyO3 manganite with various x and y values (0.025 < x + y < 0.20). The pure and co-doped samples are [...] Read more.
Here, we report the structural, optical, magnetic, and dielectric properties of La0.67Sr0.33Mn1-x-yZnxCoyO3 manganite with various x and y values (0.025 < x + y < 0.20). The pure and co-doped samples are called S1, S2, S3, S4, and S5, with (x + y) = 0.00, 0.025, 0.05, 0.10, and 0.20, respectively. The XRD confirmed a monoclinic structure for all the samples, such that the unit cell volume and the size of the crystallite and grain were generally decreased by increasing the co-doping content (x + y). The opposite was true for the behaviors of the porosity, the Debye temperature, and the elastic modulus. The energy gap Eg was 3.85 eV for S1, but it decreased to 3.82, 3.75, and 3.65 eV for S2, S5, and S3. Meanwhile, it increased and went to its maximum value of 3.95 eV for S4. The values of the single and dispersion energies (Eo, Ed) were 9.55 and 41.88 eV for S1, but they were decreased by co-doping. The samples exhibited paramagnetic behaviors at 300 K, but they showed ferromagnetic behaviors at 10 K. For both temperatures, the saturated magnetizations (Ms) were increased by increasing the co-doping content and they reached their maximum values of 1.27 and 15.08 (emu/g) for S4. At 300 K, the co-doping changed the magnetic material from hard to soft, but it changed from soft to hard at 10 K. In field cooling (FC), the samples showed diamagnetic regime behavior (M < 0) below 80 K, but this behavior was completely absent for zero field cooling (ZFC). In parallel, co-doping of up to 0.10 (S4) decreased the dielectric constant, AC conductivity, and effective capacitance, whereas the electric modulus, impedance, and bulk resistance were increased. The analysis of the electric modulus showed the presence of relaxation peaks for all the samples. These outcomes show a good correlation between the different properties and indicate that co-doping of up to 0.10 of Zn and Co in place of Mn in La:113 compounds is beneficial for elastic deformation, optoelectronics, Li-batteries, and spintronic devices. Full article
(This article belongs to the Special Issue Crystal Structures and Magnetic Interactions of Magnetic Materials)
13 pages, 1187 KiB  
Article
A Double-Blinded Randomized Controlled Trial: Can Pulsed Electromagnetic Field Therapy Be a Novel Method for Treating Chronic Rhinosinusitis?
by Nessrien Afify Abed Elrashid, Olfat Ibrahim Ali, Zizi M. Ibrahim, Mohammed A. El Sharkawy, Bodor Bin sheeha and Wafaa Mahmoud Amin
Medicina 2024, 60(11), 1868; https://doi.org/10.3390/medicina60111868 - 14 Nov 2024
Abstract
Background and Objectives: Pulsed electromagnetic field (PEMF) therapy offers a promising approach to treating inflammatory diseases. Its notable anti-inflammatory and antimicrobial effects and enhancement of microcirculation in the nasal mucosa make it a valuable treatment option. Despite its potential, the use of [...] Read more.
Background and Objectives: Pulsed electromagnetic field (PEMF) therapy offers a promising approach to treating inflammatory diseases. Its notable anti-inflammatory and antimicrobial effects and enhancement of microcirculation in the nasal mucosa make it a valuable treatment option. Despite its potential, the use of PEMF for chronic rhinosinusitis (CRS) is still in its early stages, with limited exploration of its effectiveness. This study aimed to assess the impact of PEMF on alleviating symptoms such as fatigue, headaches, sinus opacifications, and ostiomeatal complex issues associated with CRS. Materials and Methods: Forty-seven patients of both genders with CRS, aged 19 to 40 years, were involved in this study. The participants were randomly assigned to either a magnetic or a control group. The magnetic group underwent a 10 min PEMF session with a 20-gauss magnetic field strength at 7 Hz thrice a week for a month. The control group received the same PEMF application as an inactive device. Before and after the intervention, researchers assessed fatigue levels with a visual analog fatigue scale (VAFS), headache intensity via a numerical pain-rating scale, and the status of sinus opacifications and ostiomeatal complex obstructions by computerized tomography (CT). Results: The study findings showed a significant reduction in fatigue and headache scores in the magnetic group compared to the control group (p < 0.05). Additionally, there was a notable improvement in sinus opacifications and ostiomeatal complex obstructions among participants who received PEMF therapy. Conclusions: PEMF therapy effectively reduces fatigue, headaches, and sinus opacifications in CRS patients, suggesting its potential for inclusion in CRS management guidelines to improve patient outcomes and quality of life. The results of this study indicate that PEMF represents a noninvasive and cost-effective approach for treating adults with mild-to-moderate CRS. Full article
Show Figures

