Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (333)

Search Parameters:
Keywords = multi-constellation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4994 KiB  
Article
High-Resolution Mapping of Shallow Water Bathymetry Based on the Scale-Invariant Effect Using Sentinel-2 and GF-1 Satellite Remote Sensing Data
by Jiada Guan, Huaguo Zhang, Tong Han, Wenting Cao, Juan Wang and Dongling Li
Remote Sens. 2025, 17(4), 640; https://doi.org/10.3390/rs17040640 - 13 Feb 2025
Viewed by 346
Abstract
High-resolution water depth data are of great significance in island research and coastal ecosystem monitoring. However, the acquisition of high-resolution imagery has been a challenge due to the difficulties and high costs associated with obtaining such data. To address this issue, this study [...] Read more.
High-resolution water depth data are of great significance in island research and coastal ecosystem monitoring. However, the acquisition of high-resolution imagery has been a challenge due to the difficulties and high costs associated with obtaining such data. To address this issue, this study proposes a water depth inversion method based on Gaofen-1 (GF-1) satellite data, which integrates multi-source satellite data to obtain high-resolution bathymetric data. Specifically, the research utilizes bathymetric data derived from Sentinel-2 and Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) as prior information, combined with high-resolution imagery obtained from the GF-1 satellite constellation (GF-1B/C/D). Then, it employs a scale-invariant effect to map bathymetry with a spatial resolution of 2 m, applied to four study areas in the Pacific Islands. The results are further evaluated using ICESat-2 data, which demonstrate that the water depth inversion results from this study possess high accuracy, with R2 values exceeding 0.85, root mean square error (RMSE) ranging from 0.56 to 0.90 m, with an average of 0.7125 m, and mean absolute error (MAE) ranging from 0.43 to 0.76 m, with an average of 0.55 m. Additionally, this paper discusses the applicability of the scale-invariant assumption in this research and the improvements of the quadratic polynomial ratio model (QPRM) method compared to the classical linear ratio model (CLRM) method. The findings indicate that the integration of multi-source satellite remote sensing data based on the scale-invariant effect can effectively obtain high-precision, high-resolution bathymetric data, providing significant reference value for the application of GF-1 satellites in high-resolution bathymetry mapping. Full article
Show Figures

Figure 1

42 pages, 1602 KiB  
Article
Hierarchical Resource Management for Mega-LEO Satellite Constellation
by Liang Gou, Dongming Bian, Yulei Nie, Gengxin Zhang, Hongwei Zhou, Yulin Shi and Lei Zhang
Sensors 2025, 25(3), 902; https://doi.org/10.3390/s25030902 - 2 Feb 2025
Viewed by 361
Abstract
The mega-low Earth orbit (LEO) satellite constellation is pivotal for the future of satellite Internet and 6G networks. In the mega-LEO satellite constellation system (MLSCS), which is the spatial distribution of satellites, global users, and their services, along with the utilization of global [...] Read more.
The mega-low Earth orbit (LEO) satellite constellation is pivotal for the future of satellite Internet and 6G networks. In the mega-LEO satellite constellation system (MLSCS), which is the spatial distribution of satellites, global users, and their services, along with the utilization of global spectrum resources, significantly impacts resource allocation and scheduling. This paper addresses the challenge of effectively allocating system resources based on service and resource distribution, particularly in hotspot areas where user demand is concentrated, to enhance resource utilization efficiency. We propose a novel three-layer management architecture designed to implement scheduling strategies and alleviate the processing burden on the terrestrial Network Control Center (NCC), while providing real-time scheduling capabilities to adapt to rapid changes in network topology, resource distribution, and service requirements. The three layers of the resource management architecture—NCC, space base station (SBS), and user terminal (UT)—are discussed in detail, along with the functions and responsibilities of each layer. Additionally, we explore various resource scheduling strategies, approaches, and algorithms, including spectrum cognition, interference coordination, beam scheduling, multi-satellite collaboration, and random access. Simulations demonstrate the effectiveness of the proposed approaches and algorithms, indicating significant improvements in resource management in the MLSCS. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

