Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,935)

Search Parameters:
Keywords = magnetic particles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6485 KiB  
Article
A Comparison of the Sensitivity and Cellular Detection Capabilities of Magnetic Particle Imaging and Bioluminescence Imaging
by Sophia Trozzo, Bijita Neupane and Paula J. Foster
Tomography 2024, 10(11), 1846-1865; https://doi.org/10.3390/tomography10110135 - 20 Nov 2024
Viewed by 40
Abstract
Background: Preclinical cell tracking is enhanced with a multimodal imaging approach. Bioluminescence imaging (BLI) is a highly sensitive optical modality that relies on engineering cells to constitutively express a luciferase gene. Magnetic particle imaging (MPI) is a newer imaging modality that directly detects [...] Read more.
Background: Preclinical cell tracking is enhanced with a multimodal imaging approach. Bioluminescence imaging (BLI) is a highly sensitive optical modality that relies on engineering cells to constitutively express a luciferase gene. Magnetic particle imaging (MPI) is a newer imaging modality that directly detects superparamagnetic iron oxide (SPIO) particles used to label cells. Here, we compare BLI and MPI for imaging cells in vitro and in vivo. Methods: Mouse 4T1 breast carcinoma cells were transduced to express firefly luciferase, labeled with SPIO (ProMag), and imaged as cell samples after subcutaneous injection into mice. Results: For cell samples, the BLI and MPI signals were strongly correlated with cell number. Both modalities presented limitations for imaging cells in vivo. For BLI, weak signal penetration, signal attenuation, and scattering prevented the detection of cells for mice with hair and for cells far from the tissue surface. For MPI, background signals obscured the detection of low cell numbers due to the limited dynamic range, and cell numbers could not be accurately quantified from in vivo images. Conclusions: It is important to understand the shortcomings of these imaging modalities to develop strategies to improve cellular detection sensitivity. Full article
Show Figures

Figure 1

12 pages, 4508 KiB  
Article
Nanocrystalline/Amorphous Tuning of Al–Fe–Nb (Mn) Alloy Powders Produced via High-Energy Ball Milling
by Nguyen Thi Hoang Oanh, Dao Truong An and Nguyen Hoang Viet
Materials 2024, 17(22), 5627; https://doi.org/10.3390/ma17225627 - 18 Nov 2024
Viewed by 477
Abstract
The demand for advanced Al-based alloys with tailored structural and magnetic properties has intensified for applications requiring a high thermal stability and performance under challenging conditions. This study investigated the phase evolution, magnetic properties, thermal stability, and microstructural changes in the Al-based alloys [...] Read more.
The demand for advanced Al-based alloys with tailored structural and magnetic properties has intensified for applications requiring a high thermal stability and performance under challenging conditions. This study investigated the phase evolution, magnetic properties, thermal stability, and microstructural changes in the Al-based alloys Al82Fe16Nb2 and Al82Fe14Nb2Mn2, synthesized via mechanical alloying (MA), using stearic acid as a process control agent. The X-ray diffraction results indicated that Al82Fe16Nb2 achieved a β-phase solid solution with 13–14 nm crystallite sizes after 5 h of milling, reaching an amorphous state after 10 h. In contrast, Al82Fe14Nb2Mn2 formed a partially amorphous structure within 10 h, with enhanced stability with additional milling. Magnetic measurements indicated that both alloys possessed soft magnetic behavior under shorter milling times (1–5 h) and transitioned to hard magnetic behavior as amorphization progressed. This phenomenon was associated with a decrease in saturation magnetization (Ms) and an increase in coercivity (Hc) due to structural disorder and residual stresses. Thermal stability analyses on 10 h milled samples conducted via differential scanning calorimetry showed exothermic peaks between 300 and 800 °C, corresponding to phase transformations upon heating. Post-annealing analyses at 550 °C demonstrated the presence of phases including Al, β-phase solid solutions, Al₁3Fe₄, and residual amorphous regions. At 600 °C, the Al3Nb phase emerged as the β-phase, and the amorphous content decreased, while annealing at 700 °C fully decomposed the amorphous phases into stable crystalline forms. Microstructural analyses demonstrated a consistent reduction in and homogenization of particle sizes, with particles decreasing to 1–3 μm in diameter after 10 h. Altogether, these findings highlight MA’s effectiveness in tuning the microstructure and magnetic properties of Al–Fe–Nb (Mn) alloys, making these materials suitable for applications requiring a high thermal stability and tailored magnetic responses. Full article
Show Figures

