Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = rateless codes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1712 KiB  
Article
Dynamic Cooperative Communications with Mutual Information Accumulation for Mobile Robots in Industrial Internet of Things
by Daoyuan Sun, Zefan Liu and Xinming Zhang
Sensors 2024, 24(13), 4362; https://doi.org/10.3390/s24134362 - 5 Jul 2024
Viewed by 757
Abstract
Mobile robots play an important role in the industrial Internet of Things (IIoT); they need effective mutual communication between the cloud and themselves when they move in a factory. By using the sensor nodes existing in the IIoT environment as relays, mobile robots [...] Read more.
Mobile robots play an important role in the industrial Internet of Things (IIoT); they need effective mutual communication between the cloud and themselves when they move in a factory. By using the sensor nodes existing in the IIoT environment as relays, mobile robots and the cloud can communicate through multiple hops. However, the mobility and delay sensitivity of mobile robots bring new challenges. In this paper, we propose a dynamic cooperative transmission algorithm with mutual information accumulation to cope with these two challenges. By using rateless coding, nodes can reduce the delay caused by retransmission under poor channel conditions. With the help of mutual information accumulation, nodes can accumulate information faster and reduce delay. We propose a two-step dynamic algorithm, which can obtain the current routing path with low time complexity. The simulation results show that our algorithm is better than the existing heuristic algorithm in terms of delay. Full article
(This article belongs to the Special Issue Advanced Applications of WSNs and the IoT)
Show Figures

Figure 1

16 pages, 633 KiB  
Article
Network Coding Approaches for Distributed Computation over Lossy Wireless Networks
by Bin Fan, Bin Tang, Zhihao Qu and Baoliu Ye
Entropy 2023, 25(3), 428; https://doi.org/10.3390/e25030428 - 27 Feb 2023
Cited by 2 | Viewed by 1942
Abstract
In wireless distributed computing systems, worker nodes connect to a master node wirelessly and perform large-scale computational tasks that are parallelized across them. However, the common phenomenon of straggling (i.e., worker nodes often experience unpredictable slowdown during computation and communication) and packet losses [...] Read more.
In wireless distributed computing systems, worker nodes connect to a master node wirelessly and perform large-scale computational tasks that are parallelized across them. However, the common phenomenon of straggling (i.e., worker nodes often experience unpredictable slowdown during computation and communication) and packet losses due to severe channel fading can significantly increase the latency of computational tasks. In this paper, we consider a heterogeneous, wireless, distributed computing system performing large-scale matrix multiplications which form the core of many machine learning applications. To address the aforementioned challenges, we first propose a random linear network coding (RLNC) approach that leverages the linearity of matrix multiplication, which has many salient properties, including ratelessness, maximum straggler tolerance and near-ideal load balancing. We then theoretically demonstrate that its latency converges to the optimum in probability when the matrix size grows to infinity. To combat the high encoding and decoding overheads of the RLNC approach, we further propose a practical variation based on batched sparse (BATS) code. The effectiveness of our proposed approaches is demonstrated by numerical simulations. Full article
(This article belongs to the Special Issue Information Theory and Network Coding II)
Show Figures

Figure 1

17 pages, 2304 KiB  
Article
Shifted LT Code Security Scheme for Partial Information Encryption
by Si Zhang, Fanglin Niu, Lizheng Wang and Ling Yu
Entropy 2022, 24(12), 1776; https://doi.org/10.3390/e24121776 - 5 Dec 2022
Viewed by 1460
Abstract
The existing physical layer security technology based on fountain codes needs to ensure that the legal channel is superior to the eavesdropping channel; when the quality of the legal channel and the eavesdropping channel are close, the information security cannot be guaranteed. Aiming [...] Read more.
The existing physical layer security technology based on fountain codes needs to ensure that the legal channel is superior to the eavesdropping channel; when the quality of the legal channel and the eavesdropping channel are close, the information security cannot be guaranteed. Aiming at this problem, this paper proposes a shifted Luby transform (SLT) code security scheme for partial information encryption, which is mainly divided into two stages, partial information encryption transfer and degree distribution adjustment. The main idea is that the source randomly extracts part of the information symbols, and performs XOR encryption with the random sequence containing the main channel noise sent by the legitimate receiver. Afterward, the degree distribution is adjusted using the number of transfer information symbols received by the legitimate receiver to improve the average degree of the encoded codewords. Since the eavesdropper can only obtain fewer information symbols in the initial stage, it is difficult to decode the generated coded symbols after the degree distribution adjustment, thereby ensuring the safe transmission of information. The experimental results show that, compared with other LT anti-eavesdropping schemes, even if the legitimate channel is not dominant, the proposed scheme still has better security performance and less decoding overhead. Full article
Show Figures