20 pages, 6452 KiB  
Article
‘ARTEMIS: Advanced Methodology Development for Real-Time Multi-Constellation (BDS, Galileo and GPS) Ionosphere Services’ Project Real-Time Ionospheric Services—Efficiency and Implementation
by Kacper Kotulak, Ningbo Wang, Andrzej Krankowski, Zishen Li, Paweł Flisek, Adam Froń, Ang Liu, Irina Zakharenkova, Iurii Cherniak, Libo Liu, Yunbin Yuan and Xingliang Huo
Remote Sens. 2025, 17(3), 350; https://doi.org/10.3390/rs17030350 - 21 Jan 2025
Viewed by 517
Abstract
This article discusses outcomes of the Polish–Chinese project dedicated to establishing multi-GNSS near-real-time ionospheric services. ARTEMIS (Advanced methodology development for Real-Time Multi-constellation (BDS, Galileo and GPS) Ionosphere Services) was a response to increasing GNSS data availability, including Galileo and BeiDou observations on the [...] Read more.
This article discusses outcomes of the Polish–Chinese project dedicated to establishing multi-GNSS near-real-time ionospheric services. ARTEMIS (Advanced methodology development for Real-Time Multi-constellation (BDS, Galileo and GPS) Ionosphere Services) was a response to increasing GNSS data availability, including Galileo and BeiDou observations on the one hand and growing interest in high-quality ionospheric products on the other. The project resulted in elaborating methodologies to monitor the ionospheric Total Electron Content (TEC) and its fluctuations (ROTI index) based on a full multi-GNSS approach and establishing pilot real-time web services in a global and regional approach. The project’s outcomes are to be included in the International GNSS Service (IGS) and International Reference Ionosphere (IRI) in the near future. This article presents real-time ionospheric products developed under the ARTEMIS project and evaluates their performance using independent techniques such as DORIS observations and altimetry with regard to other existing products. The Discussion section also includes an evaluation of ARTEMIS products in positioning applications. Full article
Show Figures

Figure 1

23 pages, 19010 KiB  
Article
C-SAR/02 Satellite Polarimetric Calibration and Validation Based on Active Radar Calibrators
by Yanan Jiao, Fengli Zhang, Xiaochen Liu, Zhiwei Huang and Jingwen Yuan
Remote Sens. 2025, 17(2), 282; https://doi.org/10.3390/rs17020282 - 15 Jan 2025
Viewed by 429
Abstract
Quad-polarization synthetic aperture radar (SAR) satellites are important detection tools in Earth observation and remote sensing; in particular, they are of great significance for accurately interpreting radar data and inverting geophysical parameters. Polarimetric calibration is particularly critical to eliminate the effects of distortion [...] Read more.
Quad-polarization synthetic aperture radar (SAR) satellites are important detection tools in Earth observation and remote sensing; in particular, they are of great significance for accurately interpreting radar data and inverting geophysical parameters. Polarimetric calibration is particularly critical to eliminate the effects of distortion in polarized SAR data. The C-SAR/02 satellite launched by China is an important part of the C-band synthetic aperture radar (SAR) constellation, and the quad-polarization strip I (QPSI) is an important imaging mode for its sea–land observation. The relevant research on its polarimetric calibration is still lacking. This study’s polarimetric calibration of C-SAR/02 was performed based on the active radar calibrator (ARC) method using four independently developed L/S/C multi-band ARCs and several trihedral corner reflectors (CRs). The polarimetric calibration distortion matrix varies along the range direction; the polarimetric calibration distortion matrix and polarimetric calibration accuracy along the range direction were analyzed, incorporating the devices in different range directions to calculate the distortion matrix. This approach improved the accuracy of the polarimetric calibration results and the effect of the quantization application of the C-SAR satellites. Moreover, our experimental results indicate that the method presented herein is suitable for the C-SAR/02 satellite and may also be more universally applicable to C-SAR-series satellites. Full article
(This article belongs to the Special Issue Spaceborne SAR Calibration Technology)
Show Figures