Figure 1

17 pages, 8481 KiB  
Review
A Review of Magnetic Abrasive Finishing for the Internal Surfaces of Metal Additive Manufactured Parts
by Liaoyuan Wang, Yuli Sun, Zhongmin Xiao, Fanxuan Yang, Shijie Kang, Yanlei Liu and Dunwen Zuo
J. Manuf. Mater. Process. 2024, 8(6), 261; https://doi.org/10.3390/jmmp8060261 - 16 Nov 2024
Viewed by 519
Abstract
With the rapid development of high-end manufacturing industries such as aerospace and national defense, the demand for metal additive manufactured parts with complex internal cavities has been steadily increasing. However, the finishing of complex internal surfaces, especially for irregularly shaped parts, remains a [...] Read more.
With the rapid development of high-end manufacturing industries such as aerospace and national defense, the demand for metal additive manufactured parts with complex internal cavities has been steadily increasing. However, the finishing of complex internal surfaces, especially for irregularly shaped parts, remains a significant challenge due to their intricate geometries. Through a comparative analysis of common finishing methods, the distinctive characteristics and applicability of magnetic abrasive finishing (MAF) are highlighted. To meet the finishing needs of complex metal additive manufactured parts, this paper reviews the current research on magnetic abrasive finishing devices, processing mechanisms, the development of magnetic abrasives, and the MAF processes for intricate internal cavities. Future development trends in MAF for complex internal cavities in additive manufactured parts are also explored; these are (1) investigating multi-technology composite magnetic abrasive finishing equipment designed for complex internal surfaces; (2) studying the dynamic behavior of multiple magnetic abrasive particles in complex cavities and their material removal mechanisms; (3) developing high-performance magnetic abrasives suitable for demanding conditions; and (4) exploring the MAF process for intricate internal surfaces. Full article
Show Figures

Figure 1

19 pages, 5030 KiB  
Article
Microstructural Evolution and Damage Mechanism of Water-Immersed Coal Based on Physicochemical Effects of Inorganic Minerals
by Xuexi Chen, Zijian Liu, Tao Li, Jingyi Ma and Jiaying Hu
Materials 2024, 17(22), 5579; https://doi.org/10.3390/ma17225579 - 15 Nov 2024
Viewed by 370
Abstract
Coal seam water injection technology enables seam permeability enhancement and facilitates outburst risk reduction. This study investigated the microscale effects of water infiltration on coal and the evolution mechanisms of its mechanical properties. To this end, we systematically analyzed dynamic changes (such as [...] Read more.
Coal seam water injection technology enables seam permeability enhancement and facilitates outburst risk reduction. This study investigated the microscale effects of water infiltration on coal and the evolution mechanisms of its mechanical properties. To this end, we systematically analyzed dynamic changes (such as mineral composition, pore structure, and mechanical performance) in coal soaked for various durations using X-ray diffraction, low-field nuclear magnetic resonance (NMR), and uniaxial compression testing. The results indicate: (1) the coal NMR T2 spectrum displays three characteristic peaks, corresponding to rapid water absorption, uniform transition, and stabilization stages of soaking traditionally divided according to peak area variation trends. (2) The coal strength decreases with progressive soaking, influenced by water content, pore volume, mineral composition, etc. Its compressive strength and elastic modulus drop by 22.4% and 19.5%, respectively, compared to the initial values. (3) The expansion of clay minerals during immersion reduces average pore size. In contrast, quartz particle displacement, pore water movement, and soluble mineral dissolution increase pore volume, reducing the overall structure strength. (4) The dominant factors driving the degradation of mechanical properties vary across immersion stages, including water content and specific mineral concentration. This work offers new insights into how hydraulic technology alters coal seams, providing theoretical support for optimizing water injection strategies in the seam. Full article
Show Figures