Figure 1

18 pages, 2682 KiB  
Article
Analysis and Design of Enhanced Distributed Fountain Codes in Multiple Access Networks with Cooperative Relay
by Hanqin Shao, Hongbo Zhu and Junwei Bao
Symmetry 2022, 14(10), 2026; https://doi.org/10.3390/sym14102026 - 27 Sep 2022
Cited by 1 | Viewed by 1749
Abstract
Distributed fountain coding plays an important role in rateless code research. The reliability and effectiveness of these coding schemes are increasingly challenged with the growing applications. In this paper, a novel multiple-access network with cooperative relay is presented, and a novel enhanced distributed [...] Read more.
Distributed fountain coding plays an important role in rateless code research. The reliability and effectiveness of these coding schemes are increasingly challenged with the growing applications. In this paper, a novel multiple-access network with cooperative relay is presented, and a novel enhanced distributed fountain coding scheme for this network is proposed. The overall degree distributions are derived, and the asymptotic decoding performance is analyzed theoretically by employing the And-Or tree method. On this basis, a design method using joint iterative optimization algorithms is proposed to optimize the degree distributions of the sources and relays. Simulation results show that the proposed enhanced distributed fountain codes outperform the existing generalized distributed fountain codes (GDFC) and have a good performance on both lossless and lossy channels. It reveals that the proposed codes can provide unequal error protection (UEP) property for different sources by introducing the extra cooperative relay. The performance improvement is not restricted to the sources connected to the cooperative relay but applies to all sources. With the additional relay, the proposed codes are able to overcome the effects of bad channel conditions caused by terrain, obstacles, and so on, to avoid communication interruptions and improve the reliability of the network. Full article
(This article belongs to the Special Issue Propagation Model Driven Spectrum Twin and Its Applications)
Show Figures

Figure 1

18 pages, 1167 KiB  
Article
A Graph Localization Approach for Underwater Sensor Networks to Assist a Diver in Distress
by Roee Diamant and Roberto Francescon
Sensors 2021, 21(4), 1306; https://doi.org/10.3390/s21041306 - 11 Feb 2021
Cited by 5 | Viewed by 2369
Abstract
In this paper, we focus on the problem of locating a scuba diver in distress using a sensor network. Without GPS reception, submerged divers in distress will transmit SOS messages using underwater acoustic communication. The study goal is to enable the quick and [...] Read more.
In this paper, we focus on the problem of locating a scuba diver in distress using a sensor network. Without GPS reception, submerged divers in distress will transmit SOS messages using underwater acoustic communication. The study goal is to enable the quick and reliable location of a diver in distress by his fellow scuba divers. To this purpose, we propose a distributed scheme that relies on the propagation delay information of these acoustic SOS messages in the scuba divers’ network to yield a range and bearing evaluation to the diver in distress by any neighboring diver. We formalize the task as a non-convex, multi-objective graph localization constraint optimization problem. The solution finds the best configuration of the nodes’ graph under constraints in the form of upper and lower bounds derived from the inter-connections between the graph nodes/divers. Considering the need to rapidly propagate the SOS information, we flood the network with the SOS packet, while also using rateless coding to leverage information from colliding packets, and to utilize time instances when collisions occur for propagation delay evaluation. Numerical results show a localization accuracy on the order of a few meters, which contributes to quickly locating the diver in distress. Similar results were demonstrated in a controlled experiment in a water tank, and by playback data from a sea experiment for five network topologies. Full article
(This article belongs to the Special Issue Autonomous Maritime Navigation and Sensor Fusion)
Show Figures