Figure 1

18 pages, 4649 KiB  
Article
Efficient Analysis of Noise Induced in Low-Voltage Installations Placed Inside Buildings with Lightning Protection Systems
by Artur Noga, Tomasz Topa and Tomasz P. Stefański
Electronics 2024, 13(22), 4472; https://doi.org/10.3390/electronics13224472 - 14 Nov 2024
Abstract
This paper describes an efficient approach to the broadband analysis of lightning protection systems (LPSs) using the method of moments (MoM) implemented in the frequency domain. The adaptive frequency sampling (AFS) algorithm, based on a rational interpolation of the relevant observable (e.g., voltage, [...] Read more.
This paper describes an efficient approach to the broadband analysis of lightning protection systems (LPSs) using the method of moments (MoM) implemented in the frequency domain. The adaptive frequency sampling (AFS) algorithm, based on a rational interpolation of the relevant observable (e.g., voltage, current, electric or magnetic field) which describes the properties of the LPS, is employed to reduce the number of samples computed by the full-wave MoM. This improvement is achieved by the quick comparison of two interpolants with the use of the Stöer–Bulirsch algorithm, which provides the frequency location of the next MoM samples for computations. This algorithm allows for the efficient localization of resonant frequencies while reducing the number of samples computed over the entire frequency range. In the instances when the induced noise is determined in low-voltage installations protected by various types of LPSs, reductions in computational overhead equal to 47.9× and 72.1× in broadband LPS simulations are obtained. Hence, the proposed approach allows for a significant reduction in computational overhead in comparison to standard, uniformly sampled simulations. Full article
(This article belongs to the Special Issue Feature Papers in Circuit and Signal Processing)
Show Figures

Figure 1

23 pages, 4958 KiB  
Article
Magnetic Actuation for Wireless Capsule Endoscopy in a Large Workspace Using a Mobile-Coil System
by Xiao Li, Detian Zeng, Han Xu, Qi Zhang and Bin Liao
Micromachines 2024, 15(11), 1373; https://doi.org/10.3390/mi15111373 - 14 Nov 2024
Abstract
Current wireless capsule endoscopy (WCE) is limited in the long examination time and low flexibility since the capsule is passively moved by the natural peristalsis. Efforts have been made to facilitate the active locomotion of WCE using magnetic actuation and localization technologies. This [...] Read more.
Current wireless capsule endoscopy (WCE) is limited in the long examination time and low flexibility since the capsule is passively moved by the natural peristalsis. Efforts have been made to facilitate the active locomotion of WCE using magnetic actuation and localization technologies. This work focuses on the motion control of the robotic capsule under magnetic actuation in a complex gastrointestinal (GI) tract environment in order to improve the efficiency and accuracy of its motion in dynamic, complex environments. Specifically, a magnetic actuation system based on a four-electromagnetic coil module is designed, and a control strategy for the system is proposed. In particular, the proportional–integral–derivative (PID) control parameters and current values are optimized online and in real time using the adaptive particle swarm optimization (APSO) algorithm. In this paper, both simulations and real-world experiments were conducted using acrylic plates with irregular shapes to simulate the GI tract environment for evaluation. The results demonstrate the potential of the proposed control methods to realize the accurate and efficient inspection of the intestine using active WCE. The methods presented in this paper can be integrated with current WCE to improve the diagnostic accuracy and efficiency of the GI tract. Full article
(This article belongs to the Topic Micro-Mechatronic Engineering)
Show Figures