Figure 1

21 pages, 4383 KiB  
Article
Real-Time Contrail Monitoring and Mitigation Using CubeSat Constellations
by Nishanth Pushparaj, Luis Cormier, Chantal Cappelletti and Vilius Portapas
Atmosphere 2024, 15(12), 1543; https://doi.org/10.3390/atmos15121543 - 23 Dec 2024
Viewed by 851
Abstract
Contrails, or condensation trails, left by aircraft, significantly contribute to global warming by trapping heat in the Earth’s atmosphere. Despite their critical role in climate dynamics, the environmental impact of contrails remains underexplored. This research addresses this gap by focusing on the use [...] Read more.
Contrails, or condensation trails, left by aircraft, significantly contribute to global warming by trapping heat in the Earth’s atmosphere. Despite their critical role in climate dynamics, the environmental impact of contrails remains underexplored. This research addresses this gap by focusing on the use of CubeSats for real-time contrail monitoring, specifically over major air routes such as the Europe–North Atlantic Corridor. The study proposes a 3 × 3 CubeSat constellation in highly eccentric orbits, designed to maximize coverage and data acquisition efficiency. Simulation results indicate that this configuration can provide nearly continuous monitoring with optimized satellite handovers, reducing blackout periods and ensuring robust multi-satellite visibility. A machine learning-based system integrating space-based humidity and temperature data to predict contrail formation and inform flight path adjustments is proposed, thereby mitigating environmental impact. The findings emphasize the potential of CubeSat constellations to revolutionize atmospheric monitoring practices, offering a cost-effective solution that aligns with global sustainability efforts, particularly the United Nations Sustainable Development Goal 13 (Climate Action). This research represents a significant step forward in understanding aviation’s non-CO2 climate impact and demonstrates the feasibility of real-time contrail mitigation through satellite technology. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

10 pages, 447 KiB  
Article
Assessment of Simplified Surveillance for Congenital Rubella Syndrome in Sudan, 2014–2017
by Omayma Abdalla, Nada Ahmed, Hanan Abdo El-Hag Mukhtar, Susan Reef, Jose Hagan and Gavin Grant
Vaccines 2024, 12(12), 1447; https://doi.org/10.3390/vaccines12121447 - 23 Dec 2024
Viewed by 613
Abstract
Background/Objectives: Congenital rubella syndrome (CRS) is a constellation of serious multi-organ birth defects following rubella virus infection during early pregnancy. Countries in which rubella vaccination has not yet been introduced can have a high burden of this disease. Data on CRS burden and [...] Read more.
Background/Objectives: Congenital rubella syndrome (CRS) is a constellation of serious multi-organ birth defects following rubella virus infection during early pregnancy. Countries in which rubella vaccination has not yet been introduced can have a high burden of this disease. Data on CRS burden and epidemiology are needed to guide the introduction of a rubella vaccine and monitor progress for rubella elimination, but the multi-system nature of CRS manifestations and required specialized testing creates a challenge for conducting CRS surveillance in developing settings such as Sudan. To enhance data quality, we designed and tested a simplified approach for CRS surveillance in Sudan. Methods: Seven CRS surveillance sentinel sites were set up at general pediatric, eye, and cardiology hospitals in Sudan, using standard definitions for reporting and classifying infants with CRS clinical manifestations. Between 2014 and 2017, we evaluated the system using WHO CRS surveillance monitoring indicators, comparing simplified approaches against a comprehensive one. The simplified approaches included (1) an ophthalmic-focused approach; (2) a heart-focused approach; and (3) a cataract-only approach. Results: Surveillance identified 179 infants with suspected CRS via the comprehensive approach, with 25 infants classified as laboratory-confirmed and 6 as clinically compatible. Surveillance sensitivity was highest for the simplified ophthalmic approach, while cataract-based surveillance had the highest proportion of confirmed cases. Conclusions: Simplified CRS surveillance, particularly focusing on detecting cataracts, can significantly contribute to monitoring the impact of rubella vaccine introduction. It could serve as an initial step towards comprehensive CRS surveillance, providing robust evidence to support rubella and CRS elimination efforts. Full article
Show Figures

