Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = skipjack tuna

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8003 KiB  
Article
Investigation of the Gel Properties and Gelation Mechanism of a Surimi Blend Composed of Skipjack Tuna (Katsuwonus pelamis) and Purpleback Flying Squid (Symplectoteuthis oualaniensis)
by Jianwei Liao, Haohao Shi, Jiamei Wang, Guanghua Xia, Yongqiang Zhao, Gang Yu and Xuanri Shen
Foods 2025, 14(4), 621; https://doi.org/10.3390/foods14040621 - 13 Feb 2025
Viewed by 277
Abstract
The objective of the present study was to investigate the gel properties and gelation mechanism of a surimi blend consisting of Katsuwonus pelamis and Symplectoteuthis oualaniensis. Superior gel properties, including gel strength, cooking loss and water holding capacity, were observed in mixed [...] Read more.
The objective of the present study was to investigate the gel properties and gelation mechanism of a surimi blend consisting of Katsuwonus pelamis and Symplectoteuthis oualaniensis. Superior gel properties, including gel strength, cooking loss and water holding capacity, were observed in mixed surimi. With increasing proportions of K. pelamis in the blend, an increase in hardness, gumminess and chewiness emerged, which compromised the resilience and whiteness of the gels. The detection of apparent viscosity revealed the shear-thinning properties of mixed surimi. The results of the molecular force measurements and differential scanning calorimetry demonstrated that heterogeneous myofibrillar proteins interacted into rigid protein aggregates with the help of enhanced hydrophobic interactions, subsequently increasing the values of G’ and G”. According to the FTIR spectrum, as the proportion of K. pelamis gradually increased, the protein secondary structure of surimi transitioned from a random coil to a β-sheet, facilitating the formation of a more ordered network structure. A marked improvement in the microstructure was observed via SEM. Therefore, the incorporation of surimi can be employed to optimize gel properties. Full article
Show Figures

Figure 1

14 pages, 1902 KiB  
Article
Valuable Ca/P Sources Obtained from Tuna Species’ By-Products Derived from Industrial Processing: Physicochemical and Features of Skeleton Fractions
by Miriam López-Álvarez, Paula Souto-Montero, Salvador Durán, Sara Pérez-Davila, José Antonio Vázquez, Pío González and Julia Serra
Recycling 2024, 9(6), 109; https://doi.org/10.3390/recycling9060109 - 8 Nov 2024
Viewed by 1103
Abstract
The global tuna canning industry generates substantial volumes of by-products, comprising 50% to 70% of the total processed material. Traditionally, these by-products have been utilized in low-value products such as fish oils and fishmeal. However, there is significant potential to extract high-value compounds [...] Read more.
The global tuna canning industry generates substantial volumes of by-products, comprising 50% to 70% of the total processed material. Traditionally, these by-products have been utilized in low-value products such as fish oils and fishmeal. However, there is significant potential to extract high-value compounds from these by-products, such as calcium phosphates (CaP), which can have pharmaceutical, agricultural and biotechnological applications. This work explores the potential of tuna canning by-products, particularly mineral-rich fractions (central skeleton, head and fish bones) as sources of calcium phosphates (CaP), offering a sustainable alternative to conventional synthetic derivatives within a circular bioeconomy framework. By-products from two of the most exploited species (yellowfin and skipjack) were subjected to enzymatic hydrolysis and chemical extraction, followed by controlled calcination to obtain CaP. The content of organic matter, nitrogen, total proteins, lipids and amino acids in the cleaned bones, as well as the main chemical bonds, structure and elemental composition (FT-Raman, XRD, XRF) were evaluated. Results indicated that the highest recovery yield of wet bones was achieved using the chemical method, particularly from the dorsal and caudal fins of yellowfin tuna. The proximal composition, with ash content ranging from 52% to 66% and protein content varying between 30% and 53%, highlights the potential of tuna skeleton substrates for plant growth formulations. Furthermore, variations in crystalline structures of the substrates revealed significant differences depending on the by-product source and species. XRD and Raman results confirmed a monophase calcium phosphate composition in most samples from both species, primarily based on hydroxyapatite (central skeleton, caudal and dorsal fin) or whitlockite/β-tricalcium phosphate (viscera), whereas the heads exhibited a biphasic composition. Comparing the species, yellowfin tuna (YF) exhibited a hydroxyapatite structure in the branchial arch and scales, while skipjack (SKJ) had a biphasic composition in these same regions. Full article
(This article belongs to the Special Issue Resource Recovery from Waste Biomass)
Show Figures

