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“Spectral methods” is a collective name for spatial discretisation methods that rely
on an expansion of the flow solution as coefficients for ansatz functions. These ansatz
functions usually have global support on the flow domain, and spatial derivatives are
defined in terms of derivatives of these ansatz functions. The coefficients pertaining to
the ansatz functions can be considered as a spectrum of the solution, which explains the
name for the method.

Due to the global (or at least extended) nature of the ansatz functions, spectral meth-
ods are usually global methods, i.e. the value of a derivative at a certain point in space
depends on the solution at all the other points in space, and not just the neighbour-
ing grid points. Due to this fact, spectral methods usually have a very high order of
approximation (spectral convergence meaning that the error with increasing resolution
(number of grid points N) is in fact decreasing exponentially (∝ (L/N)N) as opposed
to algebraically (∝ (L/N)p) as for finite-difference methods). In addition, dispersion
and diffusion properties of the derivative operator are advantageous compared to finite-
difference methods. This can be easily seen by considering the modified wave number
concept: Spectral methods usually give the exact derivative of a function, the only error
is due to the truncation to a finite set of ansatz functions/coefficients.

On the other hand, spectral methods are geometrically less flexible than lower-order
methods, and they are usually more complicated to implement. Additionally, the spectral
representation of the solution is difficult to combine with sharp gradients, e.g. problems
involving shocks and discontinuitites. But for certain problems (mainly elliptic/parabolic
problems in simple geometries) spectral methods are very adapted and efficient discreti-
sation schemes.

In fact, spectral methods were among the first to be used in practical flow simulations.
This was mainly prompted due to their high order of accuracy, meaning that an accurate
solution could already be represented with a lower number of grid points. This cautious
use of (expensive) computer memory was essential in the early days of CFD.

The topic of spectral methods is very large, and various methods and sub-methods
have been proposed and are actively used. The following description aims at giving the
fundamental ideas, focusing on the popular Chebyshev-collocation and Fourier-Galerkin
methods.
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1 Method of weighted residuals

1.1 Basic principle

Consider the initial-boundary-value problem of a partial differential equation

P [u] = 0 (1)

on a domain D for a function u(x, t) with boundary condition B(u) = 0 on the boundary
∂B and initial condition u(x, 0) = u0(x) at time t = 0. An ansatz for the approximate
solution uN(x, t) is made as a finite sum of known functions

uN(x, t) = uB(x, t) +
N

∑

k=0

ak(t) · φk(x) . (2)

Here, the φk(x) are called trial functions (ansatz functions) which are not changing with
time, and ak(t) are the corresponding time-dependent coefficients. Note that usually the
φk(x) fulfil homogeneous boundary conditions on ∂B, and the particular solution uB(x, t)
is used to satisfy the (possibly time-dependent) inhomogeneous boundary conditions.

The advantage of the ansatz (2) is that the temporal and spatial dependence and
thus the partial derivatives are uncoupled. Therefore, spatial derivatives can be written
as (assuming uB = 0)

∂puN

∂xp
=

N
∑

k=0

ak(t) ·
dp

dxp
φk(x) =

N ′

∑

k=0

a
(p)
k (t) · φk(x) . (3)

Note that depending on the φk (e.g. for polynomials), N and N ′ might be different.
On inserting the series expression (2) into the original PDE (1), the residual is defined

as
R(x, t) := P (uN(x, t)) . (4)

To determine the N + 1 unknown coefficients ak(t), the method of weighted residuals
requires that the residual R(x, t) multiplied with N +1 test function wj(x) and integrated
over the domain should vanish,

∫

D

wj(x) · R(x, t)dx = 0 , j = 0, . . . , N , (5)

or written using the scalar product (f, g) ≡
∫

D
f · g dx

(R,wj) = 0 , j = 0, . . . , N . (6)

This means that the residual R is required to be orthogonal to all test functions (weights)
wj. This is the reason why the method is called method of weighted residuals.

1.2 Choice of test functions

There exist various methods to choose the test functions. Here, we only mention the
two most common approaches, namely the Galerkin and the collocation method. Other
important classes would be the Petrov-Galerkin method and the tau method.
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Galerkin method For the Galerkin method (Boris Galerkin 1871–1845) the ansatz
functions φk(x) in equation (2) are chosen to be the same as the trial functions wj(x),

wj = φj , j = 0, . . . , N . (7)

Collocation method A set of N + 1 collocation points is chosen in the domain D on
which the residual R is required to vanish,

R(xj) = 0 , j = 0, . . . , N . (8)

The consequence of this expression is that the original PDE (1) is fulfilled exactly in the
collocation points, P (uN)|x=xj

= 0. Thus, the test functions become

wj = δ(x − xj) , j = 0, . . . , N , (9)

with δ being the Dirac delta function

δ(x) =

{

1 for x = 0
0 otherwise .