Figure 1

34 pages, 10549 KiB  
Review
Multi-Sensor Precipitation Estimation from Space: Data Sources, Methods and Validation
by Ruifang Guo, Xingwang Fan, Han Zhou and Yuanbo Liu
Remote Sens. 2024, 16(24), 4753; https://doi.org/10.3390/rs16244753 - 20 Dec 2024
Viewed by 796
Abstract
Satellite remote sensing complements rain gauges and ground radars as the primary sources of precipitation data. While significant advancements have been made in spaceborne precipitation estimation since the 1960s, the emergence of multi-sensor precipitation estimation (MPE) in the early 1990s revolutionized global precipitation [...] Read more.
Satellite remote sensing complements rain gauges and ground radars as the primary sources of precipitation data. While significant advancements have been made in spaceborne precipitation estimation since the 1960s, the emergence of multi-sensor precipitation estimation (MPE) in the early 1990s revolutionized global precipitation data generation by integrating infrared and microwave observations. Among others, Global Precipitation Measurement (GPM) plays a crucial role in providing invaluable data sources for MPE by utilizing passive microwave sensors and geostationary infrared sensors. MPE represents the current state-of-the-art approach for generating high-quality, high-resolution global satellite precipitation products (SPPs), employing various methods such as cloud motion analysis, probability matching, adjustment ratios, regression techniques, neural networks, and weighted averaging. International collaborations, such as the International Precipitation Working Group and the Precipitation Virtual Constellation, have significantly contributed to enhancing our understanding of the uncertainties associated with MPEs and their corresponding SPPs. It has been observed that SPPs exhibit higher reliability over tropical oceans compared to mid- and high-latitudes, particularly during cold seasons or in regions with complex terrains. To further advance MPE research, future efforts should focus on improving accuracy for extremely low- and high-precipitation events, solid precipitation measurements, as well as orographic precipitation estimation. Full article
(This article belongs to the Special Issue Synergetic Remote Sensing of Clouds and Precipitation II)
Show Figures

Figure 1

21 pages, 36735 KiB  
Article
Adaptive Navigation Based on Multi-Agent Received Signal Quality Monitoring Algorithm
by Hina Magsi, Madad Ali Shah, Ghulam E. Mustafa Abro, Sufyan Ali Memon, Abdul Aziz Memon, Arif Hussain and Wan-Gu Kim
Electronics 2024, 13(24), 4957; https://doi.org/10.3390/electronics13244957 - 16 Dec 2024
Viewed by 548
Abstract
In the era of industrial evolution, satellites are being viewed as swarm intelligence that does not rely on a single system but multiple constellations that collaborate autonomously. This has enhanced the potential of the Global Navigation Satellite System (GNSS) to contribute to improving [...] Read more.
In the era of industrial evolution, satellites are being viewed as swarm intelligence that does not rely on a single system but multiple constellations that collaborate autonomously. This has enhanced the potential of the Global Navigation Satellite System (GNSS) to contribute to improving position, navigation, and timing (PNT) services. However, multipath (MP) and non-line-of-sight (NLOS) receptions remain the prominent vulnerability for the GNSS in harsh environments. The aim of this research is to investigate the impact of MP and NLOS receptions on GNSS performance and then propose a Received Signal Quality Monitoring (RSQM) algorithm. The RSQM algorithm works in two ways. Initially, it performs a signal quality test based on a fuzzy inference system. The input parameters are carrier-to-noise ratio (CNR), Normalized Range Residuals (NRR), and Code–Carrier Divergence (CCD), and it computes the membership functions based on the Mamdani method and classifies the signal quality as LOS, NLOS, weak NLOS, and strong NLOS. Secondly, it performs an adaptive navigation strategy to exclude/mask the affected range measurements while considering the satellite geometry constraints (i.e., DOP2). For this purpose, comprehensive research to quantify the multi-constellation GNSS receiver with four constellation configurations (GPS, BeiDou, GLONASS, and Galileo) has been carried out in various operating environments. This RSQM-based GNSS receiver has the capability to identify signal quality and perform adaptive navigation accordingly to improve navigation performance. The results suggest that GNSS performance in terms of position error is improved from 5.4 m to 2.3 m on average in the complex urban environment. Combining the RSQM algorithm with the GNSS has great potential for the future industrial revolution (Industry 5.0), making things automatic and sustainable like autonomous vehicle operation. Full article
(This article belongs to the Special Issue Collaborative Intelligence in the Era of Industry 5.0)
Show Figures

