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Abstract

In metals and plasmas the Coulomb interaction between mobile charged par-

ticles is screened. The main long range interaction between the particles is

then the magnetic interaction. When radiation is negligible the simplest way

to study this interaction is to use the Darwin approximation. In this way

one retains a conservative �nite degree of freedom problem. We review the

derivation of the Darwin Lagrangian and present careful derivations of the

corresponding Hamiltonian in various limits. Our results go beyond those

of previous authors in several respects. We point out some consequences of

the magnetic interaction energy for the dynamics of charged particles with

screened Coulomb interaction. Applications to metallic conduction electrons

and to plasmas are considered.
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I. INTRODUCTION

The Coulomb potential energy is known to describe the interaction of charged particles
with suÆcient accuracy for a wide range of applications, especially in atomic, molecular,
and condensed matter physics. In cases where radiation is of importance the electrostatic
Coulomb treatment does not suÆce and must be replaced by a full treatment of the electro-
magnetic �eld obeying Maxwell's equations. It is frequently the case, however, that radiation
is not of importance, even though the electrostatic approximation is not good enough. For
all these cases one may use the Darwin approximation (Darwin [1], Breitenberger [2]). This
approximation, which goes beyond the electrostatic one in giving a correct description of
magnetic e�ects, while retaining a �nite degree of freedom conservative problem, seems to
be fairly unknown in spite of its wide range of applications. Only a few advanced textbooks
[3{5] mention it at all. In atomic physics the corresponding physical e�ect is described by
a perturbation to the Hamiltonian that sometimes is called the Breit [6,7] term. This term,
however, is of purely classical origin and is identical to the Darwin magnetic interaction
energy, see Breitenberger [2].

Under what circumstances can one expect the Darwin magnetic interaction to be re-
sponsible for observable physical e�ects? In atomic physics the interaction represents a well
established perturbation together with several other, purely quantum mechanical perturba-
tions (from spin and statistics). Otherwise neutral systems, such as metals and plasmas,
where there are moving charged particles, but in which the Coulomb interaction is screened,
should be of special interest [2]. In such systems the magnetic Darwin interaction will be
the dominating long range interaction. The reason that very few authors in the past have
considered the approach taken in this paper is probably that the concepts of magnetic en-
ergy and magnetic force are quite subtle and have caused much conceptual diÆculty and
speculation [8{11]. It is the purpose of this paper to clear up some of this confusion and to
advocate the view that the magnetic interaction energy is responsible both for low temper-
ature superconductivity and for the ubiquity of cosmic magnetic �elds.

We �rst review the derivation of the Darwin Lagrangian. It is usually considered to
result from an expansion in the small parameter v=c to second order. While this certainly
is one way of viewing it, the conventional way, in fact, its actual validity goes somewhat
beyond this. High speeds in themselves need not cause radiation since radiation comes from
accelerated dipoles. The Darwin Lagrangian has a post-Galilean (Woodcock and Havas [12])
character and it can be regarded as implying Maxwell's equations without time derivatives
of the transverse electric �eld (Kaufman and Rostler [13], Nielson and Lewis [14]).

The wide range of applicability of the Darwin Lagrangian, however, does not extend to
its approximate Hamiltonian as derived by Darwin. The Darwin interaction energy need
not be small even if the individual terms in it are small. The r�1 distance dependence
and, the absence of the screening e�ect that limits the Coulomb interaction, means that
it can integrate to considerable amounts, as �rst pointed out by Trubnikov and Kosachev
[15]. Under such circumstances the �rst order (or simpli�ed) Hamiltonian, that is usually
found in the literature, is not qualitatively correct. Apart from v=c there is thus also the
important dimensionless parameter NR0=R, where N is the number of particles, R0 the
classical electron radius, and R the length scale of the system. When this parameter is not
small higher order terms must be included in the Hamiltonian. One of our main results is
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an expression for the second order term in the Hamiltonian, equation (63), that becomes
exact in the non-relativistic limit.

We thus �rst carefully derive various expressions for the Hamiltonian corresponding to the
Darwin Lagrangian. New exact, as well as approximate, relativistic as well as non-relativistic
expressions, are given. The main result is the non-relativistic second order Hamiltonian

HD2 =
X
i

"
p2i
2mi

� qi
2mic

pi �A1
(i) +

q2i
2mic2

A1
(i) �A1

(i)

#
; (1)

where

A1
(i) =

X
j( 6=i)

qj[pj + (pj � eij)eij]
2mjcrij

: (2)

The Hamiltonian that is normally used does not have the last term and thus predicts that
the magnetic energy goes to minus in�nity as the volume containing a constant current
distribution goes to in�nity. The Hamiltonian HD2 predicts a positive in�nite energy for
such a situation and there is thus some hope that it is can be useful in improving our
qualitative understanding of the physics of long range magnetic interaction.

Some consequences of this Hamiltonian, corresponding to the Darwin Lagrangian are
then indicated. It is pointed out that it predicts a curious r�3 repulsive force between moving
charged particles. After that results for the conduction electrons in a metal, previously
found by us (Ess�en [16]), are reviewed and elaborated. Finally we discuss applications to
the magnetism of plasmas. According to the second order Darwin Hamiltonian (1) magnetic
structures are shown to have a typical size Rm � 1=

p
R0%n, where %n is the e�ective number

density of the e�ective current producing the magnetic �eld.

II. THE DARWIN APPROXIMATION AND ITS LAGRANGIAN

Everyone knows that there usually is no need to introduce the electric �eld explicitly in
calculations involving the low energy behavior of charged particles; it is suÆcient to use the
Coulomb potential energy. The reason is that, at low energies, the electric �eld is completely
determined by the positions of the charged particles so that it does not have any independent
degrees of freedom. On the other hand when there are large accelerations the system will
radiate and it is necessary to include an independent �eld. When this happens the energy
of the particle system is no longer conserved and no Lagrangian or Hamiltonian involving
only the particles can exist.

