Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = multi-user HCI studies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 8465 KiB  
Article
PhysioKit: An Open-Source, Low-Cost Physiological Computing Toolkit for Single- and Multi-User Studies
by Jitesh Joshi, Katherine Wang and Youngjun Cho
Sensors 2023, 23(19), 8244; https://doi.org/10.3390/s23198244 - 4 Oct 2023
Cited by 2 | Viewed by 2872
Abstract
The proliferation of physiological sensors opens new opportunities to explore interactions, conduct experiments and evaluate the user experience with continuous monitoring of bodily functions. Commercial devices, however, can be costly or limit access to raw waveform data, while low-cost sensors are efforts-intensive to [...] Read more.
The proliferation of physiological sensors opens new opportunities to explore interactions, conduct experiments and evaluate the user experience with continuous monitoring of bodily functions. Commercial devices, however, can be costly or limit access to raw waveform data, while low-cost sensors are efforts-intensive to setup. To address these challenges, we introduce PhysioKit, an open-source, low-cost physiological computing toolkit. PhysioKit provides a one-stop pipeline consisting of (i) a sensing and data acquisition layer that can be configured in a modular manner per research needs, and (ii) a software application layer that enables data acquisition, real-time visualization and machine learning (ML)-enabled signal quality assessment. This also supports basic visual biofeedback configurations and synchronized acquisition for co-located or remote multi-user settings. In a validation study with 16 participants, PhysioKit shows strong agreement with research-grade sensors on measuring heart rate and heart rate variability metrics data. Furthermore, we report usability survey results from 10 small-project teams (44 individual members in total) who used PhysioKit for 4–6 weeks, providing insights into its use cases and research benefits. Lastly, we discuss the extensibility and potential impact of the toolkit on the research community. Full article
(This article belongs to the Topic Machine Learning and Biomedical Sensors)
Show Figures

Figure 1

25 pages, 1974 KiB  
Article
A Hybrid Multimodal Emotion Recognition Framework for UX Evaluation Using Generalized Mixture Functions
by Muhammad Asif Razzaq, Jamil Hussain, Jaehun Bang, Cam-Hao Hua, Fahad Ahmed Satti, Ubaid Ur Rehman, Hafiz Syed Muhammad Bilal, Seong Tae Kim and Sungyoung Lee
Sensors 2023, 23(9), 4373; https://doi.org/10.3390/s23094373 - 28 Apr 2023
Cited by 7 | Viewed by 3323
Abstract
Multimodal emotion recognition has gained much traction in the field of affective computing, human–computer interaction (HCI), artificial intelligence (AI), and user experience (UX). There is growing demand to automate analysis of user emotion towards HCI, AI, and UX evaluation applications for providing affective [...] Read more.
Multimodal emotion recognition has gained much traction in the field of affective computing, human–computer interaction (HCI), artificial intelligence (AI), and user experience (UX). There is growing demand to automate analysis of user emotion towards HCI, AI, and UX evaluation applications for providing affective services. Emotions are increasingly being used, obtained through the videos, audio, text or physiological signals. This has led to process emotions from multiple modalities, usually combined through ensemble-based systems with static weights. Due to numerous limitations like missing modality data, inter-class variations, and intra-class similarities, an effective weighting scheme is thus required to improve the aforementioned discrimination between modalities. This article takes into account the importance of difference between multiple modalities and assigns dynamic weights to them by adapting a more efficient combination process with the application of generalized mixture (GM) functions. Therefore, we present a hybrid multimodal emotion recognition (H-MMER) framework using multi-view learning approach for unimodal emotion recognition and introducing multimodal feature fusion level, and decision level fusion using GM functions. In an experimental study, we evaluated the ability of our proposed framework to model a set of four different emotional states (Happiness, Neutral, Sadness, and Anger) and found that most of them can be modeled well with significantly high accuracy using GM functions. The experiment shows that the proposed framework can model emotional states with an average accuracy of 98.19% and indicates significant gain in terms of performance in contrast to traditional approaches. The overall evaluation results indicate that we can identify emotional states with high accuracy and increase the robustness of an emotion classification system required for UX measurement. Full article
(This article belongs to the Special Issue Sensors-Based Human Action and Emotion Recognition)
Show Figures

