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Abstract 
 
In the absence of pharmaceutical interventions, social distancing is being used worldwide to 
curb the spread of COVID-19. The impact of these measures has been inconsistent, with some 
regions rapidly nearing disease elimination and others seeing delayed peaks or nearly flat 
epidemic curves. Here we build a stochastic epidemic model to examine the effects of COVID-
19 clinical progression and transmission network structure on the outcomes of social distancing 
interventions. We find that the strength of within-household transmission is a critical determinant 
of success, governing the timing and size of the epidemic peak, the rate of decline, individual 
risks of infection, and the success of partial relaxation measures. The structure of residual 
external connections, driven by workforce participation and essential businesses, interacts to 
determine outcomes. These findings can improve future predictions of the timescale and 
efficacy of interventions needed to control similar outbreaks, and highlight the need for better 
quantification and control of household transmission. 
 
MAIN TEXT:  
 
Introduction 
 
In less than five months the novel coronavirus SARS-CoV-2, the causative agent of COVID-19, 
has spread from an initial foci in Wuhan, China to nearly every corner of the globe. At the time 
of writing, over 300,000 deaths had been reported, which will likely move this emerging infection 
into the top five viral causes of death this year. Several clinical and epidemiological features of 
COVID-19 have contributed to its disastrous effects worldwide. The overlap in symptoms with 
many endemic and milder respiratory infections - such as influenza, parainfluenza, respiratory 
syncytial virus, and seasonal coronaviruses - make syndromic identification of cases difficult. 
The relatively high percentage of infected individuals who require hospitalization or critical care 
compared to seasonal respiratory infections has put an unprecedented burden on the 
healthcare systems of hard-hit regions. The important role of asymptomatic individuals in 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.04.20121673doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.06.04.20121673
http://creativecommons.org/licenses/by/4.0/


 

transmitting infection makes symptom-based isolation ineffective. Perceived ambiguity about the 
case fatality risk from COVID-19 and misguided comparisons to seasonal influenza contributed 
to sluggish responses in many regions, in contrast to previous outbreaks of SARS and MERS.   
 
In the absence of either a vaccine or antiviral therapy, and given the continuing limitations in 
testing capacity in most regions, the main tools implemented worldwide to control the spread of 
COVID-19 have been “non-pharmaceutical interventions” including “social distancing”, isolation 
of cases, and quarantine of contacts. All of these measures are crude attempts to prevent the 
person-to-person contact that drives the transmission of respiratory infections, and have been 
used since antiquity in attempts to control outbreaks of plague, smallpox, influenza, and other 
infectious diseases. Social distancing is a blanket term covering any measure that attempts to 
reduce contacts between individuals, without regards to their infection status. Within two weeks 
of identifying the original outbreak in Wuhan, a cordon sanitaire had been implemented around 
the entire Hubei province, prohibiting travel in or out of the region and requiring individuals to 
remain in their houses except to buy essential supplies. Elsewhere schools and universities 
have been closed, international travel has been limited, restaurants and retailers shuttered, 
mask-wearing encouraged or required, and stay-at-home orders put in place.  
 
Mathematical models of COVID-19 transmission provided early support for the idea that social 
distancing measures could “flatten the curve” and reduce the potential for COVID-19 cases to 
overwhelm healthcare resources. An influential report from the Imperial College COVID-19 
Modeling Team showed that suppression of the epidemic to levels low enough to avoid overflow 
of healthcare capacity would require an “intensive intervention package” that combined school 
closures, case isolation, and social distancing of the entire population, applied for the majority of 
time over 2 years [1].  Kissler et al also came to the conclusion that large sustained reductions 
in the basic reproductive ratio R0 (the average number of secondary infections generated by an 
infected individual) would be needed, even after accounting for the potential role of seasonality 
in transmission [2]. Many more forecasting models predicted dramatic decreases in the burden 
of COVID-19 if interventions were enacted (e.g. [3,4]). Real-time and retrospective analyses of 
the growth rate of cases and deaths have suggested that in some settings the epidemic 
eventually slowed after the implementation of strong social distancing measures (e.g. in Wuhan 
and other Chinese cities [5,6], in Hong Kong [7], across European countries [8], French regions 
[9], or some US states [10,11]).  
 