Figure 1

17 pages, 1629 KiB  
Article
Analysis and Design of Rateless Two-way Relay Networks Based on a Multiply-and-Forward Scheme
by Wei Han, Shengkai Xu, Daqing Huang and Cheng Xu
Appl. Sci. 2020, 10(7), 2389; https://doi.org/10.3390/app10072389 - 1 Apr 2020
Cited by 2 | Viewed by 1652
Abstract
In this paper, we propose a rateless, three-stage, two-way multiply-and-forward (MF) relaying system over the Rayleigh flat fading channel, where two source nodes communicate with each other through a relay node and all nodes work on half-duplex and time-division mode. We thoroughly analyze [...] Read more.
In this paper, we propose a rateless, three-stage, two-way multiply-and-forward (MF) relaying system over the Rayleigh flat fading channel, where two source nodes communicate with each other through a relay node and all nodes work on half-duplex and time-division mode. We thoroughly analyze the signals during all three stages in the proposed MF system and derive the closed-form symbol error rate (SER) expressions for an uncoded MF-two-way relay network (MF-TWRN). Furthermore, we provide the equivalent point-to-point fading channel model, which is employed to carry out the asymptotic performance analysis. We finally put forth an optimization model for the MF-TWRN with fountain codes. Simulation results show that our optimized degree distribution can provide outstanding performance for the MF-TWRN compared to those in the literature. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

15 pages, 1053 KiB  
Article
Performance of Dynamic Time Division Broadcast Protocol with Rateless Coding
by Kun Xu, Makun Guo, Chule Yang, Bin Jiang and Zhiyong Du
Appl. Sci. 2020, 10(1), 86; https://doi.org/10.3390/app10010086 - 20 Dec 2019
Cited by 1 | Viewed by 1471
Abstract
Two-way relaying channel (TWRC) improves the throughput of one-way relaying channel through network coding at the relay. Time division broadcast (TDBC) is one typical protocol for TWRC, but with three time slots for one round information exchange leading to throughput loss. To enhance [...] Read more.
Two-way relaying channel (TWRC) improves the throughput of one-way relaying channel through network coding at the relay. Time division broadcast (TDBC) is one typical protocol for TWRC, but with three time slots for one round information exchange leading to throughput loss. To enhance throughput performance, incremental redundancy transmission is usually incorporated into TDBC (i.e., TDBC-IR) by one bit feedback, indicating the successful or failed transmission. Nevertheless, TDBC-IR still suffers in throughput since it cannot fully exploit and adapt to the varying channel dynamics. In the paper, we propose a dynamic TDBC protocol with incremental redundancy in the form of rateless coding (i.e., DTDBC-RC) to fully utilizing the varying channel dynamics. In DTDBC-RC, the two sources first transmit in rateless coding way with given maximum allowable transmission time, and then the relay retransmits or not based on its decoding results. To reveal the advantages of DTDBC-RC, we analyze its performance comprehensively in terms of outage probability, expected rate, and diversity-multiplexing trade-off (DMT). We also present a subslot realization scheme for DTDBC-RC (i.e., sub-DTDBC-RC) since the DMT of DTDBC-RC cannot be obtained directly. Simulation and numerical results show the performance advantage of DTDBC-RC (or sub-DTDBC-RC) over TDBC-IR in terms of both expected rate and DMT. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