Figure 1

19 pages, 21587 KiB  
Article
Multipath Mitigation in Single-Frequency Multi-GNSS Tightly Combined Positioning via a Modified Multipath Hemispherical Map Method
by Yuan Tao, Chao Liu, Runfa Tong, Xingwang Zhao, Yong Feng and Jian Wang
Remote Sens. 2024, 16(24), 4679; https://doi.org/10.3390/rs16244679 - 15 Dec 2024
Viewed by 733
Abstract
Multipath is a source of error that limits the Global Navigation Satellite System (GNSS) positioning precision in short baselines. The tightly combined model between systems increases the number of observations and enhances the strength of the mathematical model owing to the continuous improvement [...] Read more.
Multipath is a source of error that limits the Global Navigation Satellite System (GNSS) positioning precision in short baselines. The tightly combined model between systems increases the number of observations and enhances the strength of the mathematical model owing to the continuous improvement in GNSS. Multipath mitigation of the multi-GNSS tightly combined model can improve the positioning precision in complex environments. Interoperability of the multipath hemispherical map (MHM) models of different systems can enhance the performance of the MHM model due to the small multipath differences in single overlapping frequencies. The adoption of advanced sidereal filtering (ASF) to model the multipath for each satellite brings computational challenges owing to the characteristics of the multi-constellation heterogeneity of different systems; the balance efficiency and precision become the key issues affecting the performance of the MHM model owing to the sparse characteristics of the satellite distribution. Therefore, we propose a modified MHM method to mitigate the multipath for single-frequency multi-GNSS tightly combined positioning. The method divides the hemispherical map into 36 × 9 grids at 10° × 10° resolution and then searches with the elevation angle and azimuth angle as independent variables to obtain the multipath value of the nearest point. We used the k-d tree to improve the search efficiency without affecting precision. Experiments show that the proposed method improves the mean precision over ASF by 10.20%, 10.77%, and 9.29% for GPS, BDS, and Galileo satellite single-difference residuals, respectively. The precision improvements of the modified MHM in the E, N, and U directions were 32.82%, 40.65%, and 31.97%, respectively. The modified MHM exhibits greater performance and behaves more consistently. Full article
Show Figures

Figure 1

17 pages, 2283 KiB  
Article
Towards Deterministic-Delay Data Delivery Using Multi-Criteria Routing over Satellite Networks
by Xiaogang Li, Hongyan Li, Yaoxu He and Han Ma
Electronics 2024, 13(23), 4822; https://doi.org/10.3390/electronics13234822 - 6 Dec 2024
Viewed by 713
Abstract
The satellite Internet can cover up to 70% of the surface of our planet Earth to provide network services for nearly 3 billion people. As such, it is promising to become the building block of future 6G networks. The satellite Internet is capable [...] Read more.
The satellite Internet can cover up to 70% of the surface of our planet Earth to provide network services for nearly 3 billion people. As such, it is promising to become the building block of future 6G networks. The satellite Internet is capable of providing uniform communication capacity to every part of the Earth’s surface, due to its uniform and symmetrical constellation structure, while the uneven distribution of ground populations leads to globally uneven traffic delivery requests, incurring a mismatch between the capacity and traffic transmission demands. As such, traditional single-criteria (e.g., shortest delay) routing algorithms can lead to severe network congestion and cannot provision delay-deterministic data delivery. To overcome this bottleneck, we propose a multi-criteria routing and scheduling scheme to redirect time-tolerant data, thus preventing congestion for time-sensitive data, based on the spatiotemporal distribution of data traffic. First, we construct a traffic spatiotemporal distribution model, to indicate the network load status. Next, we model the satellite network multi-criteria routing problem as an integer linear programming one, which is NP-hard and challenging to solve within polynomial time. A novel link weight design based on both the link delay and load is introduced, transforming the mathematical programming problem into a routing optimization problem. The proposed correlation scheduling algorithm fully utilizes idle network link resources, significantly improving network resource utilization and eliminating resource competition between non-time-sensitive and time-sensitive services. Simulation results show that compared with traditional algorithms, the proposed method can increase the throughput of time-sensitive data by up to 20.8% and reduce the packet loss rate of time-sensitive services by up to 76.8%. Full article
(This article belongs to the Special Issue Advances in Routing and Scheduling Technology)
Show Figures