(10)

1.3 Choice of trial functions

The trial functions are usually smooth functions which are supported in the complete do-
main D. There are many choices possible, in particular trigonometric (Fourier) functions,
Chebyshev and Legendre polynomials, but also lower-order Lagrange polynomials with
local support (finite element method) or b-splines. However, we focus on two important
groups, the Fourier modes and Chebyshev polynomials.

1.3.1 Fourier series

Fourier series are particularly suited for the discretisation of peridic functions u(x) =
u(x + L) (Joseph Fourier 1768–1830). For such a periodic domain with periodicity L, we
define the fundamental wave number α = 2π/L, and the Fourier functions are

uN(x) =
∑

|k|≤K

cke
ikαx =

∑

|k|≤K

ckΦk , with ck ∈ C . (11)

The 2K + 1 = coefficients ck are the complex Fourier coefficients for the Fourier mode
Φk(x) = exp(iαkx), see Figure 1. Note that the summation limits are sometimes also
denoted as |k| ≤ N/2 with N = 2K. Additionally, a Fourier-transformed quantity is
often denoted by a hat, ûk = ck.

A Fourier series of a smooth function (also in the derivatives, i.e. part of C∞) con-
verges rapidly with increasing N , since the magnitude of the coefficients |ck| decreases
exponentially. This behaviour is called spectral convergence. However, if the original
function u(x) is non-continuous in at least one of the derivatives u(p)(x), the rate of
convergence is severely decreased to order p, i.e.

||uN − u|| = O(N−p) , N → ∞ , (12)
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Figure 1: Fourier functions Φk(x) = exp(iαkx) for k = 0, . . . , 3 with α = 2π/L = 1.
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Figure 2: Illustration of the Gibbs phenomenon: Fourier interpolation of a function with
sharp gradients leads to spurious oscillations near the discontinuity.

which corresponds to algebraic convergence as for finite-difference methods.
This phenomenon is usually referred to as the Gibbs phenomenon (Josiah Willard

Gibbs 1839–1903), according to which spurious oscillations can be seen in the interpolant
around sharp gradients. This behaviour is shown in Figure 2 for a step function featuring
a discontinuity in the function itself, i.e. in u(0). Then, the order of convergence of the
series expansion (2) is limited to zeroth order p = 0, i.e. the error does not decrease
further with refinement of the grid.

The transformation from the space of the discrete representation of uN (physical space)
to the space of the Fourier components ck (spectral space) is called the (forward) discrete
Fourier transform F(uN). Correspondigly, the reverse transform is the inverse Fourier
transform F−1(ck). An efficient way to compute this is via the fast Fourier transform
(FFT) (Cooley ande Tukey 1965 going back to an idea by Carl Friedrich Gauss 1805),
thereby reducing the computational effort from O(N2) to O(N log(N)). Note that there
are various definitions of the scalings of the Fourier coefficients and the transforms.

Other important properties of Fourier series are:

• Orthogonality:

(Φk, Φl) =
1

L

∫ L

0

Φk(x)Φ∗
l (x)dx =

1

L

∫ L

0

Φk(x)Φ−l(x)dx = δkl , (13)

4



with the Kronecker symbol δkl and the complex conjugate Φ∗
l (x).

• Product rule:
Φk · Φl = Φk+l (14)

• Differentiation:
Φ′

k(x) = ikαΦk(x) (15)

• Discrete transforms uN(xj) ↔ ck: Based on the discrete orthogonality relation
(N = 2K + 1; |k|, |m| ≤ K)

N
∑

j=1

eikxjeimxj =
N

∑

j=1

ΦkΦm = Nδk,−m , (16)

the relation between physical and spectral space is shown in a straight-forward way
to be

uN(xj) =
∑

k≤|K|

ckΦk(xj) , ck = N
N

∑

j=1

uN(xj)Φ−k . (17)

Note that n ∈ Z corresponds to an arbitrary multiple of N which might lead to
aliasing errors (see further down). These relations can be used to transform be-
tween the physical and spectral space, and are called a “discrete Fourier transform”
(implemented e.g. using FFT).

