Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,455)

Search Parameters:
Keywords = noise modeling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 15389 KiB  
Article
Impact of Sliding Window Variation and Neuronal Time Constants on Acoustic Anomaly Detection Using Recurrent Spiking Neural Networks in Automotive Environment
by Shreya Kshirasagar, Andre Guntoro and Christian Mayr
Algorithms 2024, 17(10), 440; https://doi.org/10.3390/a17100440 - 1 Oct 2024
Abstract
Acoustic perception of the automotive environment has the potential to advance driving potentials with enhanced safety. The challenge arises when these acoustic perception systems need to perform under resource and power constraints on edge devices. Neuromorphic computing has introduced spiking neural networks in [...] Read more.
Acoustic perception of the automotive environment has the potential to advance driving potentials with enhanced safety. The challenge arises when these acoustic perception systems need to perform under resource and power constraints on edge devices. Neuromorphic computing has introduced spiking neural networks in the context of ultra-low power sensory edge devices. Spiking architectures leverage biological plausibility to achieve computational capabilities, accurate performance, and great compatibility with neuromorphic hardware. In this work, we explore the depths of spiking neurons and feature components with the acoustic scene analysis task for siren sounds. This research work aims to address the qualitative analysis of sliding windows’ variation on the feature extraction front of the preprocessing pipeline. Optimization of the parameters to exploit the feature extraction stage facilitates the advancement of the performance of the acoustics anomaly detection task. We exploit the parameters for mel spectrogram features and FFT calculations, prone to be suitable for computations in hardware. We conduct experiments with different window sizes and the overlapping ratio within the windows. We present our results for performance measures like accuracy and onset latency to provide an insight on the choice of optimal window. The non-trivial motivation of this research is to understand the effect of encoding behavior of spiking neurons with different windows. We further investigate the heterogeneous nature of membrane and synaptic time constants and their impact on the accuracy of anomaly detection. On a large scale audio dataset comprising of siren sounds and road traffic noises, we obtain accurate predictions of siren sounds using a recurrent spiking neural network. The baseline dataset comprising siren and noise sequences is enriched with a bird dataset to evaluate the model with unseen samples. Full article
(This article belongs to the Special Issue Artificial Intelligence and Signal Processing: Circuits and Systems)
Show Figures

Figure 1

13 pages, 3660 KiB  
Article
A Novel Surrogate-Assisted Multi-Objective Well Control Parameter Optimization Method Based on Selective Ensembles
by Lian Wang, Rui Deng, Liang Zhang, Jianhua Qu, Hehua Wang, Liehui Zhang, Xing Zhao, Bing Xu, Xindong Lv and Caspar Daniel Adenutsi
Processes 2024, 12(10), 2140; https://doi.org/10.3390/pr12102140 - 1 Oct 2024
Abstract
Multi-objective optimization algorithms are crucial for addressing real-world problems, particularly with regard to optimizing well control parameters, which are often computationally expensive due to their reliance on numerical simulations. Surrogate-assisted models help to reduce this computational burden, but their effectiveness depends on the [...] Read more.
Multi-objective optimization algorithms are crucial for addressing real-world problems, particularly with regard to optimizing well control parameters, which are often computationally expensive due to their reliance on numerical simulations. Surrogate-assisted models help to reduce this computational burden, but their effectiveness depends on the quality of the surrogates, which can be affected by candidate dimension and noise. This study proposes a novel surrogate-assisted multi-objective optimization framework (MOO-SESA) that combines selective ensemble support-vector regression with NSGA-II. The framework’s uniqueness lies in its adaptive selection of a diverse subset of surrogates, established prior to iteration, to enhance accuracy, robustness, and computational efficiency. To our knowledge, this is the first instance in which selective ensemble techniques with multi-objective optimization have been applied to reservoir well control problems. Through employing an ensemble strategy for improving the quality of the surrogate model, MOO-SESA demonstrated superior well control scenarios and faster convergence compared to traditional surrogate-assisted models when applied to the SPE10 and Egg reservoir models. Full article
(This article belongs to the Special Issue Advances in Enhancing Unconventional Oil/Gas Recovery, 2nd Edition)
Show Figures