15 pages, 1527 KiB  
Article
Soft Iterative Decoding Algorithms for Rateless Codes in Satellite Systems
by Meixiang Zhang, Satya Chan and Sooyoung Kim
Algorithms 2019, 12(8), 151; https://doi.org/10.3390/a12080151 - 29 Jul 2019
Cited by 2 | Viewed by 4607
Abstract
The satellite system is one of the most efficient means for broadcasting due to its wide service coverage as well as the fact that it can provide high data rate services by using high frequency bands. However, there are a number of problems [...] Read more.
The satellite system is one of the most efficient means for broadcasting due to its wide service coverage as well as the fact that it can provide high data rate services by using high frequency bands. However, there are a number of problems in the satellite system, such as a long round trip delay (RTD) and heterogeneity of the channel conditions of the earth stations. Even though utilizing adaptive coding and modulation (ACM) is almost mandatory for the satellite systems using high frequency bands due to the serious rain fading, the long RTD makes it difficult to quickly respond to channel quality information, resulting in a decrease in the efficiency of ACM. A high heterogeneity of earth stations caused by a wide service coverage also makes it difficult to apply a uniform transmission mode, and thus satellite systems require receiver-dependent transmission modes. A rateless code can be an effective means to compensate for these disadvantages of satellite systems compared to terrestrial wireless systems. This paper presents soft iterative decoding algorithms for efficient application of rateless codes in satellite systems and demonstrates that rateless codes can be effectively used for hybrid automatic repeat request schemes. Full article
(This article belongs to the Special Issue Coding Theory and Its Application)
Show Figures

Figure 1

18 pages, 404 KiB  
Article
Rateless Codes-Based Secure Communication Employing Transmit Antenna Selection and Harvest-To-Jam under Joint Effect of Interference and Hardware Impairments
by Phu Tran Tin, Tan N. Nguyen, Nguyen Q. Sang, Tran Trung Duy, Phuong T. Tran and Miroslav Voznak
Entropy 2019, 21(7), 700; https://doi.org/10.3390/e21070700 - 16 Jul 2019
Cited by 14 | Viewed by 4348
Abstract
In this paper, we propose a rateless codes-based communication protocol to provide security for wireless systems. In the proposed protocol, a source uses the transmit antenna selection (TAS) technique to transmit Fountain-encoded packets to a destination in presence of an eavesdropper. Moreover, a [...] Read more.
In this paper, we propose a rateless codes-based communication protocol to provide security for wireless systems. In the proposed protocol, a source uses the transmit antenna selection (TAS) technique to transmit Fountain-encoded packets to a destination in presence of an eavesdropper. Moreover, a cooperative jammer node harvests energy from radio frequency (RF) signals of the source and the interference sources to generate jamming noises on the eavesdropper. The data transmission terminates as soon as the destination can receive a sufficient number of the encoded packets for decoding the original data of the source. To obtain secure communication, the destination must receive sufficient encoded packets before the eavesdropper. The combination of the TAS and harvest-to-jam techniques obtains the security and efficient energy via reducing the number of the data transmission, increasing the quality of the data channel, decreasing the quality of the eavesdropping channel, and supporting the energy for the jammer. The main contribution of this paper is to derive exact closed-form expressions of outage probability (OP), probability of successful and secure communication (SS), intercept probability (IP) and average number of time slots used by the source over Rayleigh fading channel under the joint impact of co-channel interference and hardware impairments. Then, Monte Carlo simulations are presented to verify the theoretical results. Full article
(This article belongs to the Section Information Theory, Probability and Statistics)
Show Figures

Graphical abstract

19 pages, 3927 KiB  
Article
Rateless Coded Uplink Transmission Design for Multi-User C-RAN
by Yu Zhang, Jiali Xu, Hong Peng, Weidang Lu and Zhaoyang Zhang
Sensors 2019, 19(13), 2978; https://doi.org/10.3390/s19132978 - 5 Jul 2019
Cited by 5 | Viewed by 2464
Abstract
Cloud radio access network (C-RAN) is a promising technology for the Internet of Things (IoT). In C-RAN, the remote radio head (RRH) and baseband unit (BBU) in the conventional base station are separated, and each BBU is backward centralized into a virtual BBU [...] Read more.
Cloud radio access network (C-RAN) is a promising technology for the Internet of Things (IoT). In C-RAN, the remote radio head (RRH) and baseband unit (BBU) in the conventional base station are separated, and each BBU is backward centralized into a virtual BBU pool. In this paper, we consider the uplink transmission for the two-user C-RAN with two RRHs under a block fading channel. A novel rateless coded transmission scheme is designed. During each transmission round, each user keeps transmitting to the RRHs using Raptor code until the BBU pool feeds back an acknowledgement (ACK). With the proposed scheme, each user does not require the instant channel state information, which greatly reduces the system overhead. We also design the quantizer at the RRHs and the iterative multi-user detector and decoder at the BBU pool, based on the belief propagation (BP) algorithm. For the Raptor code applied at each user, we optimize the corresponding output node degree profile, based on extrinsic information transfer (EXIT) analysis for the decoding process at the BBU pool. The resulted degree profiles are optimal in an average sense under all possible channel states. The simulation results show that the rateless coded transmission scheme with the optimized degree profiles outperforms the benchmark degree profile in both bit error rate and average system throughput. Moreover, the achieved performance is close to the theoretical limit. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