1.3.2 Chebyshev polynomials

As stated, Fourier series are only a good choice for periodic function. For problems
with non-periodic boundary conditions, ansatz functions based on orthogonal polynomials
are preferred. One popular choice are the Chebyshev polynomials (Pafnuty Lvovich
Chebyshev, 1821–1894), defined on a domain x ≤ |1| as

Tk(x) = cos(k arccos x) , k = 0, 1, 2, . . . . (18)

The first polynomials are thus (see also Figure 3)

T0(x) = 1 (19)

T1(x) = x (20)

T2(x) = 2x2 − 1 (21)

T3(x) = 4x3 − 3x . (22)

There exists also a recursion formula

Tk+1(x) + Tk−1(x) = 2xTk(x) , k ≥ 1 . (23)

A function u(x) is approximated via a finite series of Chebyshev polynomials as

uN(x) =
N

∑

k=0

akTk(x) , (24)
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Figure 3: Chebyshev polynomials Tk(x) for k = 0, . . . , 6.
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Figure 4: Illustration of the Runge phenomenon: Polynomial interpolation of the function
f(x) = (1 + 16x2)−1 on equidistant and non-equidistant (Gauss-Lobatto) grids.

with the ak being the Chebyshev coefficients. Note that the sum goes from 0 to N , i.e.
there are N + 1 coefficients. The highest order of the polynomial approximation is thus
N .

A general problem of high-order interpolation of a function via high-order polynomials
is the Runge phenomenon (Carl David Tolmé Runge 1856–1927), similar to the Gibbs
phenomenon for Fourier series. If a function is interpolated on an equidistant grid, the
error grows as 2N . However, using a non-equidistant distribution of points such that the

point density is (approximately) proportional to N
√

1 − x2
−1

, i.e. denser towards the
domain boundaries, it can be shown that the interpolation errors decrease exponentially.
A common distribution of points in particular for Chebyshev polynomials are the Gauss-
Lobatto points

xj = cos
πj

N
, j = 0, . . . , N . (25)

The N + 1 points xj correspond to the locations of the extrema of TN = ±1.
Chebyshev polynomials have a number of important properties:

• Alternating even and odd functions:

Tk(−x) = (−1)kTk(x) . (26)
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• Orthogonality:

(Tk, Tl) =

∫ 1

−1

Tk(x)Tl(x)√
1 − x2

dx =
π

2
ckδkl , (27)

with c0 = 2, ck = 1 for k ≥ 1 and the Kronecker symbol δkl.

• Boundary conditions:

Tk(1) = 1 and Tk(−1) = (−1)k . (28)

• To evaluate the finite Chebyshev series (24) use the stable recursive algorithm

BN+1 = 0 , BN = aN

Bk = ak + 2xBk+1 − Bk+2 , k = N − 1, . . . , 1

uN(x) = a0 − B2 + B1x .

• The values of the Chebyshev polynomials on the Gauss-Lobatto nodes are

Tk(xj) = cos

(

kjπ

N

)

, j, k = 0, . . . , N

The transformation between the physical space uN and spectral (Chebyshev) space
ak is done via the so-called Chebyshev transform. Since the Chebyshev polynomials are
essentially cosine functions on a transformed coordinate, there exists a fast transform
based on the FFT.

If a collocation method on the Gauss-Lobatto grid (25) is employed, the derivative of
a discretised function uN can be written as a matrix multiplication,

u′
N(xi) =

N
∑

j=0

DijuN(xj) . (29)

The matrix D = [Dij] is known as the (Chebyshev) derivative matrix, and represents a
transformation into spectral space, spectral derivation and back-transform. An explicit
form of the (N + 1) × (N + 1)-matrix D = [Dij] is given by

Dij =



















ci

cj

(−1)i+j

xi−xj
, i 6= j

− xi

2(1−x2
i
)

, 1 ≤ i = j ≤ N − 1
2N2+1

6
, i = j = 0

−2N2+1
6

, i = j = N ,

(30)

with

ck =

{

2 , k = 0, N
1 , 1 ≤ k ≤ N − 1 .