Figure 1

20 pages, 7568 KiB  
Article
Application of End-to-End Perception Framework Based on Boosted DETR in UAV Inspection of Overhead Transmission Lines
by Jinyu Wang, Lijun Jin, Yingna Li and Pei Cao
Drones 2024, 8(10), 545; https://doi.org/10.3390/drones8100545 - 1 Oct 2024
Abstract
As crucial predecessor tasks for fault detection and transmission line inspection, insulators, anti-vibration hammers, and arc sag detection are critical jobs. Due to the complexity of the high-voltage transmission line environment and other factors, target detection work on transmission lines remains challenging. A [...] Read more.
As crucial predecessor tasks for fault detection and transmission line inspection, insulators, anti-vibration hammers, and arc sag detection are critical jobs. Due to the complexity of the high-voltage transmission line environment and other factors, target detection work on transmission lines remains challenging. A method for high-voltage transmission line inspection based on DETR (TLI-DETR) is proposed to detect insulators, anti-vibration hammers, and arc sag. This model achieves a better balance in terms of speed and accuracy than previous methods. Due to environmental interference such as mountainous forests, rivers, and lakes, this paper uses the Improved Multi-Scale Retinex with Color Restoration (IMSRCR) algorithm to make edge extraction more robust with less noise interference. Based on the TLI-DETR’s feature extraction network, we introduce the edge and semantic information by Momentum Comparison (MoCo) to boost the model’s feature extraction ability for small targets. The different shooting angles and distances of drones result in the target images taking up small proportions and impeding each other. Consequently, the statistical profiling of the area and aspect ratio of transmission line targets captured by UAV generate target query vectors with prior information to enable the model to adapt to the detection needs of transmission line targets more accurately and effectively improve the detection accuracy of small targets. The experimental results show that this method has excellent performance in high-voltage transmission line detection, achieving up to 91.65% accuracy and a 55FPS detection speed, which provides a technical basis for the online detection of transmission line targets. Full article
(This article belongs to the Topic Civil and Public Domain Applications of Unmanned Aviation)
Show Figures

Figure 1

30 pages, 8057 KiB  
Article
Multi-Temporal Pixel-Based Compositing for Cloud Removal Based on Cloud Masks Developed Using Classification Techniques
by Tesfaye Adugna, Wenbo Xu, Jinlong Fan, Xin Luo and Haitao Jia
Remote Sens. 2024, 16(19), 3665; https://doi.org/10.3390/rs16193665 - 1 Oct 2024
Abstract
Cloud is a serious problem that affects the quality of remote-sensing (RS) images Existing cloud removal techniques suffer from notable limitations, such as being specific to certain data types, cloud conditions, and spatial extents, as well as requiring auxiliary data, which hampers their [...] Read more.
Cloud is a serious problem that affects the quality of remote-sensing (RS) images Existing cloud removal techniques suffer from notable limitations, such as being specific to certain data types, cloud conditions, and spatial extents, as well as requiring auxiliary data, which hampers their generalizability and flexibility. To address the issue, we propose a maximum-value compositing approach by generating cloud masks. We acquired 432 daily MOD09GA L2 MODIS imageries covering a vast region with persistent cloud cover and various climates and land-cover types. Labeled datasets for cloud, land, and no-data were collected from selected daily imageries. Subsequently, we trained and evaluated RF, SVM, and U-Net models to choose the best models. Accordingly, SVM and U-Net were chosen and employed to classify all the daily imageries. Then, the classified imageries were converted to two sets of mask layers to mask clouds and no-data pixels in the corresponding daily images by setting the masked pixels’ values to −0.999999. After masking, we employed the maximum-value technique to generate two sets of 16-day composite products, MaxComp-1 and MaxComp-2, corresponding to SVM and U-Net-derived cloud masks, respectively. Finally, we assessed the quality of our composite products by comparing them with the reference MOD13A1 16-day composite product. Based on the land-cover classification accuracy, our products yielded a significantly higher accuracy (5–28%) than the reference MODIS product across three classifiers (RF, SVM, and U-Net), indicating the quality of our products and the effectiveness of our techniques. In particular, MaxComp-1 yielded the best results, which further implies the superiority of SVM for cloud masking. In addition, our products appear to be more radiometrically and spectrally consistent and less noisy than MOD13A1, implying that our approach is more efficient in removing shadows and noises/artifacts. Our method yields high-quality products that are vital for investigating large regions with persistent clouds and studies requiring time-series data. Moreover, the proposed techniques can be adopted for higher-resolution RS imageries, regardless of the spatial extent, data volume, and type of clouds. Full article
Show Figures