Figure 1

23 pages, 4958 KiB  
Article
Magnetic Actuation for Wireless Capsule Endoscopy in a Large Workspace Using a Mobile-Coil System
by Xiao Li, Detian Zeng, Han Xu, Qi Zhang and Bin Liao
Micromachines 2024, 15(11), 1373; https://doi.org/10.3390/mi15111373 - 14 Nov 2024
Viewed by 323
Abstract
Current wireless capsule endoscopy (WCE) is limited in the long examination time and low flexibility since the capsule is passively moved by the natural peristalsis. Efforts have been made to facilitate the active locomotion of WCE using magnetic actuation and localization technologies. This [...] Read more.
Current wireless capsule endoscopy (WCE) is limited in the long examination time and low flexibility since the capsule is passively moved by the natural peristalsis. Efforts have been made to facilitate the active locomotion of WCE using magnetic actuation and localization technologies. This work focuses on the motion control of the robotic capsule under magnetic actuation in a complex gastrointestinal (GI) tract environment in order to improve the efficiency and accuracy of its motion in dynamic, complex environments. Specifically, a magnetic actuation system based on a four-electromagnetic coil module is designed, and a control strategy for the system is proposed. In particular, the proportional–integral–derivative (PID) control parameters and current values are optimized online and in real time using the adaptive particle swarm optimization (APSO) algorithm. In this paper, both simulations and real-world experiments were conducted using acrylic plates with irregular shapes to simulate the GI tract environment for evaluation. The results demonstrate the potential of the proposed control methods to realize the accurate and efficient inspection of the intestine using active WCE. The methods presented in this paper can be integrated with current WCE to improve the diagnostic accuracy and efficiency of the GI tract. Full article
(This article belongs to the Topic Micro-Mechatronic Engineering)
Show Figures

Figure 1

16 pages, 9971 KiB  
Article
The Saturation Calculation of NMR Logging Based on Constructing Water Spectrum Function
by Yongfu Liu, Rui Deng, Shenchao Luo, Hong Li, Lei Zhang and Lixiong Gan
Processes 2024, 12(11), 2518; https://doi.org/10.3390/pr12112518 - 12 Nov 2024
Viewed by 392
Abstract
Tight sandstone oil reservoirs are characterized by complex structures, poor pore connectivity, and strong heterogeneity, with features such as low porosity and ultra-low permeability. Conventional methods for calculating saturation cannot accurately evaluate the hydrocarbon saturation of these reservoirs. To address this, a study [...] Read more.
Tight sandstone oil reservoirs are characterized by complex structures, poor pore connectivity, and strong heterogeneity, with features such as low porosity and ultra-low permeability. Conventional methods for calculating saturation cannot accurately evaluate the hydrocarbon saturation of these reservoirs. To address this, a study was conducted from the perspective of non-electrical logging methods, focusing on the inherent nuclear magnetic resonance (NMR) characteristics of different fluids to develop a saturation calculation method that avoids the influence of the rock matrix, thus enabling precise saturation measurement in tight sandstone oil reservoirs. The traditional NMR porosity model was modified by segmenting it using the clay-bound water cutoff value, aiming to identify the distribution pattern of fluids in pores outside the clay-bound water zone. Through theoretical derivation and water spectrum function simulation, a water spectrum function and its parameter range suitable for the NMR T2 distribution in tight sandstone reservoirs were determined. Using core-sealed core saturation as a reference, the particle swarm optimization (PSO) algorithm was applied to optimize the parameter range and construct the final water spectrum function tailored to tight sandstone oil reservoirs. The accuracy and practicality of this method were validated by applying the derived water spectrum function to NMR logging in the exploration block, allowing for precise saturation calculations and the accurate evaluation of tight reservoir saturation. Full article
(This article belongs to the Special Issue Oil and Gas Drilling Processes: Control and Optimization)
Show Figures

