Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (248)

Search Parameters:
Keywords = minimum impedance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 14618 KiB  
Article
Analysis of the Influencing Factors of Aerostatic Bearings on Pneumatic Hammering
by Yifei Li, Weiping Huang and Ran Sang
Lubricants 2024, 12(11), 395; https://doi.org/10.3390/lubricants12110395 - 16 Nov 2024
Viewed by 393
Abstract
In this study, in order to reveal the influence mechanism of bearing parameters on pneumatic hammering, an aerostatic bearing with a multi-orifice-type restrictor is analyzed. Firstly, the flow field is investigated, and the vortex-induced excitation is discussed in both the frequency and time [...] Read more.
In this study, in order to reveal the influence mechanism of bearing parameters on pneumatic hammering, an aerostatic bearing with a multi-orifice-type restrictor is analyzed. Firstly, the flow field is investigated, and the vortex-induced excitation is discussed in both the frequency and time domains. Then, the frequency-related displacement impedance is analyzed, and the effects of vortex-induced excitation on pneumatic hammering are discussed. Experiments are also conducted for verification. Moreover, the influence of damping on pneumatic hammering is identified. The results show that with larger damping, the risk of pneumatic hammering can be reduced. Finally, the impacts of design parameters on the damping are discussed in detail using an approximate model. Design optimization is considered to achieve the maximum damping, i.e., the minimum risk of pneumatic hammering. The results show that both the air supply pressure and the pocket volume should be minimized. The analysis process provides a reference for the design of bearings to reduce pneumatic hammering. Full article
(This article belongs to the Special Issue Gas Lubricated Bearings)
Show Figures

Figure 1

14 pages, 14063 KiB  
Article
High Absorption of Electromagnetic Waves Based on 3D PMMA@Mxene@Co3O4 Composite Microsphere
by Jinghe Guo, Yanxiang Wang, Lanzhou Wang, Bohan Ding, Yongbo Wang, Yue Sun, Shichao Dai, Donglong Wang and Shishuai Bi
Materials 2024, 17(22), 5427; https://doi.org/10.3390/ma17225427 - 6 Nov 2024
Viewed by 340
Abstract
With the increasing demand for effective electromagnetic wave (EMW) absorbers due to the proliferation of electronic devices and 5G communication systems, traditional wave-absorbing materials can no longer meet the current requirements. Thus, this research introduces a three-dimensional (3D) composite material consisting of PMMA@Mxene@Co₃O₄ [...] Read more.
With the increasing demand for effective electromagnetic wave (EMW) absorbers due to the proliferation of electronic devices and 5G communication systems, traditional wave-absorbing materials can no longer meet the current requirements. Thus, this research introduces a three-dimensional (3D) composite material consisting of PMMA@Mxene@Co₃O₄ microspheres, prepared through in situ self-assembly and hydrothermal growth. The strong electrical conductivity of Mxene, combined with the magnetic loss of Co₃O₄, ensures enhanced dielectric–magnetic synergy, leading to excellent EMW absorption. The study investigates the influence of varying Co₃O₄ content on the electromagnetic properties of the composite. Experimental results show that the optimal sample, with a thickness of 2.5 mm, achieves a minimum reflection loss (RLmin) of −52.88 dB at 6.88 GHz and an effective absorption bandwidth (EAB) of 5.28 GHz. This work highlights the potential of 3D PMMA@Mxene@Co₃O₄ composites as high-performance microwave absorbers, providing a promising solution to EMW pollution. The findings offer valuable insights into material design strategies, demonstrate a promising pathway for developing lightweight, high-performance EMW absorbing materials by optimizing impedance matching and utilizing advanced microstructure design techniques. Full article
Show Figures