Figure 1

12 pages, 10714 KiB  
Article
Bio-Calcium from Skipjack Tuna Frame Attenuates Bone Loss in Ovariectomy-Induced Osteoporosis Rats
by Jirakrit Saetang, Acharaporn Issuriya, Watcharapol Suyapoh, Peerapon Sornying, Krisana Nilsuwan and Soottawat Benjakul
Mar. Drugs 2024, 22(10), 472; https://doi.org/10.3390/md22100472 - 16 Oct 2024
Viewed by 1552
Abstract
Bio-calcium derived from fish frames may offer several advantages for osteoporosis prevention. This study aimed to evaluate the effects of bio-calcium derived from skipjack tuna frames on bone loss in ovariectomized rats. Tuna bio-calcium was prepared through enzymatic hydrolysis, defatting, bleaching, and grinding [...] Read more.
Bio-calcium derived from fish frames may offer several advantages for osteoporosis prevention. This study aimed to evaluate the effects of bio-calcium derived from skipjack tuna frames on bone loss in ovariectomized rats. Tuna bio-calcium was prepared through enzymatic hydrolysis, defatting, bleaching, and grinding processes. The bioavailability of calcium was tested using the Caco-2 cell monolayer model, showing that 13% of tuna bio-calcium was absorbed, compared to 10% for calcium carbonate. Rats were divided into the five following groups: (1) OVX, (2) sham-operated, (3), OVX + estrogen-treated (4) OVX + calcium carbonate-treated, and (5) OVX + tuna bio-calcium-treated. All groups were raised for eight weeks. Tuna bio-calcium was able to increase BV/TV by 26% in the femur and 29% in the tibia, compared to 13% and 17% in the OVX group, respectively. Trabecular thickness in the femur upsurged to 360 µm in the tuna group, while a thickness of 290 µm was observed in the control. Additionally, osteoclast numbers were reduced to 5 N.Oc/mm in the femur and 6 N.Oc/mm in the tibia in the tuna group, compared to 35 and 45 N.Oc/mm in the control. Overall, tuna bio-calcium effectively prevented bone loss and can serve as a promising natural alternative for managing osteoporosis. Full article
Show Figures

Figure 1

19 pages, 8539 KiB  
Article
Optimization of the Preparation Process and Ameliorative Efficacy in Osteoporotic Rats of Peptide–Calcium Chelates from Skipjack Tuna (Katsuwonus pelamis) Meat
by Wan-Zhen Yan, Jiao Wang, Yu-Mei Wang, Yu-Hui Zeng, Chang-Feng Chi and Bin Wang
Foods 2024, 13(17), 2778; https://doi.org/10.3390/foods13172778 - 30 Aug 2024
Cited by 6 | Viewed by 1315
Abstract
This study aimed to establish the preparation process of peptide–calcium chelates (TMP-Ca) using skipjack tuna meat and investigate the function and mechanism of TMP-Ca in an osteoporosis model of rats. The results indicated that trypsin is more suitable for preparing the Ca-chelating hydrolysates [...] Read more.
This study aimed to establish the preparation process of peptide–calcium chelates (TMP-Ca) using skipjack tuna meat and investigate the function and mechanism of TMP-Ca in an osteoporosis model of rats. The results indicated that trypsin is more suitable for preparing the Ca-chelating hydrolysates of tuna meat, and the optimal hydrolysis conditions were derived as follows: digestion time 4 h, material–liquid ratio 1:10, and enzyme dose 3%. The conditions for chelating Ca with tuna meat hydrolysate were optimized to be chelation time 50 min, temperature 50 °C, pH 8.0, and a peptide–Ca ratio 1:10. The prepared hydrolysate was subjected to ultrafiltration, and the fraction (TMP) (MW <1 kDa) showed the highest Ca chelation rate (51.27 ± 1.42%) and was made into the peptide–Ca chelates (TMP-Ca). In osteoporotic rats, TMP-Ca significantly improved the decrease in ovarian indexes caused by retinoic acid. It also elevated serum Ca, phosphorus, and bone turnover indexes, increased the number of bone trabeculae, and improved bone microstructure. In addition, we confirmed that TMP-Ca could regulate the OPG/TRAF6 pathway to reduce osteoclast differentiation, inhibit bone resorption, and promote bone formation. Therefore, TMP-Ca could significantly ameliorate osteoporosis, and this study provides a functional component for the preparation of healthcare products using skipjack tuna meat to treat osteoporosis. Full article
(This article belongs to the Special Issue Functional Foods from Marine)
Show Figures