Figure 1

23 pages, 2687 KiB  
Article
A New Joint Training Method for Facial Expression Recognition with Inconsistently Annotated and Imbalanced Data
by Tao Chen, Dong Zhang and Dah-Jye Lee
Electronics 2024, 13(19), 3891; https://doi.org/10.3390/electronics13193891 - 1 Oct 2024
Viewed by 21
Abstract
Facial expression recognition (FER) plays a crucial role in various applications, including human–computer interaction and affective computing. However, the joint training of an FER network with multiple datasets is a promising strategy to enhance its performance. Nevertheless, widespread annotation inconsistencies and class imbalances [...] Read more.
Facial expression recognition (FER) plays a crucial role in various applications, including human–computer interaction and affective computing. However, the joint training of an FER network with multiple datasets is a promising strategy to enhance its performance. Nevertheless, widespread annotation inconsistencies and class imbalances among FER datasets pose significant challenges to this approach. This paper proposes a new multi-dataset joint training method, Sample Selection and Paired Augmentation Joint Training (SSPA-JT), to address these challenges. SSPA-JT models annotation inconsistency as a label noise problem and selects clean samples from auxiliary datasets to expand the overall dataset size while maintaining consistent annotation standards. Additionally, a dynamic matching algorithm is developed to pair clean samples of the tail class with noisy samples, which enriches the tail classes with diverse background information. Experimental results demonstrate that SSPA-JT achieved superior or comparable performance compared with the existing methods by addressing both annotation inconsistencies and class imbalance during multi-dataset joint training. It achieved state-of-the-art performance on RAF-DB and CAER-S datasets with accuracies of 92.44% and 98.22%, respectively, reflecting improvements of 0.2% and 3.65% over existing methods. Full article
Show Figures

Figure 1

17 pages, 6051 KiB  
Article
Study on the Accurate Magnetic Field Analytical Model of an Inertial Magnetic Levitation Actuator Considering End Effects
by Qianqian Wu, Yiran Chen, Guokai Yuan, Fengyan An and Bilong Liu
Actuators 2024, 13(10), 385; https://doi.org/10.3390/act13100385 - 1 Oct 2024
Viewed by 137
Abstract
To address the demand for low noise and high stealthiness in ships and other vessels, this paper innovatively proposes an inertial magnetic levitation actuator based on non-uniform-sized Halbach permanent magnet arrays. To improve control accuracy, it is necessary to establish an accurate analytical [...] Read more.
To address the demand for low noise and high stealthiness in ships and other vessels, this paper innovatively proposes an inertial magnetic levitation actuator based on non-uniform-sized Halbach permanent magnet arrays. To improve control accuracy, it is necessary to establish an accurate analytical model of the magnetic field and then obtain an accurate electromagnetic force model. However, the distortion of the magnetic field at the ends produces end effects, resulting in thrust fluctuations that affect the actuator’s control accuracy. Therefore, considering the end effects is necessary to establish an accurate analytical model of the magnetic field. To analyze the end leakage magnetic field of the Halbach array, the concept of a mechanical pseudo-cycle in the actuator is proposed, and the cycle of a Fourier series is redefined. A completed analytical expression of the Halbach array magnetic field distribution is derived by the new Fourier series, in which the end leakage magnetic field is contained. The accuracy of the proposed method is verified by solving the analytical model of the magnetic field, and the analytical results are compared with finite element simulations and experimental tests. Full article
(This article belongs to the Special Issue Actuator Technology for Active Noise and Vibration Control)
Show Figures