Figure 1

19 pages, 4519 KiB  
Article
Effect of High Nighttime Temperatures on Growth, Yield, and Quality of Two Wheat Cultivars During the Whole Growth Period
by Danping Li, Yanjun Xiao, Lei Guo, Baoxue Shan, Xiukun Liu, Xiaoyan Duan, Ata-ur Rehman, Can Guo, Wenjia Zhang, Haosheng Li, Jianjun Liu, Xin Gao and Xinyou Cao
Plants 2024, 13(21), 3071; https://doi.org/10.3390/plants13213071 - 31 Oct 2024
Viewed by 724
Abstract
It is a consensus that Earth’s climate has been warming. The impact of global warming is asymmetric, that is, there is more substantial warming in the daily minimum surface air temperature and lower warming in the maximum surface air temperature. Previous studies have [...] Read more.
It is a consensus that Earth’s climate has been warming. The impact of global warming is asymmetric, that is, there is more substantial warming in the daily minimum surface air temperature and lower warming in the maximum surface air temperature. Previous studies have reported diurnal temperature differences greatly affecting winter wheat yield. However, only a few studies have investigated the impact of global warming on the growth and yield of winter wheat, yet the influence of night warming on quality has not been deeply evaluated. In this study, two wheat cultivars were used as materials: Jimai 44 (JM44) with strong gluten and Jimai 22 (JM22) with medium gluten, to explore the effects of high nighttime temperatures (HNTs) on the growth, yield, and quality of wheat. The results show that HNTs significantly shortened seedling emergence and anthesis periods in both cultivars compared with ambient temperatures (ATs). In addition, HNTs increased the respiration rate at anthesis and grain-filling stages, impeding wheat pollination and grain maturity. HNTs also accelerated leaf senescence and increased the number of sterile spikelets and plant height, but decreased the effective tiller number, the number of spikes per unit area, and grains per spike. As a result, the grain yield of JM22 and JM44 was decreased by 24.6% and 21.2%, respectively. Moreover, HNTs negatively influenced the flour quality of the two wheat cultivars. The current findings provide new insights into the effects of HNTs on the growth, development, yield, and quality of different wheat genotypes during the whole growth period. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

14 pages, 2899 KiB  
Article
A 5 mW 28 nm CMOS Low-Noise Amplifier with Transformer-Based Electrostatic Discharge Protection for 60 GHz Applications
by Minoo Eghtesadi, Gianluca Giustolisi, Andrea Ballo, Salvatore Pennisi and Egidio Ragonese
Electronics 2024, 13(21), 4285; https://doi.org/10.3390/electronics13214285 - 31 Oct 2024
Viewed by 644
Abstract
This paper presents a low-power 60 GHz low-noise amplifier (LNA) designed for Gbit/s applications using 28 nm CMOS technology. The LNA exploits a single-stage pseudo-differential architecture with integrated input transformer for both electrostatic discharge (ESD) protection and simultaneous noise/impedance matching. An effective power-constrained [...] Read more.
This paper presents a low-power 60 GHz low-noise amplifier (LNA) designed for Gbit/s applications using 28 nm CMOS technology. The LNA exploits a single-stage pseudo-differential architecture with integrated input transformer for both electrostatic discharge (ESD) protection and simultaneous noise/impedance matching. An effective power-constrained design strategy is adopted to pursue the lowest current consumption at the minimum noise figure (NF), with the best tradeoff between gain and frequency bandwidth. The LNA, which has been designed to drive an on–off keying (OOK) demodulator, is operated at a supply voltage as low as 0.9 V and achieves a voltage gain of about 21 dB with a 3 dB bandwidth of 2 GHz around 60 GHz. Thanks to the proper impedance transformation at the 60 GHz input, the amplifier exhibits an NF of 6.3 dB, also including the input transformer loss with a very low power consumption of about 5 mW. The adoption of a single-stage topology also allows an excellent input 1 dB compression point (IP1dB) of −4.7 dBm. The input transformer guarantees up to 2 kV human body model (HBM) ESD protection. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