Figure 1

17 pages, 2365 KiB  
Article
Lipase-Catalyzed Synthesis of Structured Fatty Acids Enriched with Medium and Long-Chain n-3 Fatty Acids via Solvent-Free Transesterification of Skipjack Tuna Eyeball Oil and Commercial Butterfat
by Khurshid Ahmed Baloch, Umesh Patil, Khamtorn Pudtikajorn, Ebtihal Khojah, Mohammad Fikry and Soottawat Benjakul
Foods 2024, 13(2), 347; https://doi.org/10.3390/foods13020347 - 22 Jan 2024
Cited by 2 | Viewed by 2245
Abstract
Human milk lipids generally have the maximum long-chain fatty acids at the sn-2 position of the glycerol backbone. This positioning makes them more digestible than long-chain fatty acids located at the sn-1, 3 positions. These unique fatty acid distributions are not found elsewhere [...] Read more.
Human milk lipids generally have the maximum long-chain fatty acids at the sn-2 position of the glycerol backbone. This positioning makes them more digestible than long-chain fatty acids located at the sn-1, 3 positions. These unique fatty acid distributions are not found elsewhere in nature. When lactation is insufficient, infant formula milk has been used as a substitute. However, the distribution of most fatty acids ininfant formula milk is still different from human milk. Therefore, structured lipids were produced by the redistribution of medium-chain fatty acids from commercial butterfat (CBF) and n-3 and n-6 long-chain fatty acids from skipjack tuna eyeball oil (STEO). Redistribution was carried out via transesterification facilitated by Asian seabass liver lipase (ASL-L). Under the optimum conditions including a CBF/STEO ratio (3:1), transesterification time (60 h), and ASL-L unit (250 U), the newly formed modified-STEO (M-STEO) contained 93.56% triacylglycerol (TAG), 0.31% diacylglycerol (DAG), and 0.02% monoacylglycerol (MAG). The incorporated medium-chain fatty acids accounted for 18.2% of M-STEO, whereas ASL-L could incorporate 40% of n-3 fatty acids and 25–30% palmitic acid in M-STEO. The 1H NMRA and 13CNMR results revealed that the major saturated fatty acid (palmitic acid) and unsaturated fatty acids (DHA and EPA) were distributed at the sn-2 position of the TAGs in M-STEO. Thus, M-STEO enriched with medium-chain fatty acids and n-3 fatty acids positioned at the sn-2 position of TAGs can be a potential substitute for human milk fatty acids in infant formula milk (IFM). Full article
(This article belongs to the Section Foods of Marine Origin)
Show Figures