Figure 1

16 pages, 1419 KiB  
Conference Report
Conference Report: Review of Clinical Implementation of Advanced Quantitative Imaging Techniques for Personalized Radiotherapy
by Yevgeniy Vinogradskiy, Houda Bahig, Nicholas W. Bucknell, Jeffrey Buchsbaum and Hui-Kuo George Shu
Tomography 2024, 10(11), 1798-1813; https://doi.org/10.3390/tomography10110132 - 14 Nov 2024
Viewed by 19
Abstract
The topic of quantitative imaging in radiation therapy was presented as a “Masterclass” at the 2023 annual meeting of the American Society of Radiation Oncology (ASTRO). Dual-energy computed tomography (CT) and single-positron computed tomography were reviewed in detail as the first portion of [...] Read more.
The topic of quantitative imaging in radiation therapy was presented as a “Masterclass” at the 2023 annual meeting of the American Society of Radiation Oncology (ASTRO). Dual-energy computed tomography (CT) and single-positron computed tomography were reviewed in detail as the first portion of the meeting session, with data showing utility in many aspects of radiation oncology including treatment planning and dose response. Positron emission tomography/CT scans evaluating the functional volume of lung tissue so as to provide optimal avoidance of healthy lungs were presented second. Advanced brain imaging was then discussed in the context of different forms of magnetic resonance scanning methods as the third area noted with significant discussion of ongoing research programs. Quantitative image analysis was presented to provide clinical utility for the analysis of patients with head and neck cancer. Finally, quality assurance was reviewed for different forms of quantitative imaging given the critical nature of imaging when numerical valuation, not just relative contrast, plays a crucial role in clinical process and decision-making. Conclusions and thoughts are shared in the conclusion, noting strong data supporting the use of quantitative imaging in radiation therapy going forward and that more studies are needed to move the field forward. Full article
(This article belongs to the Special Issue Progress in the Use of Advanced Imaging for Radiation Oncology)
Show Figures

Figure 1

12 pages, 1170 KiB  
Article
An Evaluation of Moderate-Refractive-Index Nanoantennas for Enhancing the Photoluminescence Signal of Quantum Dots
by Rafael Ramos Uña, Braulio García Cámara and Ángela I. Barreda
Nanomaterials 2024, 14(22), 1822; https://doi.org/10.3390/nano14221822 - 14 Nov 2024
Viewed by 113
Abstract
The use of nanostructures to enhance the emission of single-photon sources has attracted some attention in the last decade due to the development of quantum technologies. In particular, the use of metallic and high-refractive-index dielectric materials has been proposed. However, the utility of [...] Read more.
The use of nanostructures to enhance the emission of single-photon sources has attracted some attention in the last decade due to the development of quantum technologies. In particular, the use of metallic and high-refractive-index dielectric materials has been proposed. However, the utility of moderate-refractive-index dielectric nanostructures to achieve more efficient single-photon sources remains unexplored. Here, a systematic comparison of various metallic, high-refractive-index and moderate-refractive-index dielectric nanostructures was performed to optimize the excitation and emission of a CdSe/ZnS single quantum dot in the visible spectral region. Several geometries were evaluated in terms of electric field enhancement and Purcell factor, considering the combination of metallic, high-refractive-index and moderate-refractive-index dielectric materials conforming to homogeneous and hybrid nanoparticle dimers. Our results demonstrate that moderate-refractive-index dielectric nanoparticles can enhance the photoluminescence signal of quantum emitters due to their broader electric and magnetic dipolar resonances compared to high-refractive-index dielectric nanoparticles. However, hybrid combinations of metallic and high-refractive-index dielectric nanostructures offer the largest intensity enhancement and Purcell factors at the excitation and emission wavelengths of the quantum emitter, respectively. The results of this work may find applications in the development of single-photon sources. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