16 pages, 4987 KiB  
Article
Bamboo-Based Carbon/Co/CoO Heterojunction Structures Based on a Multi-Layer Periodic Matrix Array Can Be Used for Efficient Electromagnetic Attenuation
by He Han, Hui Chen, Rui Wang and Zhichao Lou
Materials 2024, 17(21), 5239; https://doi.org/10.3390/ma17215239 - 28 Oct 2024
Viewed by 708
Abstract
With the popularization of wireless communication, radar, and electronic devices, the hidden harm of electromagnetic radiation is becoming increasingly serious. The design of green biomass carbon-based interface heterojunctions based on lightweight porous materials can effectively protect against electromagnetic radiation hazards. In this work, [...] Read more.
With the popularization of wireless communication, radar, and electronic devices, the hidden harm of electromagnetic radiation is becoming increasingly serious. The design of green biomass carbon-based interface heterojunctions based on lightweight porous materials can effectively protect against electromagnetic radiation hazards. In this work, we constructed an anisotropic heterojunction interface with magnetic and dielectric coupling based on a honeycomb-like periodic matrix multi-layer array repeating unit. The removal of lignin components from bamboo through oxidation enriches the impregnation pores and uniform adsorption sites of the magnetic medium. Further, in situ pyrolysis promotes the formation of a large number of electric dipoles at the interface between the magnetic medium and dielectric coupling inside the periodic cell carbon skeleton, enhancing interface polarization and relaxation. Local carrier traps and uneven electromagnetic density enhance dielectric and hysteresis losses, resulting in excellent impedance matching. Therefore, the obtained bamboo-based carbon multiphase composite absorbent has satisfactory electromagnetic loss characteristics. At a thickness of 1.55 mm, the effective absorption bandwidth reaches 5.1 GHz, and the minimum reflection loss (RL) value reaches −54.7 dB. In addition, the far-field radar simulation results show that the sample has an excellent RCS (radar cross-section) reduction of 33.3 dB·m2. This work provides new directions for the diversified development of green biomass and the optimization of the design of magnetic and dielectric coupling in periodic array structures. Full article
Show Figures

Graphical abstract

14 pages, 4573 KiB  
Article
Catechol/m-Phenylenediamine Modified Sol–Gel Coating with Enhanced Long-Lasting Anticorrosion Performance on 3003 Al Alloy
by Keqi Huang, Xin Huang, Liyan Wang, Sifan Tu, Zi Yang, Honglei Guo, Bing Lei, Zhiyuan Feng and Guozhe Meng
Molecules 2024, 29(19), 4644; https://doi.org/10.3390/molecules29194644 - 30 Sep 2024
Viewed by 938
Abstract
Aluminum alloys, characterized by their low density and high mechanical strength, are widely applied in the manufacturing sector. However, the application of aluminum alloys in extreme environments presents severe corrosion challenges. Sol–gel organic coating techniques have garnered significant attention due to their excellent [...] Read more.
Aluminum alloys, characterized by their low density and high mechanical strength, are widely applied in the manufacturing sector. However, the application of aluminum alloys in extreme environments presents severe corrosion challenges. Sol–gel organic coating techniques have garnered significant attention due to their excellent stability, barrier properties, and cost-effectiveness, as well as their simpler processing. Nevertheless, conventional sol–gel coatings are unable to withstand the corrosive effects of high-chloride and high-halide ion environments such as marine conditions, owing to their inherent structural defects. Therefore, this study proposes the utilization of a simple method to synthesize catechol (CA) and meta-phenylenediamine (MPD)-derived catecholamine compounds to modify sol–gel coatings. Surface characteristics of the modified coatings were analyzed using Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The thickness of the modified coating was approximately 6.8 μm. The CA/MPD-modified substance effectively densifies the sol–gel coating, enhancing its corrosion protection performance. A 3.5 wt% NaCl solution was used to simulate a marine environment, and electrochemical impedance spectroscopy (EIS) was conducted using an electrochemical workstation to evaluate the coating’s protective properties over a long-term period. The results indicate that the modified coating provides protection for 3003 aluminum alloy for a minimum of 30 days under corrosive conditions, outperforming unmodified sol–gel coatings in terms of corrosion resistance. Full article
Show Figures