Figure 1

18 pages, 6204 KiB  
Article
An Integrity Monitoring Method for Navigation Satellites Based on Multi-Source Observation Links
by Jie Xin, Dongxia Wang and Kai Li
Remote Sens. 2024, 16(23), 4574; https://doi.org/10.3390/rs16234574 - 6 Dec 2024
Viewed by 614
Abstract
The BeiDou-3 navigation satellite system (BDS-3) has officially provided positioning, navigation, and timing (PNT) services to global users since 31 July 2020. With the application of inter-satellite link technology, global integrity monitoring becomes possible. Nevertheless, the content of integrity monitoring is still limited [...] Read more.
The BeiDou-3 navigation satellite system (BDS-3) has officially provided positioning, navigation, and timing (PNT) services to global users since 31 July 2020. With the application of inter-satellite link technology, global integrity monitoring becomes possible. Nevertheless, the content of integrity monitoring is still limited by the communication capacity of inter-satellite links and the layout of ground monitoring stations. Low earth orbit (LEO) satellites have advantages in information-carrying rate and kinematic velocity and can be used as satellite-based monitoring stations for navigation satellites. Large numbers of LEO satellites can provide more monitoring data than ground monitoring stations and make it easier to obtain full-arc observation data. A new challenge of redundant data also arises. This study constructs multi-source observation links with satellite-to-ground, inter-satellite, and satellite-based observation data, proposes an integrity monitoring method with optimization of observation links, and verifies the performance of integrity monitoring with different observation links. The experimental results show four findings. (1) Based on the integrity status of BDS-3, the proposed system-level integrity mode can realize full-arc anomaly diagnosis in information and signals according to the observation conditions of the target satellite. Apart from basic navigation messages and satellite-based augmentation messages, autonomous messages and inter-satellite ranging data can be used to evaluate the state of the target satellite. (2) For a giant LEO constellation, only a small number of LEO satellites need to be selected to construct a minimum satellite-based observation unit that can realize multiple returns of navigation messages and reduce the redundancy of observation data. With the support of 12 and 30 LEO satellites, the minimum number of satellite-based observation links is 1 and 4, respectively, verifying that a small amount of LEO satellites could be used to construct a minimum satellite-based observation unit. (3) A small number of LEO satellites can effectively improve the observation geometry of the target satellite. An orbit determination observation unit, which consists of chosen satellite-to-ground and/or satellite-based observation links based on observation geometry, is proposed to carry out fast calculations of satellite orbit. If the orbit determination observation unit contains 6 satellite-to-ground monitoring links and 6/12/60 LEO satellites, the value of satellite position dilution of precision (SPDOP) is 38.37, 24.60, and 15.71, respectively, with a 92.95%, 95.49%, and 97.12% improvement than the results using 6 satellite-to-ground monitoring links only. (4) LEO satellites could not only expand the resolution of integrity parameters in real time but also augment the service accuracy of the navigation satellite system. As the number of LEO satellites increases, the area where UDRE parameters can be solved in real time is constantly expanding to a global area. The service accuracy is 0.93 m, 0.88 m, and 0.65 m, respectively, with augmentation of 6, 12, and 60 LEO satellites, which is an 8.9%, 13.7%, and 36.3% improvement compared with the results of regional service. LEO satellites have practical application values by improving the integrity monitoring of navigation satellites. Full article
Show Figures