It turns out that one can regard the Coulomb interaction as the zeroth order term in an
expansion in the (small) parameter v=c, where v is a typical speed of the system and c the
speed of light. Darwin realized that it is possible to carry this expansion one step further
and still have only particle degrees of freedom in the problem. The next non-zero terms
that appear are of order (v=c)2 and represent magnetic interactions. In this way the Darwin
approximation means that one can include the e�ects of the magnetic �eld in the problem
without introducing the magnetic �eld explicitly; all that is needed is a velocity dependent
particle-particle interaction.
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We now proceed to sketch the derivation of the Darwin Lagrangian. We follow the
treatment by Landau and Lifshitz [4,5]. Alternative derivations can be found in [1{3], and
from a generalized point of view, in [12]. One can appreciate the subtlety of the derivation
by studying Bethe & Fr�ohlich's [17] slightly erroneous, independent rederivation.

The relativistic Lagrangian of a particle in an external electromagnetic �eld (�;A) is

Li(ri;vi) = �mic
2

s
1 � v2i

c2
� qi�+ qi

c
vi �A: (3)

Now assume that the particle is moving in the �eld of another particle j. Starting from the
retarded potentials, expanding in terms of the small time rij=c, and �nally introducing the
Coulomb gauge (r �A = 0) one �nds that the �eld produced at i by j is given by

�j(ri; t) =
qj
rij
; Aj(ri; t) =

qj[vj + (vj � rij)rij=r2ij]
2crij

; (4)

where rij � ri � rj and rij � jrijj. The Coulomb gauge is chosen because it is only in this
gauge that the Coulomb interaction is independent of the velocities.

The Lagrangian for particle i in the �elds produced by particles j is now

L(i) = Li �
X
j(6=i)

Uij (5)

where Uij denotes

Uij = qi�j � qi
c
vi �Aj =

qiqj
rij

� qiqj[vi � vj + (vi � eij)(vj � eij)]
2c2rij

: (6)

Here we have put eij � rij=rij . From this one concludes that the full Lagrangian of the
system of particles is L = (

P
i Li � 1

2

P
j(6=i) Uij). If we de�ne

�(i) �
X
j(6=i)

�j; A(i) �
X
j( 6=i)

Aj; Ui �
X
j( 6=i)

Uij = qi�(i) � qi
c
vi �A(i); (7)

and

UC
i � qi�(i); UD

i � �
qi
c
vi �A(i); (8)

so that �(i) and A(i) represent the internal scalar and vector potential, we can write the
Darwin Lagrangian

L =
X
i

(Li � 1

2
Ui) =

X
i

Li �
X
i<j

Uij: (9)

More explicitly we can express it in the form

L =
X
i

�
Li � 1

2

�
UC
i + UD

i

��
=
X
i

Li �
X
i<j

qiqj
rij

� VD; (10)
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where VD is given by

VD =
1

2

X
i

UD
i = �1

2

X
i

qi
c
vi �A(i) = �

X
i<j

qiqj[vi � vj + (vi � eij)(vj � eij)]
2c2rij

; (11)

and represents a magnetic interaction energy. The quantities A(i) will be called the internal
vector potential.

Physically the approximation arises from the full Lagrangian of particles plus electro-
magnetic �elds when the independent degrees of freedom of the �elds are neglected. This
corresponds to radiation being negligible so that there are no (non-virtual) photons present.
The �eld equations corresponding to this Lagrangian can be shown to di�er from Maxwell's
full equations in the omission of time-derivatives of the transverse electric �eld (Kaufman
and Rostler [13], Nielson and Lewis [14]). As long as such derivatives are small one can
expect the Darwin approximation to be good, independently of the value of v=c.

The velocity dependent part VD of L is called the Darwin (-Breit) term. That these
relativistic terms are of importance even in ordinary macroscopic physics when magnetic
phenomena are considered has been shown by Coleman and Van Vleck [8]. They are small
when individual particles are considered but easily integrate to macroscopic values [15].
The Darwin Lagrangian (10) can, using very general arguments, be shown to be the best
approximately relativistic Lagrangian for classical interacting point particles, that gives the
Coulomb interaction in the static limit and that contains a vector interaction [12,18]. This
type of relativistic Lagrangian turns out to be singular on a surface in phase space [18,19].

Below we will concentrate on the non-relativistic limit and disregard external �elds and
electrostatic interactions (these being assumed to lead simply to charge neutrality). The
relevant Lagrangian is in this case

Lnr =
X
i

�
1

2
miv

2
i +

qi
2c
vi �A(i)

�
: (12)

It is obtained from the full Lagrangian (10) if terms of order (v=c)2 are neglected, except
that the internal vector potential is considered to be blown up by the largeness of Avogadros
number. This is thus only consistent if there are many particles that contribute to A(i) (or,
possibly, if there are very small interparticle distances).

The one-body Hamiltonian corresponding to a one-body Lagrangian Li is by de�nition

Hi = Hi(ri;�i) � �i � vi � Li: (13)

Using the Lagrangian of equation (3) the corresponding generalized one-body momentum is

�i � @Li
@vi

=
miviq
1� v2i =c

2
+
qi
c
A: (14)

The explicit expression for the one-body Hamiltonian is then

Hi =
mic

2q
1� v2i =c

2
+ qi� =

s
m2

i c
4 + c2

�
�i � qi

c
A

�2
+ qi�: (15)

The next four sections are devoted to the Hamiltonian corresponding to the many-body
Lagrangian L.
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III. HAMILTONIAN FOR WEAK VELOCITY DEPENDENT INTERACTIONS

Assume that the one-body Lagrangian of particle i is Li = Li(ri;vi) and that the total
Lagrangian is of the type in equation (9) where

Uij = Uij(ri; rj;vi;vj): (16)

is the interaction of particles i and j. The Hamiltonian is by de�nition,

H =
X
i

pi � vi � L (17)

where the generalized momentum vector is

pi =
@L

@vi
� (

@L

@vxi
;
@L

@vyi
;
@L

@vzi
): (18)

If we now use equation (9) for L and (14) for the one-body generalized momenta, we can
write

pi = �i �
X
j(6=i)

@Uij
@vi

= �i � @Ui
@vi

: (19)

Using equation (13) for the one-body Hamiltonians we then get

H =
X
i

Hi(ri;�i) +
X
i<j

Uij �
X
i

@Ui
@vi

� vi (20)

for the many-body Hamiltonian. Note that this Hamiltonian is expressed in terms of the
one-body momenta �i instead of the correct many-body momenta (18).