Figure 1

17 pages, 8199 KiB  
Article
Curriculum Design and Sim2Real Transfer for Reinforcement Learning in Robotic Dual-Arm Assembly
by Konstantin Wrede, Sebastian Zarnack, Robert Lange, Oliver Donath, Tommy Wohlfahrt and Ute Feldmann
Machines 2024, 12(10), 682; https://doi.org/10.3390/machines12100682 - 29 Sep 2024
Viewed by 885
Abstract
Robotic systems are crucial in modern manufacturing. Complex assembly tasks require the collaboration of multiple robots. Their orchestration is challenging due to tight tolerances and precision requirements. In this work, we set up two Franka Panda robots performing a peg-in-hole insertion task of [...] Read more.
Robotic systems are crucial in modern manufacturing. Complex assembly tasks require the collaboration of multiple robots. Their orchestration is challenging due to tight tolerances and precision requirements. In this work, we set up two Franka Panda robots performing a peg-in-hole insertion task of 1 mm clearance. We structure the control system hierarchically, planning the robots’ feedback-based trajectories with a central policy trained with reinforcement learning. These trajectories are executed by a low-level impedance controller on each robot. To enhance training convergence, we use reverse curriculum learning, novel for such a two-armed control task, iteratively structured with a minimum requirements and fine-tuning phase. We incorporate domain randomization, varying initial joint configurations of the task for generalization of the applicability. After training, we test the system in a simulation, discovering the impact of curriculum parameters on the emerging process time and its variance. Finally, we transfer the trained model to the real-world, resulting in a small decrease in task duration. Comparing our approach to classical path planning and control shows a decrease in process time, but higher robustness towards calibration errors. Full article
Show Figures

Figure 1

16 pages, 3125 KiB  
Article
Quantifying the Aging of Lithium-Ion Pouch Cells Using Pressure Sensors
by Yousof Nayfeh, Jon C. Vittitoe and Xianglin Li
Batteries 2024, 10(9), 333; https://doi.org/10.3390/batteries10090333 - 21 Sep 2024
Viewed by 1043
Abstract
Understanding the behavior of pressure increases in lithium-ion (Li-ion) cells is essential for prolonging the lifespan of Li-ion battery cells and minimizing the safety risks associated with cell aging. This work investigates the effects of C-rates and temperature on pressure behavior in commercial [...] Read more.
Understanding the behavior of pressure increases in lithium-ion (Li-ion) cells is essential for prolonging the lifespan of Li-ion battery cells and minimizing the safety risks associated with cell aging. This work investigates the effects of C-rates and temperature on pressure behavior in commercial lithium cobalt oxide (LCO)/graphite pouch cells. The battery is volumetrically constrained, and the mechanical pressure response is measured using a force gauge as the battery is cycled. The effect of the C-rate (1C, 2C, and 3C) and ambient temperature (10 °C, 25 °C, and 40 °C) on the increase in battery pressure is investigated. By analyzing the change in the minimum, maximum, and pressure difference per cycle, we identify and discuss the effects of different factors (i.e., SEI layer damage, electrolyte decomposition, lithium plating) on the pressure behavior. Operating at high C-rates or low temperatures rapidly increases the residual pressure as the battery is cycled. The results suggest that lithium plating is predominantly responsible for battery expansion and pressure increase during the cycle aging of Li-ion cells rather than electrolyte decomposition. Electrochemical impedance spectroscopy (EIS) measurements can support our conclusions. Postmortem analysis of the aged cells was performed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) to confirm the occurrence of lithium plating and film growth on the anodes of the aged cells. This study demonstrates that pressure measurements can provide insights into the aging mechanisms of Li-ion batteries and can be used as a reliable predictor of battery degradation. Full article
(This article belongs to the Section Battery Performance, Ageing, Reliability and Safety)
Show Figures

Figure 1

18 pages, 11712 KiB  
Article
A Joint Active Damping Strategy Based on LCL-Type Grid-Connected Inverters for Grid Current Feedback and PCC Voltage Unit Feedforward
by Shanwen Ke and Bo Liang
Sensors 2024, 24(18), 6029; https://doi.org/10.3390/s24186029 - 18 Sep 2024
Viewed by 489
Abstract
The negative high-pass filter feedback of the grid current (NFGCF) can offer active damping for the LCL-type grid-connected inverter. Due to the control delay in digital control systems, this damping can cause the system to exhibit non-minimum phase behavior within specific frequency [...] Read more.
The negative high-pass filter feedback of the grid current (NFGCF) can offer active damping for the LCL-type grid-connected inverter. Due to the control delay in digital control systems, this damping can cause the system to exhibit non-minimum phase behavior within specific frequency ranges. This study proposes a joint active damping approach that combines grid current feedback and the point of common coupling (PCC) voltage unit feedforward. The proposed method introduces a dynamic damping region that varies with grid impedance. By developing suitable damping loop control parameters, this region can span the entire frequency range, even exceeding the Nyquist frequency fs/2. The research results demonstrate that the proposed approach enhances robustness against variations in grid impedance and eliminates non-minimum phase behavior. Simulation and experimental outcomes validate the effectiveness of this joint active damping method. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