Figure 1

22 pages, 4972 KiB  
Article
The Optical Forces and Torques Exerted by Airy Light-Sheet on Magnetic Particles Utilized for Targeted Drug Delivery
by Ningning Song, Shiguo Chen, Hao Wang, Xinbo He, Bing Wei, Renxian Li, Shu Zhang and Lei Xu
Micromachines 2024, 15(11), 1369; https://doi.org/10.3390/mi15111369 - 12 Nov 2024
Viewed by 414
Abstract
The remarkable properties of magnetic nanostructures have sparked considerable interest within the biomedical domain, owing to their potential for diverse applications. In targeted drug delivery systems, therapeutic molecules can be loaded onto magnetic nanocarriers and precisely guided and released within the body with [...] Read more.
The remarkable properties of magnetic nanostructures have sparked considerable interest within the biomedical domain, owing to their potential for diverse applications. In targeted drug delivery systems, therapeutic molecules can be loaded onto magnetic nanocarriers and precisely guided and released within the body with the assistance of an externally applied magnetic field. However, conventional external magnetic fields generated by permanent magnets or electromagnets are limited by finite magnetic field gradients, shallow penetration depths, and low precision. The novel structured light field known as the Airy light-sheet possesses unique characteristics such as non-diffraction, self-healing, and self-acceleration, which can potentially overcome the limitations of traditional magnetic fields to some extent. While existing studies have primarily focused on the manipulation of dielectric particles by Airy light-sheet, comprehensive analyses exploring the intricate interplay between Airy light-sheet and magnetic nanostructures are currently lacking in the literature, with only preliminary theoretical discussions available. This study systematically explores the mechanical response of magnetic spherical particles under the influence of Airy light-sheet, including radiation forces and spin torques. Furthermore, we provide an in-depth analysis of the effects of particle size, permittivity, permeability, and incident light-sheet parameters on the mechanical effects. Our research findings not only offer new theoretical guidance and practical references for the application of magnetic nanoparticles in biomedicine but also provide valuable insights for the manipulation of other types of micro/nanoparticles using structured light fields. Full article
(This article belongs to the Section B5: Drug Delivery System)
Show Figures

Figure 1

13 pages, 4993 KiB  
Article
The Development of a 3D Magnetic Field Scanner Using Additive Technologies
by Artem Sobko, Nikolai Yudanov, Larissa V. Panina and Valeriya Rodionova
Hardware 2024, 2(4), 279-291; https://doi.org/10.3390/hardware2040014 - 11 Nov 2024
Viewed by 365
Abstract
Visualizing magnetic fields is essential for studying the operation of electromagnetic systems and devices that use permanent magnets or magnetic particles. However, commercial devices for this purpose are often expensive due to their complex designs, which may not always be necessary for specific [...] Read more.
Visualizing magnetic fields is essential for studying the operation of electromagnetic systems and devices that use permanent magnets or magnetic particles. However, commercial devices for this purpose are often expensive due to their complex designs, which may not always be necessary for specific research needs. This work presents a method for designing an automated laboratory setup for magnetic cartography, utilizing a 3D printer to produce structural plastic components for the scanner. The assembly process is thoroughly described, covering both the hardware and software aspects. Spatial resolution and mapping parameters, such as the number of data points and the collection time, were configured through software. Multiple tests were conducted on samples featuring flat inductive coils on a printed circuit board, providing a reliable model for comparing calculated and measured results. The scanner offers several advantages, including a straightforward design, readily available materials and components, a large scanning area (100 mm × 100 mm × 100 mm), a user-friendly interface, and adaptability for specific tasks. Additionally, the integration of a pre-built macro enables connection to any PC running Windows, while the open-source microcontroller code allows users to customize the scanner’s functionality to meet their specific requirements. Full article
Show Figures

Figure 1

15 pages, 3616 KiB  
Article
Polarizing Magnetic Field Effect on Some Electrical Properties of a Ferrofluid in Microwave Field
by Catalin N. Marin, Paul C. Fannin and Iosif Malaescu
Magnetochemistry 2024, 10(11), 88; https://doi.org/10.3390/magnetochemistry10110088 - 9 Nov 2024
Viewed by 525
Abstract
The complex dielectric permittivity, ε (f, H) = ε′ (f, H) − i ε″ (f, H), in the microwave frequency range f, of (0.1–3) GHz and polarizing field values H, [...] Read more.
The complex dielectric permittivity, ε (f, H) = ε′ (f, H) − i ε″ (f, H), in the microwave frequency range f, of (0.1–3) GHz and polarizing field values H, in the range of (0–135) kA/m, was measured for a kerosene-based ferrofluid with magnetite particles. A relaxation process attributed to interfacial type relaxation was highlighted, determining for the first time in the microwave field, the activation energy of the dielectric relaxation process in the presence of the magnetic field, EA(H), in relation to the activation energy in zero field, EA(H = 0). Based on the complex permittivity measurements and the Claussius–Mossotti equation, the dependencies on frequency (f), and magnetic field (H), of the polarizability (α) and electrical conductivity (σ), were determined. From the dependence of α(f,H), the electric dipolar moment, p, of the particles in the ferrofluid, was determined. The conductivity spectrum, σ(f,H), was found to be in agreement with Jonscher’s universal law and the electrical conduction mechanism in the ferrofluid was explained using both Mott’s VRH (variable range hopping) model and CBH (correlated barrier hopping) model. Based on these models and conductivity measurements, the hopping distance, Rh, of the charge carriers and the maximum barrier height, Wm, for the investigated ferrofluid was determined for the first time in the microwave field. Knowledge of these electrical properties of the ferrofluid in the microwave field is useful for explaining the mechanisms of polarization and control of electrical conductivity with an external magnetic field, in order to use ferrofluids in various technological applications in microwave field. Full article
(This article belongs to the Section Magnetic Materials)
Show Figures