Using formula (19) we can express the one-body Hamiltonian in terms of the generalized
momentum

Hi(ri;�i) = Hi

 
ri;pi +

@Ui
@vi

!
: (21)

We now assume that the velocity dependent part of the interaction is small (or that Hi is
linear in �i)

Hi(ri;�i) � Hi(ri;pi) +
@Hi

@�i
� @Ui
@vi

: (22)

According to one of Hamilton's equations we have

@Hi

@�i
= vi; (23)

(this is also a purely algebraic result) and using this we �nd that

Hi(ri;�i) � Hi(ri;pi) +
@Ui
@vi

� vi: (24)
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It should be stressed that smallness here means that j@Ui=@vij � jpij, i.e. weak velocity
dependent interaction. It is then further consistent to replace vi with pi=mi to �rst order.

Inserting (24) into equation (20) we, �nally, �nd that

H �X
i

Hi(ri;pi) +
X
i<j

Uij =
X
i

Hi(ri;pi) +
X
i<j

qiqj
rij

+ VD: (25)

Note that this expression is the same that one would �nd in the absence of velocity depen-
dence. This result for H agrees with a general theorem (Landau and Lifshitz [20]) which
states that a small addition to the Lagrangian appears in the Hamiltonian with opposite
sign. It is, nevertheless, interesting to see explicitly how this comes about in the present
case.

The Darwin term [see equation (8)] has the property

X
i

@UD
i

@vi
� vi =

X
i

(�qi
c
A(i)) � vi =

X
i

UD
i = 2VD (26)

so that equation (20), which, assuming the explicit interactions of the previous section, reads

H =
X
i

Hi(ri;�i) +
X
i<j

qiqj
rij

+ VD �
X
i

@UD
i

@vi
� vi; (27)

gives us

H =
X
i

Hi(ri;�i) +
X
i<j

qiqj
rij

� VD: (28)

This equation can be found in [2,13,15]. It di�ers from equation (25) in that no approxi-
mations have been made. On the other hand it has not yet been expressed in terms of the
correct many-body canonical momenta pi, and this explains the sign change in front of VD
as formulae (24) and (26) show. Breit [6,7] had trouble with this sign change of the velocity
dependent interaction term, which shows that great care must be taken to ensure correct
approximations.

IV. EXACT HAMILTONIANS IN TERMS OF THE INTERNAL VECTOR

POTENTIAL

In order to complete the derivation of the Darwin Hamiltonian starting from the exact
expression (28), we must now express it entirely in terms of momenta pi instead of velocities.
Using equations (19) and (7) we get

�i = pi � qi
c
A(i) (29)

so equation (15) gives us

Hi(ri;�i(pi;A(i))) =

s
m2

i c
4 + c2

�
pi � qi

c
(A +A(i))

�2
+ qi�: (30)
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Formula (28) for the Darwin Hamiltonian can then be written in the more explicit form

H =
X
i

8<
:
s
m2

i c
4 + c2

�
pi � qi

c
(A+A(i))

�2
+ qi�

9=
;+

1

2

X
i

qi�(i) +
1

2

X
i

qi
c
vi �A(i): (31)

So far no approximations have been made in the derivation of the Hamiltonian from the
Darwin Lagrangian. This expression, however, still contains velocities, explicitly in the last
sum, and implicitly in A(i).

In order to concentrate on essentials we assume, from now on, that there are no external
�elds. We also disregard the internal electric potential and replace it, when necessary, with
its main e�ect: the requirement of charge neutrality. The Hamiltonian that we will consider
is thus

H =
X
i

2
4
s
m2

i c
4 + c2

�
pi � qi

c
A(i)

�2
+
1

2

qi
c
vi �A(i)

3
5 : (32)

Combining equations (29) and (14) and introducing the notation

s(vi) �
s
1 � v2i

c2
= 1

,r
1 +

h
pi � (qi=c)A(i)

i2
=(mic)2 ; (33)

we �nd that

vi =
s(vi)

mi

�
pi � qi

c
A(i)

�
: (34)

When this is inserted into equation (32) we �nd that we can express it entirely in terms of
pi and A(i). The result is

H =
X
i

8<
:
s
m2

i c
4 + c2

�
pi � qi

c
A(i)

�2
+
1

2

2
4 qicpi �A(i) � (qiA(i))

2

3
5,

s
m2

i c
4 + c2

�
pi � qi

c
A(i)

�29=
; :

(35)

This expression is easily manipulated to the simple expression

H =
X
i

�
m2

i c
4 + c2

�
pi � qi

c
A(i)

��
pi � qi

2c
A(i)

��,s
m2

i c
4 + c2

�
pi � qi

c
A(i)

�2
; (36)

for the Hamiltonian of the Darwin Lagrangian, no approximations made.
Expanding the square root we �nd in the non-relativistic limit

Hnr =
X
i

 
p2i
2mi

� qi
2mic

pi �A(i)

!
; (37)

compare equation (12) for the corresponding Lagrangian. Here the rest energy has been
subtracted. If we go to second order in [(pi� qiA(i)=c)=(mic)]2, we get the quasi-relativistic
Hamiltonian
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Hqr = Hnr �
X
i

1

8m3
i c

2

"
p4i � 2p2i

�
qi
c
pi �A(i)

�
+ 2

�
qi
c
pi �A(i)

��
qi
c
A(i)

�2
�
�
qi
c
A(i)

�4#
;

(38)

Note that we have not assumed that qiA(i)=c are small. As mentioned above this should
be avoided since A(i) arises from a sum over all particles with terms that have the distance
dependence r�1ij . In a macroscopic system there is no a priori reason to assume that the
result of such a summation is small.