16 pages, 6270 KiB  
Article
C/Co3O4/Diatomite Composite for Microwave Absorption
by Yan Liao, Dashuang Wang, Wenrui Zhu, Zhilan Du, Fanbo Gong, Tuo Ping, Jinsong Rao, Yuxin Zhang and Xiaoying Liu
Molecules 2024, 29(18), 4336; https://doi.org/10.3390/molecules29184336 - 12 Sep 2024
Viewed by 651
Abstract
Transition metal oxides have been widely used in microwave-absorbing materials, but how to improve impedance matching is still an urgent problem. Therefore, we introduced urea as a polymer carbon source into a three-dimensional porous structure modified by Co3O4 nanoparticles and [...] Read more.
Transition metal oxides have been widely used in microwave-absorbing materials, but how to improve impedance matching is still an urgent problem. Therefore, we introduced urea as a polymer carbon source into a three-dimensional porous structure modified by Co3O4 nanoparticles and explored the influence of different heat treatment temperatures on the wave absorption properties of the composite. The nanomaterials, when calcined at a temperature of 450 °C, exhibited excellent microwave absorption capabilities. Specifically, at an optimized thickness of 9 mm, they achieved a minimum reflection loss (RLmin) of −97.3 dB, accompanied by an effective absorption bandwidth (EAB) of 9.83 GHz that comprehensively covered both the S and Ku frequency bands. On the other hand, with a thickness of 3 mm, the RLmin was recorded as −17.9 dB, with an EAB of 5.53 GHz. This excellent performance is attributed to the multi-facial polarization and multiple reflections induced by the magnetic loss capability of Co3O4 nanoparticles, the electrical conductivity of C, and the unique three-dimensional structure of diatomite. For the future development of bio-based microwave absorption, this work provides a methodology and strategy. Full article
(This article belongs to the Special Issue Functional Nanomaterials in Green Chemistry, 2nd Edition)
Show Figures

Graphical abstract

23 pages, 5614 KiB  
Article
A Dynamic Simulation Model for Near-Zero Rebar-Cutting Waste through Special-Length-Priority Optimization
by Jinhyuk Oh, Sunkuk Kim and Daniel Darma Widjaja
Buildings 2024, 14(8), 2350; https://doi.org/10.3390/buildings14082350 - 30 Jul 2024
Viewed by 576
Abstract
Global economic fluctuations as exemplified by the recent COVID-19 financial crisis significantly impact the construction industry, particularly steel rebar supply chain and procurement. This impedes engineers’ efforts toward achieving near-zero rebar-cutting waste due to dynamic rebar minimum order quantities and maximum lengths imposed [...] Read more.
Global economic fluctuations as exemplified by the recent COVID-19 financial crisis significantly impact the construction industry, particularly steel rebar supply chain and procurement. This impedes engineers’ efforts toward achieving near-zero rebar-cutting waste due to dynamic rebar minimum order quantities and maximum lengths imposed by steel mills. This study addresses the challenge of achieving near-zero rebar-cutting waste by proposing a model that simulates the level of optimization in minimizing rebar-cutting waste amidst such dynamics. The model was implemented in a case study involving reinforced concrete columns in a high-rise building. While achieving near-zero waste consistently proved challenging, particularly for greater than 50 tons of minimum quantity, the study identified a maximum 12 m rebar variant that attained this target regardless of minimum order quantity. Nonetheless, this study introduces a real-time decision-support system for rebar procurement, empowering engineers to optimize usage and minimize waste. This system facilitates near-zero rebar-cutting waste levels in response to rebar procurement requirement dynamics. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