12 pages, 2868 KiB  
Article
Dynamic Magnetic Control of Lanthanide Metal–Organic Framework Crystals and Their Polarized Emissions
by Bojun Shi, Hao Jia, Lingfang Chen, Shuchun Zhang, Yu Zhang, Baipeng Yin, Shuming Bai and Chuang Zhang
Chemistry 2024, 6(6), 1415-1426; https://doi.org/10.3390/chemistry6060084 - 14 Nov 2024
Viewed by 127
Abstract
Traditional barcode encoding methods are constrained by the inability to dynamically control crystal orientations, thereby limiting their applications. In this work, we investigate the dynamic magnetic control of lanthanide metal–organic framework crystals and their potential for advancing photonic barcode technology. A paramagnetic fluorescent [...] Read more.
Traditional barcode encoding methods are constrained by the inability to dynamically control crystal orientations, thereby limiting their applications. In this work, we investigate the dynamic magnetic control of lanthanide metal–organic framework crystals and their potential for advancing photonic barcode technology. A paramagnetic fluorescent Eu-MOF microcrystal with sizes ranging from 30 to 40 μm in length and 5 to 10 μm in width was synthesized, and its magnetic orientation and polarized emission were systematically investigated. Eu-MOF crystallizes in an orthorhombic space group, growing along the crystallographic b-axis and ultimately forming an anisotropic cuboid shape. Eu-MOF microcrystals exhibit significant magnetic anisotropy, causing the crystallographic c-axis of the crystal to align with the magnetic field when a uniaxial magnetic field of ~10 mT is applied. Furthermore, the Eu-MOF microcrystal exhibited characteristic Eu emissions with peaks at 594 nm, 616 nm, and 695 nm, and showed a high degree of polarization (DOP), reaching 0.904 at 616 nm. Therefore, the utilization of a rotating magnetic field not only enables precise and dynamic control over the crystal orientations but also results in a significant variation in the luminescence intensity. This capability enabled us to propose an innovative encryption barcode scheme in which the emission intensities of different luminescence peaks are converted into barcode widths, with the sequence of magnetic field directions serving as the encryption key. This approach presents a novel method for data storage and anti-counterfeiting, significantly enhancing the versatility and capacity of photonic barcodes. Full article
Show Figures

Figure 1

38 pages, 8036 KiB  
Review
Overview of High-Performance Timing and Position-Sensitive MCP Detectors Utilizing Secondary Electron Emission for Mass Measurements of Exotic Nuclei at Nuclear Physics Facilities
by Zhuang Ge
Sensors 2024, 24(22), 7261; https://doi.org/10.3390/s24227261 - 13 Nov 2024
Viewed by 252
Abstract
Timing and/or position-sensitive MCP detectors, which detect secondary electrons (SEs) emitted from a conversion foil during ion passage, are widely utilized in nuclear physics and nuclear astrophysics experiments. This review covers high-performance timing and/or position-sensitive MCP detectors that use SE emission for mass [...] Read more.
Timing and/or position-sensitive MCP detectors, which detect secondary electrons (SEs) emitted from a conversion foil during ion passage, are widely utilized in nuclear physics and nuclear astrophysics experiments. This review covers high-performance timing and/or position-sensitive MCP detectors that use SE emission for mass measurements of exotic nuclei at nuclear physics facilities, along with their applications in new measurement schemes. The design, principles, performance, and applications of these detectors with different arrangements of electromagnetic fields are summarized. To achieve high precision and accuracy in mass measurements of exotic nuclei using time-of-flight (TOF) and/or position (imaging) measurement methods, such as high-resolution beam-line magnetic-rigidity time-of-flight (Bρ-TOF) and in-ring isochronous mass spectrometry (IMS), foil-MCP detectors with high position and timing resolution have been introduced and simulated. Beyond TOF mass measurements, these new detector systems are also described for use in heavy ion beam trajectory monitoring and momentum measurements for both beam-line and in-ring applications. Additionally, the use of position-sensitive timing foil-MCP detectors for Penning trap mass spectrometers and multi-reflection time-of-flight (MR-TOF) mass spectrometers is proposed and discussed to improve efficiency and enhance precision. Full article
(This article belongs to the Special Issue Particle Detector R&D: Design, Characterization and Applications)
Show Figures