It is tempting to consider the terms containing A(i) in (37) to represent magnetic energy
and, as will be discussed below, it does represent the energy lowering associated with the
attraction of parallel currents. On the other hand it is expressed in terms of the internal
vector potential (a phase space vector function of ri and pi) rather than the magnetic
�eld. What is usually called magnetic energy in textbooks is a positive de�nite quantity
(for a clear discussion, see Kovetz [21]); magnetic energy is not normally a well de�ned
concept unless made precise in some, more or less, arbitrary way [2,10]. By contrast the
Hamiltonian corresponding to the Darwin Lagrangian is perfectly well de�ned and we will
therefore pursue it further below.

V. MOMENTUM FORM OF THE NON-RELATIVISTIC INTERNAL VECTOR

POTENTIAL

In order to study the behavior of a non-relativistic system of charges due to its internal
magnetic energy we should now express this non-relativistic Hamiltonian (37) as a function
of ri and pi. We must thus express A(i) as a function of these variables. Following Kaufman
and Soda [22] we put

Tija � 1

2rij
[a+ (a � eij)eij ] = 1

2rij
(1+ eijeij)a; (39)

and �nd that A(i) is given by [see equations (4), (7), and (34)]

A(i) =
X
j(6=i)

Tij(qjvj=c) =
X
j( 6=i)

Tij[s(vj)qjpj=(mjc)]�
X
j( 6=i)

Tij [s(vj)q
2
jA(j)=(mjc

2)]: (40)

This is an implicit expression for the A(i). It should be remembered that it contains A(i)

also via the s(vj) according to formula (33). In the non-relativistic limit this dependence
vanishes [s(vj) � 1] and the expression can be written in the matrix form

0
BBBBBB@

1
q2
2

m2c2
T12 � � � q2

N

mN c2
T1N

q2
1

m1c2
T21 1 � � � q2

N

mN c2
T2N

...
... � � � ...

q2
1

m1c2
TN1

q2
2

m2c2
TN2 � � � 1

1
CCCCCCA

0
BBBB@
A(1)

A(2)
...

A(N)

1
CCCCA =

0
BBBBB@

A1
(1)

A1
(2)
...

A1
(N)

1
CCCCCA (41)

where we have de�ned
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0
BBBBB@

A1
(1)

A1
(2)
...

A1
(N)

1
CCCCCA �

0
BBBBB@

0 q2
m2c

T12 � � � qN
mN c

T1N
q1
m1c

T21 0 � � � qN
mN c

T2N

...
... � � � ...

q1
m1c

TN1
q2
m2c

TN2 � � � 0

1
CCCCCA

0
BBBB@
p1
p2
...
pN

1
CCCCA : (42)

Here N is the number of particles, 1 and 0 are the 3 � 3 unit matrix and zero matrix
respectively. For convenience we de�ne the following 3N � 3N symmetric matrices

$

T �

0
BBBB@

0 T12 � � � T1N

T21 0 � � � T2N
...

... � � � ...
TN1 TN2 � � � 0

1
CCCCA ; q

$ �

0
BBBB@
q11 0 � � � 0

0 q21 � � � 0
...

... � � � ...
0 0 � � � qN1

1
CCCCA ;

$
m �

0
BBBB@
m11 0 � � � 0

0 m21 � � � 0
...

... � � � ...
0 0 � � � mN1

1
CCCCA ;

(43)

and, in terms of these,

$

R � q
$2$m�1c�2; and

$

U � $

T
$

R: (44)

If we also de�ne the 3N � 1 matrices

~A �

0
BBBB@
A(1)

A(2)
...

A(N)

1
CCCCA ; ~A

1 �

0
BBBBB@

A1
(1)

A1
(2)
...

A1
(N)

1
CCCCCA ; ~p �

0
BBBB@
p1
p2
...
pN

1
CCCCA ; (45)

we can rewrite equation (41) in the matrix form

�
1
$
+
$

Tq
$2$m�1c�2

�
~A =

�
1
$
+
$

T
$

R
�
~A =

�
1
$
+
$

U
�
~A = ~A

1
: (46)

Here 1
$
is the 3N � 3N unit matrix. Equation (42) gives us the following expression for ~A

1

in terms of
$

U and ~p,

~A
1
=

$

Tq
$$
m�1c�1~p =

$

Uq
$�1c~p: (47)

Using this formula (46) can be solved for ~A in terms of ~p as follows

~A =
�
1
$
+
$

U
��1 $

U
�
q
$�1c~p

�
: (48)

This gives us the desired formula for the A(i) in terms of the pi. One notes that

~A �
8<
:
$

U (q
$�1c~p) for k$Uk � 1

q
$�1c~p for k$Uk � 1

(49)

if we denote by k$Uk the norm of the matrix.
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If we assume that
$

U is small we can expand equation (48) and, if we de�ne ~A
�
by

~A
� � (�1)��1($U)�

�
q
$�1c~p

�
(50)

we get

~A =
1X
�=1

~A
�
: (51)

This gives us a formal solution of the problem of expressing the internal vector potential in
terms of the generalized momenta. Trubnikov and Kosachev [15] approached the problem of
�nding the Hamiltonian of the Darwin Lagrangian by deriving an expansion of vi in terms of
pi. In the present treatment, based on the Hamiltonian (37), that expansion is not needed.