Figure 1

17 pages, 2576 KiB  
Article
Cross-Subject Emotion Recognition Using Fused Entropy Features of EEG
by Xin Zuo, Chi Zhang, Timo Hämäläinen, Hanbing Gao, Yu Fu and Fengyu Cong
Entropy 2022, 24(9), 1281; https://doi.org/10.3390/e24091281 - 11 Sep 2022
Cited by 6 | Viewed by 3107
Abstract
Emotion recognition based on electroencephalography (EEG) has attracted high interest in fields such as health care, user experience evaluation, and human–computer interaction (HCI), as it plays an important role in human daily life. Although various approaches have been proposed to detect emotion states [...] Read more.
Emotion recognition based on electroencephalography (EEG) has attracted high interest in fields such as health care, user experience evaluation, and human–computer interaction (HCI), as it plays an important role in human daily life. Although various approaches have been proposed to detect emotion states in previous studies, there is still a need to further study the dynamic changes of EEG in different emotions to detect emotion states accurately. Entropy-based features have been proved to be effective in mining the complexity information in EEG in many areas. However, different entropy features vary in revealing the implicit information of EEG. To improve system reliability, in this paper, we propose a framework for EEG-based cross-subject emotion recognition using fused entropy features and a Bidirectional Long Short-term Memory (BiLSTM) network. Features including approximate entropy (AE), fuzzy entropy (FE), Rényi entropy (RE), differential entropy (DE), and multi-scale entropy (MSE) are first calculated to study dynamic emotional information. Then, we train a BiLSTM classifier with the inputs of entropy features to identify different emotions. Our results show that MSE of EEG is more efficient than other single-entropy features in recognizing emotions. The performance of BiLSTM is further improved with an accuracy of 70.05% using fused entropy features compared with that of single-type feature. Full article
(This article belongs to the Collection Feature Papers in Information Theory)
Show Figures

Figure 1

1839 KiB  
Article
ReliefF-Based EEG Sensor Selection Methods for Emotion Recognition
by Jianhai Zhang, Ming Chen, Shaokai Zhao, Sanqing Hu, Zhiguo Shi and Yu Cao
Sensors 2016, 16(10), 1558; https://doi.org/10.3390/s16101558 - 22 Sep 2016
Cited by 149 | Viewed by 9120
Abstract
Electroencephalogram (EEG) signals recorded from sensor electrodes on the scalp can directly detect the brain dynamics in response to different emotional states. Emotion recognition from EEG signals has attracted broad attention, partly due to the rapid development of wearable computing and the needs [...] Read more.
Electroencephalogram (EEG) signals recorded from sensor electrodes on the scalp can directly detect the brain dynamics in response to different emotional states. Emotion recognition from EEG signals has attracted broad attention, partly due to the rapid development of wearable computing and the needs of a more immersive human-computer interface (HCI) environment. To improve the recognition performance, multi-channel EEG signals are usually used. A large set of EEG sensor channels will add to the computational complexity and cause users inconvenience. ReliefF-based channel selection methods were systematically investigated for EEG-based emotion recognition on a database for emotion analysis using physiological signals (DEAP). Three strategies were employed to select the best channels in classifying four emotional states (joy, fear, sadness and relaxation). Furthermore, support vector machine (SVM) was used as a classifier to validate the performance of the channel selection results. The experimental results showed the effectiveness of our methods and the comparison with the similar strategies, based on the F-score, was given. Strategies to evaluate a channel as a unity gave better performance in channel reduction with an acceptable loss of accuracy. In the third strategy, after adjusting channels’ weights according to their contribution to the classification accuracy, the number of channels was reduced to eight with a slight loss of accuracy (58.51% ± 10.05% versus the best classification accuracy 59.13% ± 11.00% using 19 channels). In addition, the study of selecting subject-independent channels, related to emotion processing, was also implemented. The sensors, selected subject-independently from frontal, parietal lobes, have been identified to provide more discriminative information associated with emotion processing, and are distributed symmetrically over the scalp, which is consistent with the existing literature. The results will make a contribution to the realization of a practical EEG-based emotion recognition system. Full article
(This article belongs to the Special Issue Security and Privacy in Sensor Networks)
Show Figures

Figure 1

Back to TopTop