Figure 1

25 pages, 38912 KiB  
Article
Thin Cloud Removal Generative Adversarial Network Based on Sparse Transformer in Remote Sensing Images
by Jinqi Han, Ying Zhou, Xindan Gao and Yinghui Zhao
Remote Sens. 2024, 16(19), 3658; https://doi.org/10.3390/rs16193658 - 30 Sep 2024
Viewed by 274
Abstract
Thin clouds in Remote Sensing (RS) imagery can negatively impact subsequent applications. Current Deep Learning (DL) approaches often prioritize information recovery in cloud-covered areas but may not adequately preserve information in cloud-free regions, leading to color distortion, detail loss, and visual artifacts. This [...] Read more.
Thin clouds in Remote Sensing (RS) imagery can negatively impact subsequent applications. Current Deep Learning (DL) approaches often prioritize information recovery in cloud-covered areas but may not adequately preserve information in cloud-free regions, leading to color distortion, detail loss, and visual artifacts. This study proposes a Sparse Transformer-based Generative Adversarial Network (SpT-GAN) to solve these problems. First, a global enhancement feature extraction module is added to the generator’s top layer to enhance the model’s ability to preserve ground feature information in cloud-free areas. Then, the processed feature map is reconstructed using the sparse transformer-based encoder and decoder with an adaptive threshold filtering mechanism to ensure sparsity. This mechanism enables that the model preserves robust long-range modeling capabilities while disregarding irrelevant details. In addition, inverted residual Fourier transformation blocks are added at each level of the structure to filter redundant information and enhance the quality of the generated cloud-free images. Finally, a composite loss function is created to minimize error in the generated images, resulting in improved resolution and color fidelity. SpT-GAN achieves outstanding results in removing clouds both quantitatively and visually, with Structural Similarity Index (SSIM) values of 98.06% and 92.19% and Peak Signal-to-Noise Ratio (PSNR) values of 36.19 dB and 30.53 dB on the RICE1 and T-Cloud datasets, respectively. On the T-Cloud dataset, especially with more complex cloud components, the superior ability of SpT-GAN to restore ground details is more evident. Full article
Show Figures

Figure 1

26 pages, 6511 KiB  
Article
Dynamic Response Analysis of Asphalt Pavement under Pavement-Unevenness Excitation
by Heng Liu, Xiaoge Liu, Ankang Wei and Yingchun Cai
Appl. Sci. 2024, 14(19), 8822; https://doi.org/10.3390/app14198822 - 30 Sep 2024
Viewed by 278
Abstract
This paper investigates and analyzes the dynamic response of asphalt pavement under pavement-unevenness excitation based on an orthogonal vector function system and efficient DVP (dual variable and position) method. Firstly, starting from the pavement unevenness of the vehicle excitation source, the pavement-unevenness excitation [...] Read more.
This paper investigates and analyzes the dynamic response of asphalt pavement under pavement-unevenness excitation based on an orthogonal vector function system and efficient DVP (dual variable and position) method. Firstly, starting from the pavement unevenness of the vehicle excitation source, the pavement-unevenness excitation is established by using the filtered white-noise method, and the random load of the vehicle model is obtained by simulation. Then, based on the basic governing equation of the road-surface problem under the random load, the analytical solution of the road-surface mechanical response is obtained by using the orthogonal vector function system and DVP method. The effects of pavement-unevenness grade, vehicle speed, vehicle load, interlayer contact condition, and transverse isotropy on the mechanical response of the road surface are analyzed via the analytical results. The results show that DVP can effectively solve the dynamic response of pavements under the excitation of pavement unevenness; in addition, it can also be applied to certain situations, such as transverse isotropy of materials and interface conditions. The results show that the pavement unevenness does not affect the average stress and strain of each layer but has a significant effect on the peak value and dispersion degree. An increase in vehicle speed causes a peak in strain and a larger coefficient of variation. Poor bonding between interfaces can lead to increased stress and strain at the bottom of the surface layer. Full article
(This article belongs to the Special Issue Advanced Structural Health Monitoring in Civil Engineering)
Show Figures