VI. THE NON-RELATIVISTIC HAMILTONIAN IN TERMS OF GENERALIZED

MOMENTA

Let us now return to the non-relativistic Hamiltonian (37). Consider the interaction
term in it. By means of formula (51) it can be regarded as a sum of terms of the type

I� � �X
i

qi
2mic

pi �A�
(i) = �

1

2
(~A

�
)T (q

$$
m�1c�1~p): (52)

Here a superscript T indicates matrix transposition. Using formula (50) this gives

I� = �1

2
[(�1)��1($U)�(q

$�1c~p)]T (q
$$
m�1c�1~p) = �1

2
[�$

U(�1)��2($U)��1(q
$�1c~p)]T (q

$$
m�1c�1~p)

(53)

Now using (
$

B
$

C)T =
$

CT
$

BT we �nd

I� =
1

2
(~A

��1
)T

$

UT (q$$m�1c�1~p): (54)

Since
$

R and
$

T both are symmetric, we �nd that
$

UT = (
$

T
$

R)T =
$

R
$

T we get

I� =
1

2
(~A

��1
)T

$

R
$

T(q$$m�1c�1~p) =
1

2
(~A

��1
)T

$

R (
$

Tq
$$
m�1c�1~p): (55)

According to equation (47) we �nally get

I� =
1

2
(~A

��1
)T

$

R ~A
1
=
X
i

q2i
2mic2

A1
(i) �A��1

(i) : (56)

We have thus proved that, for � > 1, we have

�X
i

qi
2mic

pi �A�
(i) =

X
i

q2i
2mic2

A1
(i) �A��1

(i) : (57)
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Using this, the corresponding term in the Hamiltonian (37) gives us

�X
i

qi
2mic

pi �
 
1X
�=1

A�
(i)

!
= �1

2

X
i

"
qi
mic

pi �A1
(i) �

q2i
mic2

A1
(i) �A1

(i) �
q2i
mic2

A1
(i) �

 
1X
�=2

A�
(i)

!#
:

(58)

If we now de�ne

ÆA(i) � A(i) �A1
(i) =

1X
�=2

A�
(i); (59)

the non-relativistic Hamiltonian (37) can be written

Hnr =
X
i

"
p2i
2mi

� qi
2mic

pi �A1
(i) +

q2i
2mic2

A1
(i) �A1

(i) +
q2i

2mic2
ÆA(i) �A1

(i)

#
: (60)

In conclusion we will write this

Hnr = HD +H2 + ÆH = HD2 + ÆH (61)

where the two �rst terms in (60) constitute the `traditional' Darwin Hamiltonian

HD = T + VD =
X
i

 
p2i
2mi

� qi
2mic

pi �A1
(i)

!
=
X
i

p2i
2mi

�X
i<j

qiqj[pi � pj + (pi � eij)(pj � eij)]
2mimjc2rij

:

(62)

As the derivation above shows, the third term in (60), which we can split into two and three
body interactions as follows

H2 =
X
i

q2i
2mic2

A1
(i) �A1

(i) = H22 +H23 (63)

where,

H22 =
X
i<j

q2i q
2
j

4mim2
jc
4

p2j + 3(pj � eij)2
r2ij

; (64)

and

H23 =
X
i

q2i
2mic2

X
j<k

0 qjqk
2mjmkc2

(Tijpj) � (Tikpk); (65)

is due to second order terms in the expansion (51). The fourth term,

ÆH =
X
i

q2i
2mic2

ÆA(i) �A1
(i); (66)

is thus due to the remaining, third order and higher, terms in the expansion.
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We thus now have a non-relativistic Hamiltonian derived from the Darwin approximation
of the retarded potentials that describes the magnetic interaction of charged particles. It
has not been assumed that the magnetic e�ects are small. Its practical feasibility will
of course depend on whether one can neglect the unknown, higher order terms, ÆH, and
thus use the Hamiltonian HD2 of equation (1). One notes that the qualitative meaning of
the interaction term in the traditional Darwin Hamiltonian (62), the attraction of parallel
currents, is opposite that of the termH2. Its second (three-body) part, represents a repulsion
of parallel currents.

Alternative derivations of the traditional (simpli�ed) Darwin Hamiltonian (62) can be
found in [1,2,4,22]. In atomic physics the Darwin term is often called the Breit [6,7] term;
for a derivation from modern quantum electrodynamics, see Greiner [23]. In the past only
Trubnikov and Kosachev [15] have seriously considered improvements to (62), but the result
(1) appears to be new.

VII. A PECULIAR REPULSIVE R
�3
-FORCE

The terms VD and H23 in Hnr both are zero if there is no net current distribution. In
this case the main new e�ect predicted by Hnr comes from the two-body part of H2 as given
in equation (64). It can be rewritten as follows

H22 =
X
j

1

2mj

X
i(6=j)

q2i q
2
j

4mimjc4r
2
ij

[p2j + 3(pj � eij)2] (67)

If we put

�(rij) �
q2i q

2
j

mimjc4
1

4 r2ij
; (68)

we can write this, interchanging dummy indices and denoting the angle between pi and eij
by �ij, as

H22 =
X
i

p2i
2mi

X
j( 6=i)

�(rij)(1 + 3 cos2 �ij): (69)

If we now absorb this into the kinetic energy we can rewrite it

T 0 = T +H22 =
X
i

p2i
2mi

2
41 + X

j( 6=i)

�(rij)(1 + 3 cos2 �ij)

3
5 =X

i

p2i
2mi

[1 + Vi(ri)] ; (70)

where we have de�ned

Vi(ri) �
X
j(6=i)

�(rij)(1 + 3 cos2 �ij) =
X
j(6=i)

RiRj

4r2ij
(1 + 3 cos2 �ij): (71)

Here Ri � q2i =(mic
2) are classical particle radii; for electrons this radius is R0 = e2=(mc2) �

2:82 � 10�15m.

13



We thus see that when there are moving charged particles in a system there arises (in
this formalism) an r�3 repulsive force between the parts that is proportional to the kinetic
energy of the particles. A large number of questions then arises. Is this a correct physical
result? What observable consequences might this force have? Can they be experimentally
veri�ed or falsi�ed? Super�cially it seems as if this force should have its largest consequences
for stellar interiors, if any. For the moment we have no answers to these questions.