56 pages, 1878 KiB  
Article
Efficient Delivery of Scalable Video Using a Streaming Class Model
by Jason J. Quinlan, Ahmed H. Zahran and Cormac J. Sreenan
Information 2018, 9(3), 59; https://doi.org/10.3390/info9030059 - 8 Mar 2018
Cited by 2 | Viewed by 6134
Abstract
When we couple the rise in video streaming with the growing number of portable devices (smart phones, tablets, laptops), we see an ever-increasing demand for high-definition video online while on the move. Wireless networks are inherently characterised by restricted shared bandwidth and relatively [...] Read more.
When we couple the rise in video streaming with the growing number of portable devices (smart phones, tablets, laptops), we see an ever-increasing demand for high-definition video online while on the move. Wireless networks are inherently characterised by restricted shared bandwidth and relatively high error loss rates, thus presenting a challenge for the efficient delivery of high quality video. Additionally, mobile devices can support/demand a range of video resolutions and qualities. This demand for mobile streaming highlights the need for adaptive video streaming schemes that can adjust to available bandwidth and heterogeneity, and can provide a graceful changes in video quality, all while respecting viewing satisfaction. In this context, the use of well-known scalable/layered media streaming techniques, commonly known as scalable video coding (SVC), is an attractive solution. SVC encodes a number of video quality levels within a single media stream. This has been shown to be an especially effective and efficient solution, but it fares badly in the presence of datagram losses. While multiple description coding (MDC) can reduce the effects of packet loss on scalable video delivery, the increased delivery cost is counterproductive for constrained networks. This situation is accentuated in cases where only the lower quality level is required. In this paper, we assess these issues and propose a new approach called Streaming Classes (SC) through which we can define a key set of quality levels, each of which can be delivered in a self-contained manner. This facilitates efficient delivery, yielding reduced transmission byte-cost for devices requiring lower quality, relative to MDC and Adaptive Layer Distribution (ALD) (42% and 76% respective reduction for layer 2), while also maintaining high levels of consistent quality. We also illustrate how selective packetisation technique can further reduce the effects of packet loss on viewable quality by leveraging the increase in the number of frames per group of pictures (GOP), while offering a means of reducing overall error correction and by providing equality of data in every packet transmitted per GOP. Full article
(This article belongs to the Special Issue Network and Rateless Coding for Video Streaming)
Show Figures

Figure 1

1209 KiB  
Article
Low-Latency and Energy-Efficient Data Preservation Mechanism in Low-Duty-Cycle Sensor Networks
by Chan Jiang, Tao-Shen Li, Jun-Bin Liang and Heng Wu
Sensors 2017, 17(5), 1051; https://doi.org/10.3390/s17051051 - 6 May 2017
Cited by 17 | Viewed by 4692
Abstract
Similar to traditional wireless sensor networks (WSN), the nodes only have limited memory and energy in low-duty-cycle sensor networks (LDC-WSN). However, different from WSN, the nodes in LDC-WSN often sleep most of their time to preserve their energies. The sleeping feature causes serious [...] Read more.
Similar to traditional wireless sensor networks (WSN), the nodes only have limited memory and energy in low-duty-cycle sensor networks (LDC-WSN). However, different from WSN, the nodes in LDC-WSN often sleep most of their time to preserve their energies. The sleeping feature causes serious data transmission delay. However, each source node that has sensed data needs to quickly disseminate its data to other nodes in the network for redundant storage. Otherwise, data would be lost due to its source node possibly being destroyed by outer forces in a harsh environment. The quick dissemination requirement produces a contradiction with the sleeping delay in the network. How to quickly disseminate all the source data to all the nodes with limited memory in the network for effective preservation is a challenging issue. In this paper, a low-latency and energy-efficient data preservation mechanism in LDC-WSN is proposed. The mechanism is totally distributed. The data can be disseminated to the network with low latency by using a revised probabilistic broadcasting mechanism, and then stored by the nodes with LT (Luby Transform) codes, which are a famous rateless erasure code. After the process of data dissemination and storage completes, some nodes may die due to being destroyed by outer forces. If a mobile sink enters the network at any time and from any place to collect the data, it can recover all of the source data by visiting a small portion of survived nodes in the network. Theoretical analyses and simulation results show that our mechanism outperforms existing mechanisms in the performances of data dissemination delay and energy efficiency. Full article
(This article belongs to the Special Issue Wireless Rechargeable Sensor Networks)
Show Figures