Figure 1

14 pages, 10536 KiB  
Article
Regulation of Interface Compatibility and Performance in Soft Magnetic Composites with Inorganic Insulation Layers by FePO4 Intermediate Transition Layer
by Sanao Huang, Junjie Ma, Yang Liu, Hao He, Peisheng Lyu, Huaqin Huang and Bing Dai
Molecules 2024, 29(22), 5281; https://doi.org/10.3390/molecules29225281 - 8 Nov 2024
Viewed by 393
Abstract
In the fabrication of soft magnetic composites, the lattice mismatch between the inorganic insulation layer and the iron matrix often leads to the formation of cracks during the molding process, which significantly impairs the operational performance of the materials. Consequently, it is imperative [...] Read more.
In the fabrication of soft magnetic composites, the lattice mismatch between the inorganic insulation layer and the iron matrix often leads to the formation of cracks during the molding process, which significantly impairs the operational performance of the materials. Consequently, it is imperative to develop novel strategies for inorganic insulation coatings that offer high electrical resistivity and thermal stability and are less susceptible to cracking during formation. This paper presents a new structure for soft magnetic composites that incorporates FePO4 as an intermediate transition layer between the iron-based soft magnetic particles and the inorganic ceramic insulation layer. This configuration is designed to provide insulation coatings with superior voltage and thermal resistance, as well as high electrical resistivity. The research details the processes forming the FePO4 intermediate transition layer and the SiO2 insulation layer on the iron powder surface, along with their interaction mechanisms. An analysis comparing the scenarios with and without the FePO4 intermediate transition layer shows its beneficial impact on the magnetic properties and mechanical strength of the soft magnetic composites. Further investigations reveal that at a phosphoric acid concentration of 1 wt.%, the FePO4 layer significantly enhances the interface compatibility between the Fe powder matrix and the SiO2 insulation layer. Under these conditions, the Fe@ FePO4/SiO2 soft magnetic composites demonstrate outstanding overall performance: the saturation magnetization stands at 215.60 emu/g, effective permeability at 83.2, resistivity at 57.42 Ω·m, power loss at 375.0 kW/m3 under 30 mT/100 kHz, and radial compressive strength at 15.95 Kgf. These findings offer novel insights and practical approaches for advancing inorganic insulation coating strategies and provide vital scientific support for further enhancing the magnetic and mechanical properties of soft magnetic composites. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Graphical abstract