VIII. THE TWO-PARTICLE NON-RELATIVISTIC HAMILTONIAN

In the case of two particles it is possible to derive an exact non-relativistic Hamiltonian.
In this case it is possible, and meaningful, to start from formula (48) in the form

 
A(1)

A(2)

!
=

0
@ 1

q2
2

m2c2
T12

q2
1

m1c2
T21 1

1
A
�10
@ 0

q2
2

m2c2
T12

q2
1

m1c2
T21 0

1
A
 

c
q1
p1

c
q2
p2

!
; (72)

where T12 = T21 = (1 + e12e12)=(2r12), and do the explicit matrix inversion and multipli-
cation. After some calculation this gives

 
A(1)

A(2)

!
= [1� �(r)]�1

0
@ ��(r)

�
1+ 3

1�4�(r)
ee
�

q2
2

m2c2
1
2r

�
1+ 1+2�(r)

1�4�(r)
ee
�

q2
1

m1c2
1
2r

�
1+ 1+2�(r)

1�4�(r)ee
�
��(r)

�
1+ 3

1�4�(r)ee
�
1
A c

q1
p1

c
q2
p2

!
: (73)

where, r = r12, e = e12 and, where we de�ned � in equation (68). Using this, and equation
(37) we get the `exact' two-body, non-relativistic, magnetic Hamiltonian, in the form

H =
1

1 � �(r)

"
2X
i=1

1

2mi

 
p2i +

3�(r)

1 � 4�(r)
(pi � e)2

!
� q1q2
2m1m2c2r

 
p1 � p2 + 1 + 2�(r)

1 � 4�(r)
(p1 � e)(p2 � e)

!#
;

(74)

after some further, elementary, calculations. The corresponding relativistic Hamiltonian
cannot be calculated in closed form but some exact results on the relativistic two-body
problem with magnetic interactions have been obtained by Barut and Craig [24]. Other
studies of the relativistic two body problem can be found in Van Alstine and Crater [25,26],
Landau and Lifshitz [4], and Achieser and Berestestezki [27] who treat the positronium
problem.

Distance scales at which �(r) is of importance require very high energy. One can thus
justly argue that, in the non-relativistic limit that we are considering, we can just as well
put �(r) = 0 in (74). Dettwiller [28] used this approximation to study the classical Hydrogen
atom. If we do this and also assume that both particles are electrons we get the Hamiltonian

H =
2X
i=1

1

2m
p2i �

e2

2m2c2r
[p1 � p2 + (p1 � e)(p2 � e)] : (75)

If we make the canonical transformation

R =
1

2
(r1 + r2); r = (r1 � r2) (76)
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this Hamiltonian becomes

H =
P 2

2(2m)
+

p2

2(m=2)
� e2

8m2c2
P 2 + (P � e)2

r
+

e2

2m2c2
p2 + (p � e)2

r
: (77)

This Hamiltonian has the peculiar property that center of mass momentum act as an at-
tractive coupling parameter. If one adds the Coulomb repulsion, e2=r, one sees that it
will always dominate over this attraction, so in vacuum this only leads to the well known
stabilization of a relativistic beam of charged particles (see e.g. Wiedemann [29]). In a neu-
tral medium, with a screened Coulomb repulsion, there is nothing remarkable about such a
velocity dependent interaction since there is a preferred rest frame.

Consider the free Fermi electron gas, and assume that all states with jkj < kF, the
Fermi wave number, are �lled, but that there are two electrons on the Fermi surface with
jkj = kF. All the electrons inside the Fermi surface have zero net momentum and current
density, so only the two on the surface contribute. We now assume that the motion of these
is described by the Hamiltonian (77). Clearly the lowest energy is obtained when they have
maximum center of mass momentum and this is the case when they have (essentially) the
same momentum p = �hk = �hkFek. As an ansatz for the wave function we thus use

	(R; r) =
1

L3
exp(ik � r1) exp(ik � r2)�(r) = 1

L3
exp(i2kFek �R)�(r); (78)

where �(r) is a symmetric function since the electrons must have opposite spins.
If our ansatz is consistent the relative momentum p must be much smaller than the

common plane wave momentum P , so we neglect the last term in the Hamiltonian (77)
compared to the second to last. If we do this our ansatz leads to the Schr�odinger equation 

2EF � �h2

2(m=2)
r2 � EF

mc2
e2

r
[1 + cos2 �]

!
�(r) = E�(r); (79)

where EF � �h2k2F=(2m) is the Fermi energy, for the relative motion.
To roughly estimate the properties of the solution we replace 1 + cos2 # by its spherical

average: 1 + cos2 # = 4=3. If we further put �E � E � 2EF we get the Hydrogen like
equation  

� �h2

2(m=2)
r2 � 4EF

3mc2
e2

r

!
�(r) = �E �(r): (80)

Because of the r�1 character of the potential this equation has bound states independently
of the weakness of the interaction. The Bohr-radius and energy of the ground state of this
equation are

RDF =
3mc2

2EF RB � 8 � 104RB; (81)

and

�E = �8

9

[e2EF=(mc2)]2
2�h2

� 4 � 10�10EH; (82)

respectively, where the numerical values refer to a typical metal in which EF � 10 eV, and
where RB and EH are the usual Bohr-radius and ground state energy of the Hydrogen atom.
(Minor errors in the corresponding results in [16] have been corrected.)
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IX. MAGNETIC INTERACTIONS BETWEEN CONDUCTION ELECTRONS

We have seen that the magnetic Hamiltonians have as their �rst order term, the Darwin
term, an interaction that lowers the energy when currents are parallel. This means that in
any system where charged particles already have kinetic energy (as in a metal because of
the Pauli principle and in a plasma because of the temperature) the energy is lowered if the
motions are correlated in such a way that a collective current results.

Heisenberg, long ago, suggested that current 
ows in the superconducting ground state
[30]. The mechanism suggested by Heisenberg was, however, not convincing. The idea that
superconductivity might be due to magnetic interactions was �rst advanced long ago by
Frenkel [31]. Frenkel's mechanism was wrong, however, as shown by Bethe and Fr�ohlich
[17]. Later Welker [32] speculated in this direction and in 1939 [33] suggested that the
magnetic attraction of parallel currents might be responsible for superconductivity. Welker's
speci�c calculations were, however, also wrong and at that point the scienti�c community
seems to have given up the idea. None of the above authors seem to have been aware of
the Darwin Hamiltonian, (even if Bethe and Fr�ohlich came close to rediscovering it) and
without a Hamiltonian it is very hard to do good quantum mechanics. The present author
investigated the problem of the metallic ground state using the Darwin Hamiltonian and
and the free electron gas model. A rather elementary study (Ess�en [16]) then shows that the
maximumenergy lowering (per conduction electron) that can be obtained in fact agrees quite
well with the observed energy gap in low temperature superconductors. This investigation
is reviewed brie
y below.