Figure 1

641 KiB  
Article
Distributed Rateless Codes with Unequal Error Protection Property for Space Information Networks
by Jian Jiao, Yi Yang, Bowen Feng, Shaohua Wu, Yonghui Li and Qinyu Zhang
Entropy 2017, 19(1), 38; https://doi.org/10.3390/e19010038 - 18 Jan 2017
Cited by 15 | Viewed by 4522
Abstract
In this paper, we propose a novel distributed unequal error protection (UEP) rateless coding scheme (DURC) for space information networks (SIN). We consider the multimedia data transmissions in a dual-hop SIN communication scenario, where multiple disjoint source nodes need to transmit their UEP [...] Read more.
In this paper, we propose a novel distributed unequal error protection (UEP) rateless coding scheme (DURC) for space information networks (SIN). We consider the multimedia data transmissions in a dual-hop SIN communication scenario, where multiple disjoint source nodes need to transmit their UEP rateless coded data to a destination via a dynamic relay. We formulate the optimization problems to provide optimal degree distributions on the direct links and the dynamic relay links to satisfy the required error protection levels. The optimization methods are based on the And–Or tree analysis and can be solved by multi-objective programming. In addition, we evaluate the performance of the optimal DURC scheme, and simulation results show that the proposed DURC scheme can effectively provide UEP property under a variety of error requirements. Full article
(This article belongs to the Section Information Theory, Probability and Statistics)
Show Figures

Figure 1

1216 KiB  
Article
Error and Congestion Resilient Video Streaming over Broadband Wireless
by Laith Al-Jobouri, Ismail A. Ali, Martin Fleury and Mohammed Ghanbari
Computers 2015, 4(2), 113-141; https://doi.org/10.3390/computers4020113 - 21 Apr 2015
Cited by 2 | Viewed by 7533
Abstract
In this paper, error resilience is achieved by adaptive, application-layer rateless channel coding, which is used to protect H.264/Advanced Video Coding (AVC) codec data-partitioned videos. A packetization strategy is an effective tool to control error rates and, in the paper, source-coded data partitioning [...] Read more.
In this paper, error resilience is achieved by adaptive, application-layer rateless channel coding, which is used to protect H.264/Advanced Video Coding (AVC) codec data-partitioned videos. A packetization strategy is an effective tool to control error rates and, in the paper, source-coded data partitioning serves to allocate smaller packets to more important compressed video data. The scheme for doing this is applied to real-time streaming across a broadband wireless link. The advantages of rateless code rate adaptivity are then demonstrated in the paper. Because the data partitions of a video slice are each assigned to different network packets, in congestion-prone wireless networks the increased number of packets per slice and their size disparity may increase the packet loss rate from buffer overflows. As a form of congestion resilience, this paper recommends packet-size dependent scheduling as a relatively simple way of alleviating the buffer-overflow problem arising from data-partitioned packets. The paper also contributes an analysis of data partitioning and packet sizes as a prelude to considering scheduling regimes. The combination of adaptive channel coding and prioritized packetization for error resilience with packet-size dependent packet scheduling results in a robust streaming scheme specialized for broadband wireless and real-time streaming applications such as video conferencing, video telephony, and telemedicine. Full article
Show Figures

Figure 1

Back to TopTop