Figure 1

21 pages, 6845 KiB  
Article
Spatiotemporal Patterns in the Distribution of Albacore, Bigeye, Skipjack, and Yellowfin Tuna Species within the Exclusive Economic Zones of Tonga for the Years 2002 to 2018
by Siosaia Vaihola, Dawit Yemane and Stuart Kininmonth
Diversity 2023, 15(10), 1091; https://doi.org/10.3390/d15101091 - 18 Oct 2023
Cited by 8 | Viewed by 2026
Abstract
The Tongan fisheries targeting the species of albacore (Thunnus alalunga), bigeye (Thunnus obesus), skipjack (Katsuwonus pelamis), and yellowfin tuna (Thunnus albacares), comprising the main tuna catch landed, within the EEZ of Tonga is critical to [...] Read more.
The Tongan fisheries targeting the species of albacore (Thunnus alalunga), bigeye (Thunnus obesus), skipjack (Katsuwonus pelamis), and yellowfin tuna (Thunnus albacares), comprising the main tuna catch landed, within the EEZ of Tonga is critical to the economy of Tonga. Thus, it is crucial to study the spatiotemporal pattern of their catch and the influence of environmental and physical variables, in addition to the month and year of the catch. To this end, sets of eight generalized additive models were applied to model the distribution of these four species. Selection among competing models was carried out based on k-fold cross-validation, using RMSPE prediction error as a measure of model predictive performance. The following sets of predictors were considered; sea surface temperature, sea surface chlorophyll, bottom depth, month, and year. In addition, to assess the influence of fronts, gradients in SST and Chl-a were computed and used as predictors. Catch year was the most important variable for all, except Albacore tuna, for which month was the important variable. The third most important variable was SST for albacore and bigeye tuna, whereas bottom depth was the most important variable for skipjack and yellowfin tuna. A standardized index of CPUE indicates mostly inter-annual variation in CPUE for albacore and bigeye tuna, whereas a it indicates a general increase in CPUE for skipjack and yellowfin tuna. Hotspots of albacore tuna catches are around the northern and southern edges of the exclusive economic zone and typically during the months of June to August. The bigeye tuna hotspots were concentrated on the eastern side of the islands, in waters overlying trenches; this was most obvious during the months of January to June. Skipjack tuna hotspots were near the edges of the exclusive economic zone, although it is caught in smaller amounts to the three tuna species considered and higher catch rates were observed only after 2014. For yellowfin tuna, the highest catch rates were concentrated around the islands and descending towards the southern edge of the EEZ. As part of the initiative of this study to support national optimal resource management, this study generated standardized CPUE (indices of abundance), an important input in stock assessment, and also looked into the potential influence of environmental and physical variables on the CPUE of these valuable tuna stocks within the EEZ of Tonga. Full article
(This article belongs to the Special Issue Marine Biodiversity and Ecosystems Management—2nd Edition)
Show Figures

Figure 1

19 pages, 2927 KiB  
Review
Ecosystem Management Policy Implications Based on Tonga Main Tuna Species Catch Data 2002–2018
by Siosaia Vaihola and Stuart Kininmonth
Diversity 2023, 15(10), 1042; https://doi.org/10.3390/d15101042 - 27 Sep 2023
Cited by 1 | Viewed by 2084
Abstract
Despite the crucial role played by international and regional tuna fisheries in facilitating the successful implementation of the ecosystem approach to fisheries management, there exist disparities in viewpoints among these stakeholders, resulting in gaps between regional fisheries management and local communities. Nevertheless, the [...] Read more.
Despite the crucial role played by international and regional tuna fisheries in facilitating the successful implementation of the ecosystem approach to fisheries management, there exist disparities in viewpoints among these stakeholders, resulting in gaps between regional fisheries management and local communities. Nevertheless, the Tongan government, under the Ministry of Fisheries, is dedicated to the efficient management of its tuna resources, aiming to establish it as the preferred and optimal approach for ensuring the long-term sustainability of its tuna fisheries and the ecosystem services they provide to the community. Recognizing that an appropriate legal, policy and institutional framework is in place for sustainable management of tuna, the first part of this paper presents a review of current Tonga fisheries laws and policies for its tuna fisheries. This review reflects the implementation of an information-based management framework, namely the Tonga National Tuna Fishery Management and Development Plan. The tuna fisheries in Tonga mainly catch albacore (Thunnus alalunga), bigeye (Thunnus obesus), skipjack (Katsuwonus pelamis), and yellowfin (Thunnus albacares) tuna. These tuna species are caught within Tonga’s exclusive economic zones and play a crucial role in the country’s economy; hence, it is crucial to examine the spatio-temporal distributions of their catch in relation to their environmental conditions. In pursuit of this goal, the tasks of mapping (i) the spatio-temporal distribution of catch landed at ports and (ii) the spatio-temporal of environmental conditions were performed. The study utilizes longline catch per unit effort data spanning from 2002 to 2018 for albacore, bigeye, skipjack, and yellowfin tuna. It also incorporates data on environmental conditions, including sea surface temperature, sea surface chlorophyll, sea surface current, and sea surface salinity. Additionally, the El Nino Southern Oscillation Index is mapped in relation to catch data to examine the potential effects of climate change on the tuna catch. Results show that bigeye, skipjack, and yellowfin CPUE show a central–northernmost distribution and are primarily caught between latitudes 14° S–22° S, while albacore, shows a central–southern distribution. The highest CPUE for all species are in latitudes 15.5° S–22.5° S and longitudes 172.5° W–176.5° W. The data indicate that sea surface current velocities range from −0.03 to 0.04 ms−1, sea surface salinity ranges from 34.8 to 35.6 PSU, sea surface chlorophyll concentration varies from 0.03 to 0.1 mg m−3, and sea surface temperature fluctuates seasonally, ranging from 18 °C to 30 °C. Mapping also reveals that times of reduced catches in Tonga coincide with periods of moderate to strong El Nino events from 2002 to 2018. Full article
(This article belongs to the Special Issue Marine Biodiversity and Ecosystems Management—2nd Edition)
Show Figures