The ground state of the metallic conduction electrons regarded as a Fermi, free electron
gas, is normally considered to be characterized by a single parameter, the Fermi energy EF.
If we use periodic (Born-von Karman) boundary conditions, the allowed states are

 i(r) =
1p
L3

exp(iki � r); (83)

where the wavenumber vectors ki must obey

ki =
2�

L
(nix; niy; niz) with nix; niy; niz = 0;�1;�2 : : : : (84)

For a given density

N=L3 =
1

3�2
k3F; (85)

i.e. a given number, N , of electrons, it is, however, very unlikely that the electrons exactly
�ll the `shell' (Fermi surface) with k = kF. The number of possible states on the Fermi
surface is

Ns =
2

�
k2FL

2 =
6�

kFL
N (86)

and an important parameter that characterizes the ground state of the gas is then the
fraction
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 = Nc=Ns (87)

of these that are �lled. Here Nc is the number of electrons on the Fermi surface (the `zero
temperature conduction' electrons). Thus apart from the Fermi energy (or wave number)
the ground state is characterized by the parameter 
. For 
 = 0 or 
 = 1 the ground state
is non-degenerate but for other values of 
 it is degenerate, 
 = 1

2 corresponding to maximal
degeneracy.

When the Darwin magnetic interaction energy is included in the Hamiltonian all the
various degenerate states, corresponding to di�erent distributions of the Nc k-vectors on the
Fermi surface, are no longer degenerate. Instead a maximally anisotropic distribution will
minimize the energy since such a distribution will correspond to maximal current density. It
is easy to make an estimate of the optimum energy that the Darwin term in the Hamiltonian
might produce and Ess�en [16] has shown that, for 
-values near 1=2 the energy lowering per
conduction electron is at best

�D � �ED

N
� 1:4 R0kFEF: (88)

Here R0 � e2=(mc2) is the classical electron radius, and ED is the expectation value of the
Darwin term VD in the Hamiltonian for a Hartree wave function consisting of a product of
one-electron wave functions (83).

When numerical values are inserted it is found that formula (88) gives values that agree
closely with the energy gaps associated with superconductivity for low temperature super-
conductors. Arguments that the magnetic interaction should be too weak or otherwise
unsuitable to explain superconductivity are thus wrong. On the other hand, formula (88)
contains no free parameters and would thus be falsi�ed by the recently discovered high tem-
perature superconductivity. It can be shown, however, that the interaction of the conduction
electrons with the lattice is qualitatively much like a magnetic interaction [16]. These two
e�ects are therefore likely to both contribute to the phenomenon.

X. STATISTICAL MECHANICS AND MAGNETISM

Early studies of the interaction of magnetism with matter, as reviewed by Van Vleck [34],
came to the conclusion that, according to classical statistical mechanics, matter does not
interact with the magnetic �eld (it has zero susceptibility), and that therefore all magnetic
e�ects must be explained by quantum mechanics. This �nding is a bit worrying since it is
found empirically that cosmic plasmas nearly always are connected with intense magnetic
activity [35], while theories of plasma physics usually do not take account of quantum e�ects.
Plasma phenomena, on the other hand, are rarely equilibrium phenomena so the discrepancy
is not glaring. More relevantly, however, the zero classical susceptibility proofs did not take
account of the Darwin magnetic interaction. Since this interaction lowers the energy for
parallel currents it seems as a promising candidate for an explanation of cosmic magnetic
�elds via classical statistical mechanics. We'll look a bit more closely into this below.

Using classical statistical mechanics one can also show that the current density must
be zero, see London [36]. This again neglects magnetic interactions and is contrary to
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Heisenberg's suggestion of ground state currents [30] and the �ndings in [16] reviewed in
the previous section. London also claims that Bethe and Fr�ohlich [17] showed that this
still holds if magnetic interactions are included, but this is clearly not correct. Bethe and
Fr�ohlich only studied the e�ect of the magnetic (Darwin) interaction on the e�ective mass
of the electron, and this e�ect is, of course, completely negligible. In conclusion thus,
when magnetic interactions are included, currents are actually not forbidden, but, on the
contrary, in good agreement with classical statistical mechanics, as long as there is kinetic
energy present in the system.

Krizan and Havas [37] developed statistical mechanics including the (�rst order) Dar-
win term in the Hamiltonian. They applied it to plasmas but had to exclude long range
interactions for technical reasons. They try to argue that these should be small but that
is not convincing. On the contrary, the (�rst order) Darwin term will diverge if there is
a bulk current density over an extended volume. This divergence was called `magnetische
Katastrophe' by Welker [32]. In metals the divergence is prevented by the current density
being essentially two-dimensional [16], but in plasmas there is no such restriction. Trubnikov
and Kosachev [15] managed to derive results for plasmas that do not rely on the (simpli-
�ed) Darwin Hamiltonian (61) but that include the full Hamiltonian without approximation.
There is, however, reason to be suspicious about all thermodynamics dealing with magnetic
e�ects caused by the Darwin Hamiltonian since the interaction is long range. It is one of the
fundamental assumptions of statistical physics that subsystems are approximately closed,
or `quasi-closed', as discussed by Landau and Lifshitz [38].

The electrostatic interaction is also long range, but in this case the Debye screening
makes it e�ectively short range. For magnetism there is no analog to this screening. This
may be one reason why plasmas rarely appear to be near thermal equilibrium. I have not
been able to �nd any analysis of these problems in the literature.

Kaufman and Soda [22] also made a study of statistical mechanics that included the
Darwin term. They, however, did not apply it to plasmas. Many authors have applied
the Darwin approximation to plasmas via particle code models [13,14,39], i.e. by directly
integrating the equations of motion. It is, however, very diÆcult to draw general conclusions
from speci�c numerical simulations.