Figure 1

18 pages, 6787 KiB  
Article
Multifunctional Dy3+ Complexes with Triphenylmethanolates: Structural Diversity, Luminescence, and Magnetic Relaxation
by Gautier Félix, Aleksei O. Tolpygin, Aurore Larquey, Ilia A. Gogolev, Yulia V. Nelyubina, Yannick Guari, Joulia Larionova and Alexander A. Trifonov
Molecules 2024, 29(22), 5343; https://doi.org/10.3390/molecules29225343 - 13 Nov 2024
Viewed by 236
Abstract
The coordination environment of magneto-luminescent Dy3+-based Single-Molecule Magnets (SMM) is a crucial factor influencing both magnetic and luminescent properties. In this work, we explore how triphenylmethanolate (Ph3CO), in combination with other ligands, can modulate the structure and, [...] Read more.
The coordination environment of magneto-luminescent Dy3+-based Single-Molecule Magnets (SMM) is a crucial factor influencing both magnetic and luminescent properties. In this work, we explore how triphenylmethanolate (Ph3CO), in combination with other ligands, can modulate the structure and, therefore, the magnetic properties of Dy3+-based SMM. Using triphenylmethanolate in combination with THF and pyridine (Py) as co-ligands, we synthesized a series of mononuclear cis-[Dy(OCPh3)2(THF)4][BPh4]·(2,6-Me2C5H3N) (1), trans-Dy(OCPh3)3(THF)2 (2), fac-Dy(OCPh3)3(py)3 (3) and dinuclear [(Ph3CO)Dy(THF){(μ2–Cl)2Li(THF)22–Cl]2 (4) complexes where the Dy3+ ion presents five- or six-coordinate geometries. Dinuclear compound 4 exhibits a genuine SMM behavior with a relatively high energy barrier of 421 cm−1, while mononuclear complexes 13 are field-induced SMM. These complexes also present Dy3+-characteristic luminescence, highlighting their multifunctional character. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 2nd Edition)
Show Figures

Figure 1

19 pages, 2484 KiB  
Article
Validation of Multi-Frequency Inductive-Loop Measurement System for Parameters of Moving Vehicle Based on Laboratory Model
by Zbigniew Marszalek and Krzysztof Duda
Sensors 2024, 24(22), 7244; https://doi.org/10.3390/s24227244 - 13 Nov 2024
Viewed by 191
Abstract
The paper presents research on a system for measuring the parameters of a vehicle in motion and the process of validating it under laboratory conditions. The measurement system uses four inductive-loop (IL) sensors, two slim ILs and two wide ILs. The vehicle speed, [...] Read more.
The paper presents research on a system for measuring the parameters of a vehicle in motion and the process of validating it under laboratory conditions. The measurement system uses four inductive-loop (IL) sensors, two slim ILs and two wide ILs. The vehicle speed, wheelbase, length, and overhangs are all determined on the basis of a vehicle magnetic profile (VMP) waveform. VMPs are captured from the continuous IL-based impedance measurement. The impedance measurement for a single IL is performed simultaneously at three carrier frequencies. The uncontrolled measurement conditions in the field on a real road test bed (RTB), including the speed of passing vehicles, motivated the development of a laboratory test bed (LTB). This LTB serves as a model of an existing measurement setup installed on the road, i.e., the RTB. The LTB includes IL sensors and a movable model of the vehicle made in 1:50 scale. The LTB enables validation of the whole measurement system in the vehicle speed range from 10 km/h up to 150 km/h in 5 km/h increments in fully controlled conditions. The measurement results are presented in the distance domain, calculated from the VMPs and the measured speed. The largest errors in estimating vehicle-model body parameters, on a natural scale, do not exceed 4.3 cm. Full article
(This article belongs to the Collection Sensors and Actuators for Intelligent Vehicles)
Show Figures

Figure 1

18 pages, 4020 KiB  
Article
A Conjugate Linearly Polarized Light Wave Along an Optical Fiber with the Berry Phase Model and Its Magnetic Trajectories According to the Conjugate Frame
by Muhammed Talat Sariaydin
Symmetry 2024, 16(11), 1518; https://doi.org/10.3390/sym16111518 - 13 Nov 2024
Viewed by 257
Abstract
In this article, we study how a linear polarized wave that is going along an optical fiber works, which is known not only as a curve on a Lie group but also as a rotation of the polarization plane. What we are trying [...] Read more.
In this article, we study how a linear polarized wave that is going along an optical fiber works, which is known not only as a curve on a Lie group but also as a rotation of the polarization plane. What we are trying to show in this article is that linear polarized light waves (PLWs) are related to the Berry phase. Moreover, we give magnetic curves created by N traveling in the electromagnetic trajectories and the optical fiber generated by the electric field N of the PLW moving through the optical fiber. With this described method, we present a mathematical model to conveniently generate the relationships between an optical fiber and the optical angular momentum in a three-dimensional Lie group. The conjugate frame we used in this article removes unnecessary bending around the tangent and enables a more dynamic characterization, which can still be applied even when the second derivative of the curve is zero. Full article
Show Figures