Figure 1

11 pages, 4481 KiB  
Article
Is Mushy Tuna Syndrome a Growing Problem for the Tuna Industry?
by Soni Maria Jacob Peter, Simone P. Blomberg, Matthew H. Holden, Louwrens C. Hoffman and Ian R. Tibbetts
Foods 2023, 12(19), 3590; https://doi.org/10.3390/foods12193590 - 27 Sep 2023
Cited by 1 | Viewed by 3341
Abstract
Reducing food loss and waste is crucial for a sustainable global food system and an efficient use of natural resources. Fast-growing tuna provides a key contribution to global nutrition targets; however, reports suggest that an appreciable proportion of the catch is lost from [...] Read more.
Reducing food loss and waste is crucial for a sustainable global food system and an efficient use of natural resources. Fast-growing tuna provides a key contribution to global nutrition targets; however, reports suggest that an appreciable proportion of the catch is lost from its value chain due to flesh quality issues, one of which is Mushy Tuna Syndrome (MTS). MTS-affected tuna flesh becomes soft and pasty, unfit for canning or human consumption, resulting in high wastage of partially processed material. We investigated the prevalence of MTS globally by surveying the tuna industry using a questionnaire. Of the responses from 32 companies across 14 nations, 97% acknowledged MTS as an issue that predominantly affects skipjack (Katsuwonus pelamis) tuna. The cost of rejects reported by participants from 2017 to 2019 varied greatly, from less than 1000 USD per year to over 1 million USD. The median cost was over 60,000 USD and the average rejection rate was 1.8%. The occurrence of MTS was noted to be seasonal, mainly in the summer months. More than half of the respondents who experience MTS reported an increasing trend of occurrence. Industry perceptions suggest MTS causes are associated with environmental, physiological, and biological factors. The survey results highlight that MTS is prevalent in the industry and demonstrate the need to identify amelioration strategies for the fishers and processors to minimise loss and maximise resource efficiency. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Figure 1

16 pages, 1743 KiB  
Article
The Effect of Different pH Conditions on Peptides’ Separation from the Skipjack Dark Meat Hydrolysate Using Ceramic Ultrafiltration
by Supitchaya Pinrattananon, Franck Courtes, Nattawan Chorhirankul, Panwajee Payongsri, Thunyarat Pongtharangkul, Anja E. M. Janssen and Nuttawee Niamsiri
Foods 2023, 12(18), 3367; https://doi.org/10.3390/foods12183367 - 8 Sep 2023
Cited by 4 | Viewed by 1887
Abstract
The conversion of Skipjack (Katsuwonus pelamis) dark meat into a hydrolysate via enzymatic hydrolysis is a promising approach to increase the value of tuna by-products as a source of bioactive peptides. Skipjack dark meat hydrolysate (SDMH) contains various sizes and sequences [...] Read more.
The conversion of Skipjack (Katsuwonus pelamis) dark meat into a hydrolysate via enzymatic hydrolysis is a promising approach to increase the value of tuna by-products as a source of bioactive peptides. Skipjack dark meat hydrolysate (SDMH) contains various sizes and sequences of peptides. To obtain and concentrate the targeted small peptides from SDMH, ultrafiltration, a key unit operation process, was employed to fractionate the protein hydrolysate due to its simplicity and productivity. The objective of this study was to investigate the effect of the feed pH on the membrane performance based on the permeate flux and the transmission of peptides. The fractionation of SDMH was performed using a ceramic membrane (molecular weight cut-off of 1 kDa) with three different pH values (5, 7, and 9) at various transmembrane pressures (TMP) (2.85, 3.85, and 4.85 bar). A high permeate flux and transmission were obtained at pH 9 due to the repulsive interactions between peptides and the membrane surface, leading to the reduction in concentration polarization that could promote high transmission. In addition, the combination of low TMP (2.85 bar) and pH 9 helped to even minimize the fouling formation tendency, providing the highest peptide transmission in this study. The fractionation process resulted in the enhancement of small peptides (MW < 0.3 kDa). The amino acid profiles were different at each pH, affirming the charge effect from the pH changes. In conclusion, the performance of the membrane was affected by the pH of the hydrolysate. Additionally, the ultrafiltration method served as an alternate method of peptide separation on a commercial scale. Full article
(This article belongs to the Section Foods of Marine Origin)
Show Figures