11 pages, 2612 KiB  
Article
Exploring the Antibacterial Potential of Bile Salts: Inhibition of Biofilm Formation and Cell Growth in Pseudomonas aeruginosa and Staphylococcus aureus
by Anuradha Tyagi, Vinay Kumar, Navneet Joshi and Harish Kumar Dhingra
Microbiol. Res. 2024, 15(3), 1269-1279; https://doi.org/10.3390/microbiolres15030085 - 21 Jul 2024
Cited by 1 | Viewed by 1504
Abstract
Chronic infections often involve notorious pathogens like Pseudomonas aeruginosa and Staphylococcus aureus, demanding innovative antimicrobial strategies due to escalating resistance. This investigation scrutinized the antibacterial prowess of bile salts, notably taurocholic acid (TCA), ursodeoxycholic acid (UDCA), and ox bile salt (OBS), against [...] Read more.
Chronic infections often involve notorious pathogens like Pseudomonas aeruginosa and Staphylococcus aureus, demanding innovative antimicrobial strategies due to escalating resistance. This investigation scrutinized the antibacterial prowess of bile salts, notably taurocholic acid (TCA), ursodeoxycholic acid (UDCA), and ox bile salt (OBS), against these pathogens. Evaluations encompassed minimum inhibitory concentration (MIC) determination, scrutiny of their impact on biofilm formation, and anti-virulence mechanisms. UDCA exhibited the highest efficacy, suppressing S. aureus and P. aeruginosa biofilms by 83.5% and 78%, respectively, at peak concentration. TCA also significantly reduced biofilm development by 81% for S. aureus and 75% for P. aeruginosa. Microscopic analysis revealed substantial disruption of biofilm architecture by UDCA and TCA. Conversely, OBS demonstrated ineffectiveness against both pathogens. Mechanistic assays elucidated UDCA and TCA’s detrimental impact on the cell membrane, prompting the release of macromolecular compounds. Additionally, UDCA and TCA inhibited protease and elastase synthesis in P. aeruginosa and staphyloxanthin and lipase production in S. aureus. These results underscore the potential of UDCA and TCA in impeding biofilm formation and mitigating the pathogenicity of S. aureus and P. aeruginosa. Full article
Show Figures

Figure 1

13 pages, 3333 KiB  
Article
Underwater Electrochemical Offshore Tests of a Paint Coating Applied in Water on the Legs of an Oil Production Platform
by Juliusz Orlikowski, Krzysztof Żakowski, Michał Szociński, Piotr Igliński, Agata Jażdżewska and Łukasz Gaweł
Materials 2024, 17(14), 3580; https://doi.org/10.3390/ma17143580 - 19 Jul 2024
Viewed by 692
Abstract
This paper presents the methodology developed for underwater measurements using electrochemical impedance spectroscopy (EIS) technique, aimed at determining the resistance of an epoxy coating applied in seawater to the legs of an oil production platform. Performing such underwater tests in an offshore environment [...] Read more.
This paper presents the methodology developed for underwater measurements using electrochemical impedance spectroscopy (EIS) technique, aimed at determining the resistance of an epoxy coating applied in seawater to the legs of an oil production platform. Performing such underwater tests in an offshore environment was technically challenging. The results of measurements obtained on the platform were confronted with comparative results obtained in the laboratory, where the properties of the coating applied in water collected from the Baltic Sea (thickness, hardness, adhesion, and electrical resistance) were examined. This made it possible to conclude about the correctness of the paint coating application by divers on the legs of the platform. The single-layer epoxy coating applied by brush to the platform legs had a resistance above 10 kΩ∙cm2 and thus met the assumed minimum resistance of the protective coating cooperating with cathodic protection as the anti-corrosion protection system of the platform legs. The synergy of these two technologies ensures full protection of offshore structures against corrosion. Measurements of the potential of the platform legs confirmed this. Before painting, the potential value at a depth of 0–15 m was 310 ÷ 320 mV versus the zinc reference electrode, while after painting the potential value decreased to 220 ÷ 240 mV, which means that the effect of full cathodic protection was achieved and the platform legs were protected from corrosion. The developed methodology for underwater EIS measurements on the high seas can be applied to any underwater metal structure to assess the quality of protective coatings. Full article
(This article belongs to the Special Issue Research on Friction, Wear and Corrosion Properties of Materials)
Show Figures