An alternative velocity dependent interaction between charged particles, suggested by
Weber, has been ruled out [40] as leading to unphysical results when applied to plasma
physics. The Darwin interaction on the other hand agrees well with known plasma phenom-
ena as well as with other aspects of charged particle dynamics [39,41].

XI. MAGNETIC SELF ENERGY OF ROTATING SPHERICAL CURRENT

DISTRIBUTION

When the Darwin energy is a perturbation, as it is in metals, it is enough to consider the
Darwin Hamiltonian (62). If, however, we envisage a situation where the magnetic energy
according to the Darwin term seems to diverge, we must also include, at least, the next term
in the expansion of A(i) and use the `magnetic' Hamiltonian HD2, as de�ned by equations
(1) and (2). In this section we calculate the contribution to the three terms of HD2 from the
current arising from a rotating spherical distribution of charge. We assume charge neutrality,
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i.e. that there is a compensating immobile distribution of the opposite charge.
Assume that the number density

%n =

(
N

4�R3=3 if r � R

0 otherwise
(89)

of charged particles with charge e and mass m, rotates with angular velocity

! = !ez: (90)

This means that we assume the momenta to be given by

pi = m! � ri (91)

and that there is a current distribution

j(r) = e%n! � r (92)

that is proportional to the momentum distribution. From this we can calculate the vector
potential

A(r) =
1

c

Z
j(r0)

jr � r0jdV
0 =

Ne

2R

 
1� 3

5

r2

R2

!
1

c
(! � r) =

2�

5c

�
5

3
R2 � r2

�
j(r): (93)

This vector potential is chosen to match, at r = R, to one that goes to zero as r!1. The
calculation is elementary but some relevant formulae can be found in Ess�en [42]. We see
that r �A = 0 so that we are automatically in the Coulomb gauge.

The total kinetic energy can be calculated to be

T =
1

2m

NX
i=1

p2i =
m

2

Z
(! � r)2%ndV =

1

5
mN(R!)2 (94)

and the Darwin magnetic self energy of this current distribution is approximately

VD = � 1

2mc

X
i

epi �A(i) = � 1

2c

Z
j(r) �A(r)dV = � 2

35

(Ne)2

R

�
!R

c

�2
: (95)

Here we assume that A � A1. Finally we get

H2 =
e2

2mc2
X
i

A(i) �A(i) =
e2

2mc2

Z
jA(r)j2%ndV =

3

175

e4N3!2

mc4
: (96)

for the diamagnetic term.
For the total energy, kinetic plus magnetic, one thus �nds that E = HD2 = T +VD +H2

is

E =
1

5
mN(R!)2

"
1 � 2

7

�
N
R0

R

�
+

3

35

�
N
R0

R

�2#
: (97)
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Here we have introduced the notation

R0 =
e2

mc2
: (98)

for the classical electron radius. If we optimize this energy with respect to the dimensionless
parameter x = NR0=R we �nd that there is a minimum at xmin = 5=3 and the value of the
energy at this minimum is

Emin =
16

21

�
1

5
mN(R!)2

�
= 0:762T: (99)

Evidently the kinetic energy of the moving particles is reduced by roughly 24%, by the
magnetic self energy, if the motion causes 
ow of an electric current.

The quantity x = NR0=R corresponds to a given number of particles per unit length. If
one assumes instead that there is a constant number density %n of particles that contributes
to the e�ective current density it is more interesting to express x in terms of %n. This gives
x = %n4�R2R0=3. The magnetic energy minimization at x = 5=3 is the seen to correspond
to roughly to the length scale

Rm � 1p
R0%n

: (100)

This result that there is a characteristic length scale associated with the magnetic activity
seems to be a new prediction of the Hamiltonian (1). One can, of course, not be completely
sure that this is not an artifact of the second order approximation that vanishes in a more
exact treatment.

XII. CONCLUSIONS

In mechanics the Hamiltonian formalism often seems like a purely formal, and trivial,
reformulation of the Lagrangian one. In quantum mechanics and statistical mechanics, on
the other hand, the Hamiltonian is crucial for obtaining energy eigenstates and statistical
equilibrium distributions. The (relativistic or non-relativistic) Darwin Lagrangian is one of
the few examples for which the reformulation is non-trivial and for which no closed form
Hamiltonian is known. It seems likely that no such closed form Hamiltonian can be found,
at least not in the relativistic case. This paper has improved the situation for the non-
relativistic case. These formal diÆculties probably re
ect corresponding subtleties in the
physical problem.

Several new facts regarding the Hamiltonian corresponding to the Darwin Lagrangian
have been presented. The general result for weak velocity dependent interactions as given
in equations (16) to (25) appears to be new. The same goes for the relativistic result (36)
and the quasi relativistic Hamiltonian (38).

New is also the matrix treatment of the problem of �nding the internal vector potential
as a function of the generalized momenta, the explicit formula (48), and the expansion (50).
The most useful outcome of the matrix formalism, namely the result that the second order
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term beyond the traditional Darwin Hamiltonian, can be obtained in closed form, is one of
the most elegant new results of this paper.

One notes that the qualitative meaning of the Darwin Hamiltonian, the energy lowering
due to the attraction of parallel currents, is opposite to that of the new second order term.
The unphysical divergence of this energy lowering, as predicted by the traditional Darwin
Hamiltonian for constant current densities, is thus prevented by the new term.

The parallel current attraction energy lowering is an e�ect that is not manifest in the
energy when it is expressed in terms of velocities, see equation (28). This means that
this is a rather subtle e�ect related to the behavior of phase space volume elements. This
may be one of the reasons that it is not well understood or discussed, in spite of the fact
that the attraction of parallel currents is one of the more fundamental elementary facts
of electromagnetism and represents one way of measuring current accurately. Extensive
arguments that this attraction manifests itself physically as the attractive force behind
low temperature superconductivity have been published before by the present author [16],
and are thus only brie
y touched upon in this paper. That this attraction also might be
responsible for the abundance and persistence of cosmic magnetic �elds, seems to be a new
point of view. It is hoped that it will contribute to a deeper understanding of these, in
general, quite diÆcult problems.
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