Figure 1

18 pages, 1168 KiB  
Article
Assessing the Activity under Different Physico-Chemical Conditions, Digestibility, and Innocuity of a GAPDH-Related Fish Antimicrobial Peptide and Analogs Thereof
by Samuel Cashman-Kadri, Patrick Lagüe, Ismail Fliss and Lucie Beaulieu
Antibiotics 2023, 12(9), 1410; https://doi.org/10.3390/antibiotics12091410 - 6 Sep 2023
Cited by 3 | Viewed by 1616
Abstract
The antimicrobial activity of SJGAP (skipjack tuna GAPDH-related antimicrobial peptide) and four chemical analogs thereof was determined under different physicochemical conditions, including different pH values, the presence of monovalent and divalent cations, and after a heating treatment. The toxicity of these five peptides [...] Read more.
The antimicrobial activity of SJGAP (skipjack tuna GAPDH-related antimicrobial peptide) and four chemical analogs thereof was determined under different physicochemical conditions, including different pH values, the presence of monovalent and divalent cations, and after a heating treatment. The toxicity of these five peptides was also studied with hemolytic activity assays, while their stability under human gastrointestinal conditions was evaluated using a dynamic in vitro digestion model and chromatographic and mass spectrometric analyses. The antibacterial activity of all analogs was found to be inhibited by the presence of divalent cations, while monovalent cations had a much less pronounced impact, even promoting the activity of the native SJGAP. The peptides were also more active at acidic pH values, but they did not all show the same stability following a heat treatment. SJGAP and its analogs did not show significant hemolytic activity (except for one of the analogs at a concentration equivalent to 64 times that of its minimum inhibitory concentration), and the two analogs whose digestibility was studied degraded very rapidly once they entered the stomach compartment of the digestion model. This study highlights for the first time the characteristics of antimicrobial peptides from Scombridae or homologous to GAPDH that are directly related to their potential clinical or food applications. Full article
Show Figures

Figure 1

14 pages, 1952 KiB  
Article
Production and Characterization of Heme Iron Polypeptide from the Blood of Skipjack Tuna (Katsuwonus pelamis) Using Enzymatic Hydrolysis for Food Supplement Application
by Satita Tansukkasem, Piriya Kaewpathomsri, Veasarach Jonjaroen, Panwajee Payongsri, Sittiwat Lertsiri and Nuttawee Niamsiri
Foods 2023, 12(17), 3249; https://doi.org/10.3390/foods12173249 - 29 Aug 2023
Cited by 1 | Viewed by 3049
Abstract
Organic heme iron in the form of heme iron polypeptide (HIP) is a bioavailable form of iron that can be used for dietary supplements. However, one practical challenge with HIP is that the quality of HIP prepared with different batches of raw material [...] Read more.
Organic heme iron in the form of heme iron polypeptide (HIP) is a bioavailable form of iron that can be used for dietary supplements. However, one practical challenge with HIP is that the quality of HIP prepared with different batches of raw material could lead to HIP products with inconsistent characteristics. In this study, skipjack tuna blood, a by-product in canned tuna industry, was converted to HIP at different degrees of enzymatic hydrolysis. The variation in HIP physical–chemical characteristics from different batches was evaluated, including composition, solubility, and molecular weight distribution. It was found that the batch variation had no effect on HIP composition and solubility; however, the degree of hydrolysis (DH) and the size of peptides that interact with heme greatly influenced HIP solubility at pH 2. Tuna-HIP with a low DH (DH, 8%) had 1.76-fold greater solubility than tuna-HIP with a high DH (DH, 32%). High-performance liquid chromatography (HPLC) revealed that tuna-HIP with a low DH had a molecular weight ranging from 1 kDa to 5 kDa. In summary, HIP-derived tuna blood was found to contain 70.54 ± 3.22 mg/100 g of iron and exhibit good solubility at 58.0 ± 2.16% at pH 2. Thus, tuna-HIP with a low DH might be a suitable functional ingredient for iron fortification of food. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Graphical abstract