16 pages, 3171 KiB  
Article
Hemocompatibility of Albumin-Modified Magnetic Nanoparticles
by Indu Sharma, Mehdi Gaffari Sharaf, Aishwarya Pawar, Agatha Milley and Larry D. Unsworth
Int. J. Mol. Sci. 2024, 25(22), 11975; https://doi.org/10.3390/ijms252211975 - 7 Nov 2024
Viewed by 396
Abstract
Kidney failure leads to the accumulation of metabolites in the blood compartment. This build-up of metabolites has been associated with increased mortality and morbidity in these patients; thus, these metabolites are commonly called uremic toxins. The retention of some uremic toxins in the [...] Read more.
Kidney failure leads to the accumulation of metabolites in the blood compartment. This build-up of metabolites has been associated with increased mortality and morbidity in these patients; thus, these metabolites are commonly called uremic toxins. The retention of some uremic toxins in the blood results from a strong interaction with serum albumin, preventing their clearance using standard hemodialysis techniques. Adsorbents are considered the next-generation technology for clearing uremic toxins from the blood, and iron oxide magnetic nanoparticles are a promising material due to a high surface area that is easily modified and the ability to remove them from blood with an external magnetic field. Plasma protein adsorption and clot formation kinetics were determined for unmodified and albumin-modified iron oxide magnetic nanoparticles. Albumin was selected because it can bind uremic toxins, and it is commonly used to passivate surfaces. Coatings were formed and characterized using transmission electron microscopy, thermogravimetric analysis, and zeta-potential analysis. Clotting kinetics, total protein assays, and immunoblots were used to analyze the effect surface modification has on protein adsorption events. Unmodified nanoparticles showed rapid clotting and more adsorbed protein compared to albumin-coated iron oxide nanoparticles. Immunoblots show that modified particles showed changes in albumin, protein C, Immunoglobulin G, transferrin, fibrinogen, α1-antitrypsin, vitronectin, plasminogen, prothrombin, and antithrombin levels compared to unmodified controls. The hemocompatibility of adsorbent materials is essential to their clinical application in clearing the blood of uremic toxins. Full article
(This article belongs to the Special Issue New Insight into Therapeutic Potential of Targeted Nanoparticles)
Show Figures

Graphical abstract

17 pages, 4136 KiB  
Article
Geoenvironmental and Health Indices to Assess the Hazardousness of Heavy Metals in Urban Dust in Schoolyards in Murcia, Spain
by María José Delgado-Iniesta, Pura Marín-Sanleandro, María del Carmen Canca Pedraza, Elvira Díaz-Pereira and Antonio Sánchez-Navarro
Toxics 2024, 12(11), 804; https://doi.org/10.3390/toxics12110804 - 7 Nov 2024
Viewed by 486
Abstract
The aim of this study was to evaluate the possible contamination of urban dust in the schoolyards of 27 schools in an urban area of the city of Murcia (SE Spain). The color and degree of magnetism, as well as the heavy metal [...] Read more.
The aim of this study was to evaluate the possible contamination of urban dust in the schoolyards of 27 schools in an urban area of the city of Murcia (SE Spain). The color and degree of magnetism, as well as the heavy metal content (Cd, Cu, Cr, Ni, Pb, and Zn), were determined to establish the absence or the degree of contamination, if present, using environmental and health indices. It was established that the concentrations of heavy metals in the dust samples followed the order Zn (454 mg kg−1) > Cu (77 mg kg−1) > Cr (68 mg kg−1) > Pb (56 mg kg−1) > Ni (19 mg kg−1) > Cd (0.4 mg kg−1). Dark-colored dust showed the highest concentrations of contaminants associated with medium or high magnetism. An analysis of the magnetic and non-magnetic fractions indicated the highest concentrations of all heavy metals in the magnetic fraction. According to the geoenvironmental indices used, the ecological risk in these schoolyards is moderate overall. Based on the health indices, ingestion is the main route of entry of dust particles into the body, which poses the main health risk for adults and children for all heavy metals. Regarding the hazard index (HI) for all elements and the cancer risk (CR) for children and adults, the results indicate that there is no health risk. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Figure 1

24 pages, 6959 KiB  
Article
Linking Turbulent Interplanetary Magnetic Field Fluctuations and Current Sheets
by Maria O. Riazantseva, Timofey V. Treves, Olga Khabarova, Liudmila S. Rakhmanova, Yuri I. Yermolaev and Alexander A. Khokhlachev
Universe 2024, 10(11), 417; https://doi.org/10.3390/universe10110417 - 7 Nov 2024
Viewed by 452
Abstract
The study aims to understand the role of solar wind current sheets (CSs) in shaping the spectrum of turbulent fluctuations and driving dissipation processes in space plasma. Local non-adiabatic heating and acceleration of charged particles in the solar wind is one of the [...] Read more.
The study aims to understand the role of solar wind current sheets (CSs) in shaping the spectrum of turbulent fluctuations and driving dissipation processes in space plasma. Local non-adiabatic heating and acceleration of charged particles in the solar wind is one of the most intriguing challenges in space physics. Leading theories attribute these effects to turbulent heating, often associated with magnetic reconnection at small-scale coherent structures in the solar wind, such as CSs and flux ropes. We identify CSs observed at 1 AU in different types of the solar wind around and within an interplanetary coronal mass ejection (ICME) and analyze the corresponding characteristics of the turbulent cascade. It is found that the spectra of fluctuations of the interplanetary magnetic field may be reshaped due to the CS impact potentially leading to local disruptions in energy transfer along the cascade of turbulent fluctuations. Case studies of the spectra behavior at the peak of the CS number show their steepening at MHD scales, flattening at kinetic scales, and merging of the spectra into a single form, with the break almost disappearing. In the broader vicinity of the CS number peak, the behavior of spectral parameters changes sharply, but not always following the same pattern. The statistical analysis shows a clear correlation between the break frequency and the CS number. These results are consistent with the picture of turbulent reconnection at CSs. The CS occurrence is found to be statistically linked with the increased temperature. In the ICME sheath, there are two CS populations observed in the hottest and coldest plasma. Full article
(This article belongs to the Section Space Science)
Show Figures