Figure 1

30 pages, 10186 KiB  
Article
An Improved Convolutional Neural Network for Pipe Leakage Identification Based on Acoustic Emission
by Weidong Xu, Jiwei Huang, Lianghui Sun, Yixin Yao, Fan Zhu, Yaoguo Xie and Meng Zhang
J. Mar. Sci. Eng. 2024, 12(10), 1720; https://doi.org/10.3390/jmse12101720 - 30 Sep 2024
Viewed by 327
Abstract
Oil and gas pipelines are the lifelines of the energy market, but due to long-term use and environmental factors, these pipelines are prone to corrosion and leaks. Offshore oil and gas pipeline leaks, in particular, can lead to severe consequences such as platform [...] Read more.
Oil and gas pipelines are the lifelines of the energy market, but due to long-term use and environmental factors, these pipelines are prone to corrosion and leaks. Offshore oil and gas pipeline leaks, in particular, can lead to severe consequences such as platform fires and explosions. Therefore, it is crucial to accurately and swiftly identify oil and gas leaks on offshore platforms. This is of significant importance for improving early warning systems, enhancing maintenance efficiency, and reducing economic losses. Currently, the efficiency of identifying leaks in offshore platform pipelines still needs improvement. To address this, the present study first established an experimental platform to simulate pipeline leaks in a marine environment. Laboratory leakage signal data were collected, and on-site noise data were gathered from the “Liwan 3-1” offshore oil and gas platform. By integrating leakage signals with on-site noise data, this study aimed to closely mimic real-world application scenarios. Subsequently, several neural network-based leakage identification methods were applied to the integrated dataset, including a probabilistic neural network (PNN) combined with time-domain feature extraction, a Backpropagation Neural Network (BPNN) optimized with simulated annealing and particle swarm optimization, and a Long Short-Term Memory Network (LSTM) combined with Mel-Frequency Cepstral Coefficients (MFCC). Corresponding models were constructed, and the effectiveness of leak detection was validated using test sets. Additionally, this paper proposes an improved convolutional neural network (CNN) leakage detection technology named SART-1DCNN. This technology optimizes the network architecture by introducing attention mechanisms, transformer modules, residual blocks, and combining them with Dropout and optimization algorithms, which significantly enhances data recognition accuracy. It achieves a high accuracy rate of 99.44% on the dataset. This work is capable of detecting pipeline leaks with high accuracy. Full article
(This article belongs to the Special Issue Structural Analysis and Failure Prevention in Offshore Engineering)
Show Figures

Figure 1

22 pages, 6532 KiB  
Article
Iterative Mamba Diffusion Change-Detection Model for Remote Sensing
by Feixiang Liu, Yihan Wen, Jiayi Sun, Peipei Zhu, Liang Mao, Guanchong Niu and Jie Li
Remote Sens. 2024, 16(19), 3651; https://doi.org/10.3390/rs16193651 - 30 Sep 2024
Viewed by 276
Abstract
In the field of remote sensing (RS), change detection (CD) methods are critical for analyzing the quality of images shot over various geographical areas, particularly for high-resolution images. However, there are some shortcomings of the widely used Convolutional Neural Networks (CNNs) and Transformers-based [...] Read more.
In the field of remote sensing (RS), change detection (CD) methods are critical for analyzing the quality of images shot over various geographical areas, particularly for high-resolution images. However, there are some shortcomings of the widely used Convolutional Neural Networks (CNNs) and Transformers-based CD methods. The former is limited by its insufficient long-range modeling capabilities, while the latter is hampered by its computational complexity. Additionally, the commonly used information-fusion methods for pre- and post-change images often lead to information loss or redundancy, resulting in inaccurate edge detection. To address these issues, we propose an Iterative Mamba Diffusion Change Detection (IMDCD) approach to iteratively integrate various pieces of information and efficiently produce fine-grained CD maps. Specifically, the Swin-Mamba-Encoder (SME) within Mamba-CD (MCD) is employed as a semantic feature extractor, capable of modeling long-range relationships with linear computability. Moreover, we introduce the Variable State Space CD (VSS-CD) module, which extracts abundant CD features by training the matrix parameters within the designed State Space Change Detection (SS-CD). The computed high-dimensional CD feature is integrated into the noise predictor using a novel Global Hybrid Attention Transformer (GHAT) while low-dimensional CD features are utilized to calibrate prior CD results at each iterative step, progressively refining the generated outcomes. IMDCD exhibits a high performance across multiple datasets such as the CDD, WHU, LEVIR, and OSCD, marking a significant advancement in the methodologies within the CD field of RS. The code for this work is available on GitHub. Full article
Show Figures