(31)

Note that the computation of D is very sensitive to round-off errors. Therefore, it is rec-
ommended for practical computations to use specificially adapted versions of the above
formula, e.g. chebdif.m from “A Matlab Differentiation Matrix Suite” by J.A.C. Wei-
deman and S.C. Reddy.
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1.4 Example: Linear stationary case

Consider a linear problem of the form

P (u) ≡ Lu − r = 0 , (32)

with the linear operator L and the inhomogeneous part r independent of u. The residual
is then given by

R(x) = LuN − r . (33)

Using the ansatz (2) in the equation (5) for the weighted residuals, one obtains a linear
system of equations for the coefficients ak

N
∑

k=0

ak

∫

D

wj · Lφk(x)dx =

∫

D

wj(r − LuB)dx , j = 0, . . . , N (34)

or in matrix formulation A a = s with a = [aj] and

Ajk =

∫

D

wj · Lφk(x)dx sj =

∫

D

wj · (r − LuB)dx . (35)

Depending on the choice of the test functions, the following cases can be derived

• Galerkin method:

Ajk =

∫

φjLφkdx , sj =

∫

φj(r − LuB)dx (36)

• Collocation method:

Ajk = Lφk(xj) , sj = r(xj) − LuB(xj) (37)

Consider for example the problem

u′′(x) − H2 · u(x) = −1 , |x| ≤ 1 , (38)

with the boundary conditions u(±1) = 0. The exact solution is given as

u(x) =
1

H2

(

1 − cosh Hx

cosh H

)

. (39)

Then, L = d2

dx2 − H2 and r = −1. Employing a collocation scheme, one gets

Ajk = (
d2

dx2
− H2)φk(x)|xj

and sj = −1 . (40)

The multiplication with ak and summing according to A a = s gives

N
∑

k=0

akAjk =
N

∑

k=0

(
d2

dx2
− H2)akφk(x)|xj

= −1 . (41)
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The series ansatz of equation (2) now leads to

u′′
N(xj) − H2uN(xj) = −1 , j = 0, . . . , N , (42)

which can be solved after chosing the trial functions and defining an appropriate derivative
rule for the vector uN = [uN(x0), uN(x1), . . .]

T , cast in matrix form u′
N = D uN . The

algebraic system becomes with the identity matrix I

(D2 − H2I)uN = −1 , (43)

which can be solved after implementation of the boundary conditions in terms of uN (not
ak). It can therefore be concluded that a collocation method relies on the description
of the flow solution in physical space, replacing all derivatives with the corresponding
derivative matrices D. The only reference to spectral space is via the definition of D.
This is in contrast to the Galerkin method which we will present next.

1.5 Nonlinear problems

Consider a nonlinear (partial) differential equation P [u] = 0, e.g. the Burgers’ equation
(Johannes Martinus Burgers 1895–1981)

∂u

∂t
+ u

∂u

∂x
= 0 , 0 ≤ x < 2π (44)

with periodic boundary conditions on a domain L = 2π. Due to the periodicity, a
Fourier Galerkin scheme shall be used for the spatial discretisation. The fundamental
wave number α = 2π/L = 1; the trial functions are thus φk = Φk = eikx and the test
functions φl = Φl = eilx. The approximation for the solution is

uN(x, t) =
K

∑

k=−K

ûk(t)φk(x) =
K

∑

k=−K

ûk(t)e
ikx . (45)

Inserting uN into the Burger equation (44) gives

K
∑

k=−K

dûk

dt
φk(x) +

K
∑

k=−K

ûkφk(x)
K

∑

m=−K

ûm
dφm(x)

dx
= 0 . (46)

The next step is to multiply with the N +1 test functions φl together with the integration
over the domain obtaining a system of equations with l = 0, . . . , N

∫ 2π

0

φl(x)
K

∑

k=−K

dûk

dt
φk(x)dx +

∫ 2π

0

φl(x)
K

∑

k=−K

ûkφk(x)
K

∑

m=−K

ûm
dφm(x)

dx
dx = 0 , (47)

which can be rewritten as follows using the product and derivative properties of the φi

K
∑

k=−K

dûk

dt

∫ 2π

0

φk(x)φl(x)dx +
K

∑

k=−K

K
∑

m=−K

imûkûm

∫ 2π

0

φl(x)φk+m(x)dx = 0 , (48)
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Employing the orthogonality relations (13)

∫ 2π

0

φk(x)φ−l(x)dx = 2πδkl (49)

gives first
K

∑

k=−K

dûk

dt
δ−l,k +

K
∑

k=−K

K
∑

m=−K

imûkûmδ−l,k+m = 0 , (50)

which allows to get rid of one summation in each term yielding

dû−l

dt
+

K
∑

k=−K
−l=k+m
|m|≤K

imûkûm = 0 , (51)

and after replacing −l with l one obtains finally a system of nonlinear equations for the
coefficients ûl

dûl

dt
+

K
∑

k=−K
l=k+m
|m|≤K

imûkûm = 0 . (52)

The fairly complex summation in the second term resembling a convolution is a con-
sequence of the nonlinearity. Since we need to evaluate a sum for all components l of
the solution, the number of operations is O(K2) which makes this sum evaluation the
computationally most expensive part.