Figure 1

10 pages, 3337 KiB  
Article
Novel Sulfamethoxazole Organotin Complexes: Synthesis, Characterization, and Hydrogen Storage Application
by Dina S. Ahmed, Noor Emad, Mohammed Kadhom, Emad Yousif and Mohammed Al-Mashhadani
Hydrogen 2024, 5(4), 872-881; https://doi.org/10.3390/hydrogen5040045 - 13 Nov 2024
Viewed by 232
Abstract
This study presents the synthesis and characterization of novel sulfamethoxazole organotin complexes and evaluates their potential for hydrogen storage applications. The synthesized complexes were characterized using various techniques, such as Nuclear Magnetic Resonance and Fourier Transform Infrared spectroscopy to determine their constructional and [...] Read more.
This study presents the synthesis and characterization of novel sulfamethoxazole organotin complexes and evaluates their potential for hydrogen storage applications. The synthesized complexes were characterized using various techniques, such as Nuclear Magnetic Resonance and Fourier Transform Infrared spectroscopy to determine their constructional and physicochemical properties. Field Emission Scanning Electron Microscopy was applied to analyze the surface morphology, and the Brunauer–Emmett–Teller method was utilized to measure the surface area. High-pressure adsorption experiments demonstrated the remarkable hydrogen storage capabilities of these complexes, with the highest hydrogen uptake of 29.1 cm3/g observed at 323 K. The results suggest that the prepared sulfamethoxazole organotin complexes have the potential to be candidates for gas separation and storage applications. Full article
(This article belongs to the Special Issue Advancements in Hydrogen Storage Materials and DFT-Based Studies)
Show Figures

Figure 1

34 pages, 4136 KiB  
Review
Synthesis, Functionalization, and Biomedical Applications of Iron Oxide Nanoparticles (IONPs)
by Mostafa Salehirozveh, Parisa Dehghani and Ivan Mijakovic
J. Funct. Biomater. 2024, 15(11), 340; https://doi.org/10.3390/jfb15110340 - 12 Nov 2024
Viewed by 436
Abstract
Iron oxide nanoparticles (IONPs) have garnered significant attention in biomedical applications due to their unique magnetic properties, biocompatibility, and versatility. This review comprehensively examines the synthesis methods, surface functionalization techniques, and diverse biomedical applications of IONPs. Various chemical and physical synthesis techniques, including [...] Read more.
Iron oxide nanoparticles (IONPs) have garnered significant attention in biomedical applications due to their unique magnetic properties, biocompatibility, and versatility. This review comprehensively examines the synthesis methods, surface functionalization techniques, and diverse biomedical applications of IONPs. Various chemical and physical synthesis techniques, including coprecipitation, sol–gel processes, thermal decomposition, hydrothermal synthesis, and sonochemical routes, are discussed in detail, highlighting their advantages and limitations. Surface functionalization strategies, such as ligand exchange, encapsulation, and silanization, are explored to enhance the biocompatibility and functionality of IONPs. Special emphasis is placed on the role of IONPs in biosensing technologies, where their magnetic and optical properties enable significant advancements, including in surface-enhanced Raman scattering (SERS)-based biosensors, fluorescence biosensors, and field-effect transistor (FET) biosensors. The review explores how IONPs enhance sensitivity and selectivity in detecting biomolecules, demonstrating their potential for point-of-care diagnostics. Additionally, biomedical applications such as magnetic resonance imaging (MRI), targeted drug delivery, tissue engineering, and stem cell tracking are discussed. The challenges and future perspectives in the clinical translation of IONPs are also addressed, emphasizing the need for further research to optimize their properties and ensure safety and efficacy in medical applications. This review aims to provide a comprehensive understanding of the current state and future potential of IONPs in both biosensing and broader biomedical fields. Full article
(This article belongs to the Section Biomaterials and Devices for Healthcare Applications)
Show Figures