Figure 1

33 pages, 7989 KiB  
Article
Emergency Vehicle Classification Using Combined Temporal and Spectral Audio Features with Machine Learning Algorithms
by Dontabhaktuni Jayakumar, Modugu Krishnaiah, Sreedhar Kollem, Samineni Peddakrishna, Nadikatla Chandrasekhar and Maturi Thirupathi
Electronics 2024, 13(19), 3873; https://doi.org/10.3390/electronics13193873 - 30 Sep 2024
Viewed by 260
Abstract
This study presents a novel approach to emergency vehicle classification that leverages a comprehensive set of informative audio features to distinguish between ambulance sirens, fire truck sirens, and traffic noise. A unique contribution lies in combining time domain features, including root mean square [...] Read more.
This study presents a novel approach to emergency vehicle classification that leverages a comprehensive set of informative audio features to distinguish between ambulance sirens, fire truck sirens, and traffic noise. A unique contribution lies in combining time domain features, including root mean square (RMS) and zero-crossing rate, to capture the temporal characteristics, like signal energy changes, with frequency domain features derived from short-time Fourier transform (STFT). These include spectral centroid, spectral bandwidth, and spectral roll-off, providing insights into the sound’s frequency content for differentiating siren patterns from traffic noise. Additionally, Mel-frequency cepstral coefficients (MFCCs) are incorporated to capture the human-like auditory perception of the spectral information. This combination captures both temporal and spectral characteristics of the audio signals, enhancing the model’s ability to discriminate between emergency vehicles and traffic noise compared to using features from a single domain. A significant contribution of this study is the integration of data augmentation techniques that replicate real-world conditions, including the Doppler effect and noise environment considerations. This study further investigates the effectiveness of different machine learning algorithms applied to the extracted features, performing a comparative analysis to determine the most effective classifier for this task. This analysis reveals that the support vector machine (SVM) achieves the highest accuracy of 99.5%, followed by random forest (RF) and k-nearest neighbors (KNNs) at 98.5%, while AdaBoost lags at 96.0% and long short-term memory (LSTM) has an accuracy of 93%. We also demonstrate the effectiveness of a stacked ensemble classifier, and utilizing these base learners achieves an accuracy of 99.5%. Furthermore, this study conducted leave-one-out cross-validation (LOOCV) to validate the results, with SVM and RF achieving accuracies of 98.5%, followed by KNN and AdaBoost, which are 97.0% and 90.5%. These findings indicate the superior performance of advanced ML techniques in emergency vehicle classification. Full article
(This article belongs to the Special Issue Advances in AI Engineering: Exploring Machine Learning Applications)
Show Figures