1.6 Pseudo-spectral method and aliasing errors

As we have seen, the evaluation of the nonlinear term in equation (52) pertaining to the
Galerkin discretisation of the Burgers’ equation is computationally of order O(K2). It is
therefore desirable to find more efficient ways to compute this sum. The most imporant
way to do this is via Fourier transforms leading to an order O(K log K) for the same
operation which is significantly less than O(K2) for large K.

To illustrate such an algorithm, consider the product wj = w(xj), j = 1, . . . , N of two
grid functions uj = u(xj) and vj = v(xj) in physical space

wj = uj · vj . (53)

We proceed by transforming to spectral space with the help of

uj =
∑

|k|≤K

ûke
ikxj , ûk =

1

N

N
∑

j=1

uje
−ikxj (54)

and the discrete form of the orthogonality relation

1

N

N
∑

j=1

eikxjeimxj = δk,−m+n·N . (55)
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In the last equation, n ∈ Z corresponds to an arbitrary multiple of N which is closely
related to aliasing errors (see further down). Finally one obtains

ŵl =
1

N

∑

|k|≤K

∑

|m|≤K

ûkv̂m

N
∑

j=1

eikxjei(m−l)xj =
K

∑

k=−K
l=k+m
|m|≤K

ûkv̂m , (56)

i.e. the well-known result that a multiplication in physical space corresponds to a con-
volution in spectral space. To put it into other words, the fairly expensive evaluation of
a convolution in spectral space, equation (56), is equivalent to the direct evaluation of a
pointwise multiplication in physical space, equation (53).

Comparing our latest results, equation (56), to equation (52) we see that an efficient
evaluation of a nonlinear product of two variables given in spectral space ûk, v̂m = imûm

is done via the following steps

1. Transform ûk, v̂m to physical space using FFT: uj = F−1(ûk), vj = F−1(v̂m)

2. Multiplication in physical space: wj = uj · vj

3. Transform back to spectral space: ŵl = F(wj). This final results now reads:

ŵl =
K

∑

k=−K
l=k+m+n·N

|m|≤K

imûkûm . (57)

Such an evaluation of the spectral convolution in physical space is usually termed pseudo-
spectral evaluation of the nonlinear terms.

1.6.1 Aliasing errors

According to the sampling theorem, the highest wave number that can be represented
as a grid function fj with j = 1, . . . N = 2K is K. Higher wave numbers kh > K are
mapped to this representable region |k| ≤ K via

k = kh − nN , n ∈ Z . (58)

An example of such a case is given in Figure 5 illustrating the misrepresentation of wave
numbers when mapped on a grid function with not enough grid points.

Such aliasing errors also appear when evaluating a convolution sum via Fourier trans-
forms. To understand this, compare the nonlinear term in equations (52) and (57): The
difference is the appearance of the term . . . + n · N in the expression computed via the
FFT. For the computed result to be correct, measures have to be taken to avoid the
inclusion of these additional parts (aliasing errors) in the sum.

Another way to look at aliasing errors is by realising that the non-linear evaluation
in ŵl in equation (56) involves factors of v̂m with |m| = |l − k| ≤ 2K, i.e. wave numbers
up to twice as high as representable on the grid. These wave numbers are thus mapped
back to the represented wave-number space according to the above expression (58). Thus
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Figure 5: Illustration of aliasing errors, i.e. the mapping of higher wave numbers to lower
ones. Here, K = 4 and the wave numbers of the two waves are k1/2 = K ± 3.

the sum will contain errors due to these spurious contributions, which are called aliasing
errors.

These additional requirements when using a pseudo-spectral evaluation of the nonlin-
ear terms are however not directly possible to implement using the abovealgorithm for
computing ŵl given in equation (56). There are however some possibilities to remove
(or at least reduce) aliasing errors. One popular variant is the so-called 3/2-rule: The
original grid in physical space is refined by a factor M = 3/2N in every direction, and the
nonlinear multiplications are then performed on this finer grid. Afterwards, the results
product in transformed to spectral space, cutting away the wave numbers with |k| > K.
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