16 pages, 3174 KiB  
Article
Fishing Area Prediction Using Scene-Based Ensemble Models
by Adillah Alfatinah, Hone-Jay Chu, Tatas and Sumriti Ranjan Patra
J. Mar. Sci. Eng. 2023, 11(7), 1398; https://doi.org/10.3390/jmse11071398 - 11 Jul 2023
Cited by 4 | Viewed by 2242
Abstract
This study utilized Chlorophyll-a, sea surface temperature (SST), and sea surface height (SSH) as the environmental variables to identify skipjack tuna catch hotspots. This study conducted statistical methods (decision tree, DT, and generalized linear model, GLM) as ensemble models that were employed for [...] Read more.
This study utilized Chlorophyll-a, sea surface temperature (SST), and sea surface height (SSH) as the environmental variables to identify skipjack tuna catch hotspots. This study conducted statistical methods (decision tree, DT, and generalized linear model, GLM) as ensemble models that were employed for predicting skipjack area for each time slice. Using spatial historical data, each model was trained for one of the ensemble model sets. For prediction, the correlations of historical and new inputs were applied to select the predictive model. Using the scene-based model with the highest input correlation, this study further identified the fishing area of skipjack tuna in every case whether the alterations in their environment affected their abundance or not. Overall, the performance achieved over 83% for correlation coefficients (CC) based on the accuracy assessment. This study concluded that DT appears to perform better than GLM in predicting skipjack tuna fishing areas. Moreover, the most influential environmental variable in model construction was sea surface temperature (SST), indicating that the presence of skipjack tuna was primarily influenced by regional temperature. Full article
(This article belongs to the Special Issue Sea Surface Temperature: From Observation to Applications II)
Show Figures

Figure 1

17 pages, 1448 KiB  
Article
Climate Change Potential Impacts on the Tuna Fisheries in the Exclusive Economic Zones of Tonga
by Siosaia Vaihola and Stuart Kininmonth
Diversity 2023, 15(7), 844; https://doi.org/10.3390/d15070844 - 10 Jul 2023
Cited by 5 | Viewed by 4270
Abstract
The potential impacts of climate change on the distribution of tuna in Pacific Island countries’ exclusive economic zones have yet to be investigated rigorously and so their persistence and abundance in these areas remain uncertain. Here, we estimate optimal fisheries areas for four [...] Read more.
The potential impacts of climate change on the distribution of tuna in Pacific Island countries’ exclusive economic zones have yet to be investigated rigorously and so their persistence and abundance in these areas remain uncertain. Here, we estimate optimal fisheries areas for four tuna species: albacore (Thunnus alalunga), bigeye (Thunnus obesus), skipjack (Katsuwonus pelamis), and yellowfin (Thunnus albacares). We consider different climate change scenarios, RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5, within a set of tuna catch records in the exclusive economic zone of Tonga. Using environmental and CPUE datasets, species distribution modelling estimated and predicted these fisheries areas in the current and future climatic scenarios. Our projections indicate an expansion in area and a shift of productive areas to the southern part of this exclusive economic zone of Tonga. This is an indication that future climatic scenarios might be suitable for the species under study; however, changes in trophic layers, ocean currents, and ocean chemistry might alter this finding. The information provided here will be relevant in planning future national actions towards the proper management of these species. Full article
Show Figures