Figure 1

22 pages, 4972 KiB  
Article
The Optical Forces and Torques Exerted by Airy Light-Sheet on Magnetic Particles Utilized for Targeted Drug Delivery
by Ningning Song, Shiguo Chen, Hao Wang, Xinbo He, Bing Wei, Renxian Li, Shu Zhang and Lei Xu
Micromachines 2024, 15(11), 1369; https://doi.org/10.3390/mi15111369 - 12 Nov 2024
Viewed by 312
Abstract
The remarkable properties of magnetic nanostructures have sparked considerable interest within the biomedical domain, owing to their potential for diverse applications. In targeted drug delivery systems, therapeutic molecules can be loaded onto magnetic nanocarriers and precisely guided and released within the body with [...] Read more.
The remarkable properties of magnetic nanostructures have sparked considerable interest within the biomedical domain, owing to their potential for diverse applications. In targeted drug delivery systems, therapeutic molecules can be loaded onto magnetic nanocarriers and precisely guided and released within the body with the assistance of an externally applied magnetic field. However, conventional external magnetic fields generated by permanent magnets or electromagnets are limited by finite magnetic field gradients, shallow penetration depths, and low precision. The novel structured light field known as the Airy light-sheet possesses unique characteristics such as non-diffraction, self-healing, and self-acceleration, which can potentially overcome the limitations of traditional magnetic fields to some extent. While existing studies have primarily focused on the manipulation of dielectric particles by Airy light-sheet, comprehensive analyses exploring the intricate interplay between Airy light-sheet and magnetic nanostructures are currently lacking in the literature, with only preliminary theoretical discussions available. This study systematically explores the mechanical response of magnetic spherical particles under the influence of Airy light-sheet, including radiation forces and spin torques. Furthermore, we provide an in-depth analysis of the effects of particle size, permittivity, permeability, and incident light-sheet parameters on the mechanical effects. Our research findings not only offer new theoretical guidance and practical references for the application of magnetic nanoparticles in biomedicine but also provide valuable insights for the manipulation of other types of micro/nanoparticles using structured light fields. Full article
(This article belongs to the Section B5: Drug Delivery System)
Show Figures

Figure 1

18 pages, 3941 KiB  
Article
Synergistic Effects of BaTiO3 and MFe2O4 (M = Mn, Ni, Cu, Zn, and Co) Nanoparticles as Artificial Pinning Centers on the Performance of YBa2Cu3Oy Superconductor
by Amjad S. Dair, Yassine Slimani, Essia Hannachi, Faten Ben Azzouz and Munirah A. Almessiere
Nanomaterials 2024, 14(22), 1810; https://doi.org/10.3390/nano14221810 - 12 Nov 2024
Viewed by 303
Abstract
Large-scale superconductor applications necessitate a superconducting matrix with pinning sites (PSs) that immobilize vortices at elevated temperatures and magnetic fields. While previous works focused on the single addition of nanoparticles, the simultaneous inclusion of different nanoparticles into a superconducting matrix can be an [...] Read more.
Large-scale superconductor applications necessitate a superconducting matrix with pinning sites (PSs) that immobilize vortices at elevated temperatures and magnetic fields. While previous works focused on the single addition of nanoparticles, the simultaneous inclusion of different nanoparticles into a superconducting matrix can be an effective way to achieve an improved flux pinning capacity. The purpose of this study is to explore the influence of mixed-nanoparticle pinning, with the co-addition of non-magnetic (BaTiO3; BT) and various types of magnetic spinel ferrite (MFe2O4, abbreviated as MFO, where M = Mn, Co, Cu, Zn, and Ni) nanoparticles, on the superconductivity and flux pinning performances of the high-temperature superconductor YBa2Cu3Oy (YBCO). An analysis of X-Ray diffraction (XRD) data of BT–MFe2O4-co-added YBCO samples showed the formation of an orthorhombic structure with Pmmm symmetry. According to electrical resistivity measurements, the emergence of the superconducting state below Tcoffset (zero-resistivity temperature) was proven for all samples. The highest Tcoffset value was recorded for the Y-BT-MnFO sample, while the minimum value was obtained for the Y-BT-ZnFO sample. Direct current (DC) magnetization results showed good magnetic flux pinning performance for all the co-added samples compared to the pristine sample but with some discrepancies. At 77 K, the values of the self-critical current density (self-Jcm) and maximum pinning force (Fpmax) for the Y-BT-MnFO sample were found to be eight times higher and seventeen times greater than those for the pristine sample, respectively. The results acquired suggested that mixing the BT phase with an appropriate type of spinel ferrite nanoparticles can be a practical solution to the problem of degradation of the critical current density of the YBCO material. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

Back to TopTop