Figure 1

18 pages, 1898 KiB  
Article
Improving Performance of Uncombined PPP-AR Model with Ambiguity Constraints
by Yichen Liu, Urs Hugentobler and Bingbing Duan
Remote Sens. 2024, 16(23), 4537; https://doi.org/10.3390/rs16234537 - 3 Dec 2024
Viewed by 918
Abstract
With the advancement of multi-frequency and multi-constellation GNSS signals and the introduction of observable-specific bias (OSB) products, the uncombined precise point positioning (PPP) model has grown more prevalent. However, this model faces challenges due to the large number of estimated parameters, resulting in [...] Read more.
With the advancement of multi-frequency and multi-constellation GNSS signals and the introduction of observable-specific bias (OSB) products, the uncombined precise point positioning (PPP) model has grown more prevalent. However, this model faces challenges due to the large number of estimated parameters, resulting in strong correlations between state parameters, such as clock errors, ionospheric delays, and hardware biases. This can slow down the convergence time and impede ambiguity resolution. We propose two methods to improve the triple-frequency uncombined PPP-AR model by integrating ambiguity constraints. The first approach makes use of the resolved ambiguities from dual-frequency ionosphere-free combined PPP-AR processing and incorporates them as constraints into triple-frequency uncombined PPP-AR processing. While this approach requires the implementation of two filters, increasing computational demands and thereby limiting its feasibility for real-time applications, it effectively reduces parameter correlations and facilitates ambiguity resolution in post-processing. The second approach incorporates fixed extra-wide-lane (EWL) and wide-lane (WL) ambiguities directly, allowing for rapid convergence, and is well suited for real-time processing. Results show that, compared to the uncombined PPP-AR model, integrating N1 and N2 constraints reduces averaged convergence time from 8.2 to 6.4 min horizontally and 13.9 to 10.7 min vertically in the float solution. On the other hand, integrating EWL and WL ambiguity constraints reduces the horizontal convergence to 5.9 min in the float solution and to 4.6 min for horizontal and 9.7 min for vertical convergence in the fixed solution. Both methods significantly enhance the ambiguity resolution in the uncombined triple-frequency PPP model, increasing the validated fixing rate from approximately 80% to 89%. Full article
(This article belongs to the Special Issue Multi-GNSS Precise Point Positioning (MGPPP))
Show Figures

Figure 1

24 pages, 4561 KiB  
Article
Dual-Frequency Multi-Constellation Global Navigation Satellite System/Inertial Measurements Unit Tight Hybridization for Urban Air Mobility Applications
by Gianluca Corraro, Federico Corraro, Andrea Flora, Giovanni Cuciniello, Luca Garbarino and Roberto Senatore
Aerospace 2024, 11(11), 955; https://doi.org/10.3390/aerospace11110955 - 20 Nov 2024
Viewed by 796
Abstract
A global navigation satellite system (GNSS) for remotely piloted aircraft systems (RPASs) positioning is essential, thanks to the worldwide availability and continuity of this technology in the provision of positioning services. This makes the GNSS technology a critical element as malfunctions impacting on [...] Read more.
A global navigation satellite system (GNSS) for remotely piloted aircraft systems (RPASs) positioning is essential, thanks to the worldwide availability and continuity of this technology in the provision of positioning services. This makes the GNSS technology a critical element as malfunctions impacting on the determination of the position, velocity and timing (PVT) solution could determine safety issues. Such an aspect is particularly challenging in urban air mobility (UAM) scenarios, where low satellite visibility, multipath, radio frequency interference and cyber threats can dangerously affect the PVT solution. So, to meet integrity requirements, GNSS receiver measurements are augmented/fused with other aircraft sensors that can supply position and/or velocity information on the aircraft without relying on any other satellite and/or ground infrastructures. In this framework, in this paper, the algorithms of a hybrid navigation unit (HNU) for UAM applications are detailed, implementing a tightly coupled sensor fusion between a dual-frequency multi-constellation GNSS receiver, an inertial measurements unit and the barometric altitude from an air data computer. The implemented navigation algorithm is integrated with autonomous fault detection and exclusion of GPS/Galileo/BeiDou satellites and the estimation of navigation solution integrity/accuracy (i.e., protection level and figures of merit). In-flight tests were performed to validate the HNU functionalities demonstrating its effectiveness in UAM scenarios even in the presence of cyber threats. In detail, the navigation solution, compared with a real-time kinematic GPS receiver used as the reference centimetre-level position sensor, demonstrated good accuracy, with position errors below 15 m horizontally and 10 m vertically under nominal conditions (i.e., urban scenarios characterized by satellite low visibility and multipath). It continued to provide a valid navigation solution even in the presence of off-nominal events, such as spoofing attacks. The cyber threats were correctly detected and excluded by the system through the indication of the valid/not valid satellite measurements. However, the results indicate a need for fine-tuning the EKF to improve the estimation of figures of merit and protection levels associated to the navigation solution during the cyber-attacks. In contrast, solution accuracy and integrity indicators are well estimated in nominal conditions. Full article
Show Figures