Figure 1

22 pages, 14207 KiB  
Article
Satellite-Based Ocean Color and Thermal Signatures Defining Habitat Hotspots and the Movement Pattern for Commercial Skipjack Tuna in Indonesia Fisheries Management Area 713, Western Tropical Pacific
by Mukti Zainuddin, Safruddin Safruddin, Aisjah Farhum, Budimawan Budimawan, Rachmat Hidayat, Muhammad Banda Selamat, Eko Sri Wiyono, Muhammad Ridwan, Mega Syamsuddin and Yudi Nurul Ihsan
Remote Sens. 2023, 15(5), 1268; https://doi.org/10.3390/rs15051268 - 25 Feb 2023
Cited by 10 | Viewed by 2685
Abstract
Understanding the mechanisms that determine the critical habitat of commercial species is one of the significant challenges in marine science, particularly for species that inhabit the vast ocean worldwide. Previous investigations primarily focused on determining skipjack habitats without considering the feasible size for [...] Read more.
Understanding the mechanisms that determine the critical habitat of commercial species is one of the significant challenges in marine science, particularly for species that inhabit the vast ocean worldwide. Previous investigations primarily focused on determining skipjack habitats without considering the feasible size for sustainable fisheries. To define habitat hotspots and movement patterns for decently sized skipjack tuna (≥50 cm) in Indonesia Fisheries Management Area (IFMA) 713, Indonesia, we examined the remote sensing of synoptic sea surface temperature (SST) and chlorophyll-a concentration (Chl-a) measurements with catch data from 2007 to 2016. A new skipjack tuna habitat model was developed based on the link between the key satellite-based environmental data and the best tuna fishery performance using a combination of generalized additive models (GAMs) and kernel density estimates. The findings reveal that feasible skipjack catch sizes were found in approximately 27% of total fishing grounds and were significantly captured in areas with a Chl-a of 0.15–0.28 mg m−3 and an SST of 29.5–31.0 °C, corresponding with an elevated skipjack habitat index (SHI). The habitat hotspots for the commercial skipjack were particularly produced by favorable Chl-a and SST, in association with Chl-a front and anticyclonic and cyclonic eddies, especially in October, which coincided with the highest skipjack catch per unit effort (CPUE). Skipjack distributions were mostly found within 10 km of favorable feeding habitats. They used the hotspot area as an indicator of their dynamics and movement pattern in the environment. The observed CPUEs cross-validated the predicted SHI values, suggesting that the model provided a reliable proxy for defining the potential habitats and the spatial movement of mature skipjack schools. Our findings have global significance for locating ecological hotspots, monitoring sustainable skipjack fisheries, and tracking skipjack migration, especially within the western tropical Pacific. Full article
Show Figures

Figure 1

22 pages, 4898 KiB  
Article
Nanoparticles Based on Chondroitin Sulfate from Tuna Heads and Chitooligosaccharides for Enhanced Water Solubility and Sustained Release of Curcumin
by Yaowapha Waiprib, Pattarachat Ingrungruengluet and Wanchai Worawattanamateekul
Polymers 2023, 15(4), 834; https://doi.org/10.3390/polym15040834 - 8 Feb 2023
Cited by 5 | Viewed by 2892
Abstract
This study aimed to separate chondroitin sulfate (CS) from the heads of skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares), by-products derived from canned tuna processing, via a biological process. The use of 1% w/w papain [...] Read more.
This study aimed to separate chondroitin sulfate (CS) from the heads of skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares), by-products derived from canned tuna processing, via a biological process. The use of 1% w/w papain and an incubation time of 48 h resulted in a degree of hydrolysis of 93.75 ± 2.94% and a CS content of 59.53 ± 1.77 mg/100 g. The FTIR spectra of extracted CS products exhibited identical functional groups found in commercially available CS. The molecular weights of CS extracted from skipjack and yellowfin tuna heads were 11.0 kDa and 7.7 kDa, respectively. Subsequently, a CH:CS ratio of 3:2 for CS and chitooligosaccharides (CH) was chosen as the optimal ratio for the preparation of spherical nanoparticles, with %EE, mean particle size, PDI, and zeta potential values of 50.89 ± 0.66%, 128.90 ± 3.29 nm, 0.27 ± 0.04, and −12.47 ± 2.06, respectively. The CU content was enhanced to 127.21 ± 1.66 μg/mL. The release of CU from this particular nanosystem involved mainly a drug diffusion mechanism, with a burst release in the first 3 h followed by a sustained release of CU over 24 h. The DPPH and ABTS scavenging activity results confirmed the efficient encapsulation of CU into CHCS nanoparticles. This study will provide a theoretical basis for CS derived from tuna head cartilages to be used as a functional component with specific functional properties in food and biomedical applications. Full article
(This article belongs to the Special Issue Renewable and Sustainable Polymers)
Show Figures

Graphical abstract

Back to TopTop