Figure 1

16 pages, 2548 KiB  
Article
Fault Diagnosis of Pumped Storage Units—A Novel Data-Model Hybrid-Driven Strategy
by Jie Bai, Chuanqiang Che, Xuan Liu, Lixin Wang, Zhiqiang He, Fucai Xie, Bingjie Dou, Haonan Guo, Ruida Ma and Hongbo Zou
Processes 2024, 12(10), 2127; https://doi.org/10.3390/pr12102127 - 30 Sep 2024
Viewed by 248
Abstract
Pumped storage units serve as a crucial support for power systems to adapt to large-scale and high-proportion renewable energy sources by providing a stable and flexible energy supply. However, due to the coupling effects of electric power load demands and the complex multi-source [...] Read more.
Pumped storage units serve as a crucial support for power systems to adapt to large-scale and high-proportion renewable energy sources by providing a stable and flexible energy supply. However, due to the coupling effects of electric power load demands and the complex multi-source factors within the water–mechanical–electrical system, the interrelationship between unit parameters becomes more intricate, posing significant threats to the operational reliability and health status of the units. The complexity of fault diagnosis is further aggravated by the intricate and varied nature of fault characteristics, as well as the challenges in signal extraction under conditions of strong electromagnetic interference and high noise levels. To address these issues, this paper proposes a novel data-model hybrid-driven strategy that analyzes vibration signals to achieve rapid and accurate fault diagnosis of the units. Firstly, the spectral kurtosis theory is employed to enhance the traditional empirical mode decomposition, achieving optimal decomposition and noise reduction effects for vibration signals. Secondly, the intrinsic mode functions (IMFs) obtained from the decomposition are reconstructed, and the entropy values of effective IMFs are calculated as fault feature vectors. Subsequently, the CNN-LSTM model is utilized for fault diagnosis. The effectiveness and feasibility of the proposed method are verified through actual operational data from pumped storage units in a specific region. Through analysis, the fault diagnosis accuracy of the method proposed in this paper can be maintained above 95%, demonstrating robustness in complex engineering environments and effectively ensuring the safe and stable operation of pumped storage units. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

17 pages, 2924 KiB  
Article
A Fault Diagnosis Method for Pumped Storage Unit Stator Based on Improved STFT-SVDD Hybrid Algorithm
by Jie Bai, Xuan Liu, Bingjie Dou, Xiaohui Yang, Bo Chen, Yaowen Zhang, Jiayu Zhang, Zhenzhong Wang and Hongbo Zou
Processes 2024, 12(10), 2126; https://doi.org/10.3390/pr12102126 - 30 Sep 2024
Viewed by 280
Abstract
Stator faults are one of the common issues in pumped storage generators, significantly impacting their performance and safety. To ensure the safe and stable operation of pumped storage generators, a stator fault diagnosis method based on an improved short-time Fourier transform (STFT)-support vector [...] Read more.
Stator faults are one of the common issues in pumped storage generators, significantly impacting their performance and safety. To ensure the safe and stable operation of pumped storage generators, a stator fault diagnosis method based on an improved short-time Fourier transform (STFT)-support vector data description (SVDD) hybrid algorithm is proposed. This method establishes a fault model for inter-turn short circuits in the stator windings of pumped storage generators and analyzes the electrical and magnetic states associated with such faults. Based on the three-phase current signals observed during an inter-turn short circuit fault in the stator windings, the three-phase currents are first converted into two-phase currents using the principle of equal magnetic potential. Then, the STFT is applied to transform the time-domain signals of the stator’s two-phase currents into frequency-domain signals, and the resulting fault current spectrum is input into the improved SVDD network for processing. This ultimately outputs the diagnosis result for inter-turn short circuit faults in the stator windings of the pumped storage generator. Experimental results demonstrate that this method can effectively distinguish between normal and faulty states in pumped storage generators, enabling the diagnosis of inter-turn short circuit faults in stator windings with low cross-entropy loss. Through analysis, under small data sample conditions, the accuracy of the proposed method in this paper can be improved by up to 7.2%. In the presence of strong noise interference, the fault diagnosis accuracy of the proposed method remains above 90%, and compared to conventional methods, the fault diagnosis accuracy can be improved by up to 6.9%. This demonstrates that the proposed method possesses excellent noise robustness and small sample learning ability, making it effective in complex, dynamic, and noisy environments. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