Figure 1

24 pages, 7272 KiB  
Article
Comprehensive Analysis of BDS/GNSS Differential Code Bias and Compatibility Performance
by Yafeng Wang, Dongjie Yue, Hu Wang, Hongyang Ma, Zhiqiang Liu and Caiya Yue
Remote Sens. 2024, 16(22), 4217; https://doi.org/10.3390/rs16224217 - 12 Nov 2024
Viewed by 1024
Abstract
High-precision DCBs are essential for effective multi-frequency and multi-constellation GNSS integration, especially in processing compatible signal observations. This study utilizes data from MGEX, iGMAS, and CORS stations to estimate and analyze long time series of BDS/GNSS DCBs, focusing on stability and influencing factors. [...] Read more.
High-precision DCBs are essential for effective multi-frequency and multi-constellation GNSS integration, especially in processing compatible signal observations. This study utilizes data from MGEX, iGMAS, and CORS stations to estimate and analyze long time series of BDS/GNSS DCBs, focusing on stability and influencing factors. Results indicate that DCBs for the same signal, but different channels exhibit similar ranges and trends. Among BDS DCBs, those from satellites with rubidium atomic clocks are more stable than those with hydrogen atomic clocks. An upgrade and maintenance of BDS in late 2022, reported by NABU, likely contributed to DCB jumps. BDS-compatible signal DCBs show weaker stability compared to GPS and Galileo. Variations in GNSS signal processing and receiver algorithms also impact DCB stability. Converting DCBs to OSBs and performing RMS statistics revealed that smaller differences between signals increase the susceptibility of observation equations to observation quality. Full article
(This article belongs to the Topic GNSS Measurement Technique in Aerial Navigation)
Show Figures

Figure 1

24 pages, 19797 KiB  
Article
Analysis of Multi-GNSS Multipath for Parameter-Unified Autocorrelation-Based Mitigation and the Impact of Constellation Shifts
by Wenhao Xiong, Yumiao Tian, Xiaolei Dai, Qichao Zhang, Yibing Liang and Xiongwei Ruan
Remote Sens. 2024, 16(21), 4009; https://doi.org/10.3390/rs16214009 - 29 Oct 2024
Cited by 1 | Viewed by 1171
Abstract
Multipath effects can significantly reduce the accuracy of GNSS precise positioning. Traditional methods, such as sidereal filtering and grid-based approaches, attempt to model and mitigate these errors by leveraging the spatial autocorrelation of multipath based on residuals. However, these methods can only approximately [...] Read more.
Multipath effects can significantly reduce the accuracy of GNSS precise positioning. Traditional methods, such as sidereal filtering and grid-based approaches, attempt to model and mitigate these errors by leveraging the spatial autocorrelation of multipath based on residuals. However, these methods can only approximately handle spatial autocorrelation data, limiting their effectiveness. This study investigates the spatial cross-correlation of residuals between various GNSS frequency bands, analyzes their covariance function parameters, and evaluates the impact of constellation shifts on long-term multipath mitigation. Based on this, a simplified autocorrelation-based approach utilizing unified covariance parameters for multipath mitigation is proposed, with its efficacy assessed for both short- and long-term applications. The study demonstrates the correlation of multipath effects across various GPS and Galileo frequencies, including GPS L1/L2/L5 and Galileo E1/E5a/E5b/E5ab/E6, by analyzing correlation coefficients. A strong correlation (greater than 0.8) is observed between residuals of closely spaced frequencies, such as E5b and E5ab, despite their frequency differences. Additionally, the covariance parameters of the residuals are found to be consistent across all frequencies for a baseline, suggesting that unified parameters can be applied effectively for spatial autocorrelation-based multipath mitigation without sacrificing performance. The orbit shifts of certain GPS satellites, particularly G02, G20, and G21, result in significant changes in orbital parameters and satellite tracks, reducing the effectiveness of long-term multipath mitigation. However, the impact of GPS orbit shifts can be minimized through periodic model updates or by integrating GPS and Galileo modeling. In experiments, the LSC correction strategy based on a GPS/Galileo combination, utilizing unified parameters, outperforms the grid method based on the GPS/Galileo combination, improving the mean residual variance elimination rate by 11.3% for GPS L1 and 11.4% for Galileo E1. These improvements remain consistent, with rates of 11.3% and 15.7%, respectively, even on DOY 365, which is 327 days after the modeling data were collected. Full article
(This article belongs to the Special Issue Advances in Multi-GNSS Technology and Applications)
Show Figures

Figure 1

Back to TopTop