Figure 1

18 pages, 4178 KiB  
Article
Exploring Multi-Parameter Effects on Iron Oxide Nanoparticle Synthesis by SAXS Analysis
by Marco Eigenfeld, Marco Reindl, Xiao Sun and Sebastian P. Schwaminger
Crystals 2024, 14(11), 961; https://doi.org/10.3390/cryst14110961 - 4 Nov 2024
Viewed by 449
Abstract
Iron oxide nanoparticles (IONs) are extensively used in biomedical applications due to their unique magnetic properties. This study optimized ION synthesis via the co-precipitation method, exploring the impact of the reactant concentrations (Fe(II) and Fe(III)), NaOH concentration, temperature (30 °C–80 °C), stirring speed [...] Read more.
Iron oxide nanoparticles (IONs) are extensively used in biomedical applications due to their unique magnetic properties. This study optimized ION synthesis via the co-precipitation method, exploring the impact of the reactant concentrations (Fe(II) and Fe(III)), NaOH concentration, temperature (30 °C–80 °C), stirring speed (0–1000 rpm), and dosing rate (10–600 s) on particle size and growth. Using small-angle X-ray scattering (SAXS), we observed, for example, that higher temperatures (e.g., 67 °C compared with 53 °C) led to a 50% increase in particle size, while the stirring speed and NaOH concentration also influenced nucleation and aggregation. These results provide comprehensive insights into optimizing synthetic conditions for targeted applications in biomedical fields, such as drug delivery and magnetic resonance imaging (MRI), where precise control over nanoparticle size and properties is crucial. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

21 pages, 7843 KiB  
Article
Structural and Textural Characteristics of Municipal Solid Waste Incineration Bottom Ash Subjected to Periodic Seasoning
by Barbara Dutka, Simona Rada, Katarzyna Godyń, Dumitrita Moldovan, Ramona Ioana Chelcea and Maciej Tram
Sustainability 2024, 16(21), 9597; https://doi.org/10.3390/su16219597 - 4 Nov 2024
Viewed by 501
Abstract
The objective of this study was to determine the structural and textural description of municipal solid waste incineration (MSWI) bottom ash that was subjected to a six-month seasoning process. Bottom ash samples, with a particle size fraction of 0.063–0.1 mm, were seasoned in [...] Read more.
The objective of this study was to determine the structural and textural description of municipal solid waste incineration (MSWI) bottom ash that was subjected to a six-month seasoning process. Bottom ash samples, with a particle size fraction of 0.063–0.1 mm, were seasoned in a closed landfill and collected for laboratory analyses at monthly intervals. The research focused on determining the structural parameters, using methods such as nuclear magnetic resonance spectroscopy (1H NMR), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), and the textural parameters, using low-pressure nitrogen adsorption (LPNA) at −196.15 °C. The analyses of the porous structure of the bottom ash samples revealed differences in texture of ASH 1 to ASH 6, specifically in the pore volume (micro- and mesopores), specific surface area, and pore size distribution. Changes in the structural and porous characteristics of the samples were attributed to the duration of the seasoning process. The results of the structural analysis of the bottom ash suggest its application in the concrete industry, potentially enhancing the long-term mechanical strength of concrete. The results of the textural analysis indicate the possible use of MSWI bottom ash in environmental applications, as the internal surface area could be further developed. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

Back to TopTop