20 pages, 10494 KiB  
Article
The Design of a Long-Distance Signal Transmission System in a Bistatic RCS Testing System
by Yuchen He, Tao Hong, Zhihua Chen, Penghao Liu and Yiran Wang
Appl. Sci. 2024, 14(19), 8797; https://doi.org/10.3390/app14198797 - 30 Sep 2024
Viewed by 356
Abstract
In wireless communication and radar systems, long-distance signal transmission poses significant challenges that affect overall system performance. In this paper, we propose an innovative bistatic radar cross section (RCS) testing system designed to address these challenges, with a particular focus on its long-distance [...] Read more.
In wireless communication and radar systems, long-distance signal transmission poses significant challenges that affect overall system performance. In this paper, we propose an innovative bistatic radar cross section (RCS) testing system designed to address these challenges, with a particular focus on its long-distance signal transmission capabilities. This system is capable of accurately measuring the RCS of a target and improving multipath channel modeling accuracy by using precise RCS values. The integrated upper computer software extracts amplitude and phase information from received echo signals, processes these data, and provides detailed outputs including the target’s RCS, one-dimensional image, and two-dimensional image. The experimental results obtained prove that this system can not only achieve effective long-distance signal transmission but also substantially enhance the accuracy of RCS measurements, offering reliable support for multipath channel modeling. However, the conclusions drawn are preliminary and require further experimental validation to fully substantiate this system’s performance. Future work will focus on improving system accuracy, minimizing the impact of environmental noise, and optimizing data-processing methods to enhance the efficiency of wireless communication and radar applications. Full article
Show Figures

Figure 1

16 pages, 6988 KiB  
Article
Unveiling the Exquisite Microstructural Details in Zebrafish Brain Non-Invasively Using Magnetic Resonance Imaging at 28.2 T
by Rico Singer, Ina Oganezova, Wanbin Hu, Yi Ding, Antonios Papaioannou, Huub J. M. de Groot, Herman P. Spaink and A Alia
Molecules 2024, 29(19), 4637; https://doi.org/10.3390/molecules29194637 - 29 Sep 2024
Viewed by 310
Abstract
Zebrafish (Danio rerio) is an important animal model for a wide range of neurodegenerative diseases. However, obtaining the cellular resolution that is essential for studying the zebrafish brain remains challenging as it requires high spatial resolution and signal-to-noise ratios (SNR). In [...] Read more.
Zebrafish (Danio rerio) is an important animal model for a wide range of neurodegenerative diseases. However, obtaining the cellular resolution that is essential for studying the zebrafish brain remains challenging as it requires high spatial resolution and signal-to-noise ratios (SNR). In the current study, we present the first MRI results of the zebrafish brain at the state-of-the-art magnetic field strength of 28.2 T. The performance of MRI at 28.2 T was compared to 17.6 T. A 20% improvement in SNR was observed at 28.2 T as compared to 17.6 T. Excellent contrast, resolution, and SNR allowed the identification of several brain structures. The normative T1 and T2 relaxation values were established over different zebrafish brain structures at 28.2 T. To zoom into the white matter structures, we applied diffusion tensor imaging (DTI) and obtained axial, radial, and mean diffusivity, as well as fractional anisotropy, at a very high spatial resolution. Visualisation of white matter structures was achieved by short-track track-density imaging by applying the constrained spherical deconvolution method (stTDI CSD). For the first time, an algorithm for stTDI with multi-shell multi-tissue (msmt) CSD was tested on zebrafish brain data. A significant reduction in false-positive tracks from grey matter signals was observed compared to stTDI with single-shell single-tissue (ssst) CSD. This allowed the non-invasive identification of white matter structures at high resolution and contrast. Our results show that ultra-high field DTI and tractography provide reproducible and quantitative maps of fibre organisation from tiny zebrafish brains, which can be implemented in the future for a mechanistic understanding of disease-related microstructural changes in zebrafish models of various brain diseases. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

Back to TopTop