Figure 1

15 pages, 3001 KiB  
Article
Carbon Dioxide Oil Repulsion in the Sandstone Reservoirs of Lunnan Oilfield, Tarim Basin
by Zangyuan Wu, Qihong Feng, Liming Lian, Xiangjuan Meng, Daiyu Zhou, Min Luo and Hanlie Cheng
Energies 2024, 17(14), 3503; https://doi.org/10.3390/en17143503 - 17 Jul 2024
Cited by 1 | Viewed by 676
Abstract
The Lunnan oilfield, nestled within the Tarim Basin, represents a prototypical extra-low-permeability sandstone reservoir, distinguished by high-quality crude oil characterised by a low viscosity, density, and gel content. The effective exploitation of such reservoirs hinges on the implementation of carbon dioxide (CO2 [...] Read more.
The Lunnan oilfield, nestled within the Tarim Basin, represents a prototypical extra-low-permeability sandstone reservoir, distinguished by high-quality crude oil characterised by a low viscosity, density, and gel content. The effective exploitation of such reservoirs hinges on the implementation of carbon dioxide (CO2) flooding techniques. This study, focusing on the sandstone reservoirs of Lunnan, delves into the mechanisms of CO2-assisted oil displacement under diverse operational parameters: injection pressures, CO2 concentration levels, and variations in crude oil properties. It integrates analyses on the high-pressure, high-temperature behaviour of CO2, the dynamics of CO2 injection and expansion, prolonged core flood characteristics, and the governing principles of minimum miscible pressure transitions. The findings reveal a nuanced interplay between variables: CO2’s density and viscosity initially surge with escalating injection pressures before stabilising, whereas they experience a gradual decline with increasing temperature. Enhanced CO2 injection correlates with a heightened expansion coefficient, yet the density increment of degassed crude oil remains marginal. Notably, CO2 viscosity undergoes a substantial reduction under stratigraphic pressures. The sequential application of water alternating gas (WAG) followed by continuous CO2 flooding attains oil recovery efficiency surpassing 90%, emphasising the superiority of uninterrupted CO2 injection over processes lacking profiling. The presence of non-miscible hydrocarbon gases in segmented plug drives impedes the oil displacement efficiency, underscoring the importance of CO2 purity in the displacement medium. Furthermore, a marked trend emerges in crude oil recovery rates as the replacement pressure escalates, exhibiting an initial rapid enhancement succeeded by a gradual rise. Collectively, these insights offer a robust theoretical foundation endorsing the deployment of CO2 flooding strategies for enhancing oil recovery from sandstone reservoirs, thereby contributing valuable data to the advancement of enhanced oil recovery (EOR) technologies in challenging, low-permeability environments. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

17 pages, 4041 KiB  
Article
Ultrasonic Sensor: A Fast and Non-Destructive System to Measure the Viscosity and Density of Molecular Fluids
by Romina Muñoz, Juan-Francisco Fuentealba, Sebastián Michea, Paula A. Santana, Juan Ignacio Martinez, Nathalie Casanova-Morales and Vicente Salinas-Barrera
Biosensors 2024, 14(7), 346; https://doi.org/10.3390/bios14070346 - 16 Jul 2024
Viewed by 1178
Abstract
This study presents the design and development of an ultrasonic sensor as a fundamental tool for characterizing the properties of fluids and biofluids. The analysis primarily focuses on measuring the electrical parameters of the system, which correlate with the density and viscosity of [...] Read more.
This study presents the design and development of an ultrasonic sensor as a fundamental tool for characterizing the properties of fluids and biofluids. The analysis primarily focuses on measuring the electrical parameters of the system, which correlate with the density and viscosity of the solutions, in sample volumes of microliters and with high temporal resolution (up to 1 data point per second). The use of this sensor allows the fast and non-destructive evaluation of the viscosity and density of fluids deposited on its free surface. The measurements are based on obtaining the impedance versus frequency curve and the phase difference curve (between current and voltage) versus frequency. In this way, characteristic parameters of the transducer, such as the resonance frequency, phase, minimum impedance, and the quality factor of the resonant system, can characterize variations in density and viscosity in the fluid under study. The results obtained revealed the sensor’s ability to identify two parameters sensitive to viscosity and two parameters sensitive to density. As a proof of concept, the unfolding of the bovine albumin protein was studied, resulting in a curve that reflects its unfolding kinetics in the presence of urea. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

Back to TopTop