The observed dynamics of COVID-19 outbreaks following social distancing policies have been 
inconsistent, unpredictable, and the source of much confusion and debate in the general public  
and among epidemiologists. Declines in cases and deaths have not occurred uniformly across 
regions and have often only occured after a long delay. The economic and social costs of these 
measures are immense: unemployment has surged, stock markets have plummeted, delivery of 
healthcare for non-COVID-19 conditions has been interrupted. Social isolation also brings on or 
exacerbates mental health conditions. Weeks after implementing strong interventions, many 
regions have continued to see increases in daily diagnoses and deaths. Does this mean the 
interventions are not working? Since the political will to sustain strict social distancing measures 
is waning in many places, it is important to understand the expected timescale to judge success 
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or failure. If stronger interventions - such as “shelter-in-place” orders or institutional isolation of 
mild cases - are needed to slow spread, when will we know this? What epidemiological and 
demographic features impact the timescale for epidemic waning, and how can we better predict 
the required duration of these measures for future outbreaks? 
 
Social distancing measures reduce potentially-transmissive contacts occurring in schools, 
workplaces, social settings, or casual encounters, but they generally do so by confining 
individuals to their households without additional precautions. Thus, we would expect that the 
impact of social distancing measures might depend on the relative contribution of within-
household transmission to disease spread, the distribution of household sizes, the number of 
households containing at least one infected individual at the time an isolation measure is 
enacted, and the amount of residual contact between households for the duration of the 
intervention. What do we know about these factors for COVID-19 or respiratory infections more 
generally, and how do they interact to determine epidemic dynamics after an intervention? 
 
In this paper we examine the impact of COVID-19 clinical features and transmission network 
structure on the timing of the epidemic peak and subsequent dynamics under social distancing 
interventions. Using data from large-scale cohort studies, we parameterize a model tracking the 
progression of COVID-19 infection through different clinical stages. We combine this with data-
driven transmission networks that explicitly consider household vs external contacts and how 
they are differentially altered by social distancing measures. We consider various scenarios for 
the efficacy of interventions in reducing contacts, heterogeneities in their adoption in different 
demographic groups, the relative role of transmission in different settings, and the timing of 
partial or complete relaxation of isolation measures.  We evaluate both population-level 
outcomes as well as determinants of individual risk of infection. Our results show that even 
following the implementation of strong social distancing measures, the epidemic peak can occur 
weeks to months later, and the decline in cases can be extremely slow. The efficacy of within-
household transmission plays a critical role in the timescale and overall impact of these 
measures. These findings provide an impetus for continued adherence to social distancing 
measures in the absence of immediate results, can inform planning for hospital capacity, and 
suggest that retrospective efforts to assess the efficacy of different intervention policies should 
account for these expected delays. 
 
Results 
 
Observed COVID-19 dynamics following social distancing interventions 
 
To characterize the dynamics of COVID-19 following social distancing measures, we chose five 
regions from around the world with large outbreaks: the city of Wuhan, China, the Lombardy 
region of Italy, the Community of Madrid in Spain, New York City in the state of New York, USA, 
and the county of Los Angeles, California, USA (Figure 1). These regions each implemented 
strong “lockdown” measures (aka “stay-at-home” or “shelter-in-place” orders) within 3 weeks of 
their first COVID-19 case and provided data not just on cases and deaths but also on cases 
requiring hospitalization and ICU-level care (see Methods). In each setting, there was a long 
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delay between the implementation of social distancing and the peak incidence of cases (1.5-3 
weeks) and deaths (2-3 weeks), or peak occupancy in hospitals and ICUs (~1 month). The 
timescale of the eventual decline in cases post-peak was much slower than the initial increase 
in cases in all regions, with a half-life between 10 and 24 days in all regions except Los 
Angeles, where the outbreak appears to have approximately plateaued but not yet begun 
decreasing. The goal of this paper was to understand the factors driving these post-intervention 
dynamics.  
 
 

 
Figure 1: COVID-19 dynamics before and after lockdown interventions in five example regions. A) The 
city of Wuhan, China (8.5K km2, 11.1M ppl), B) The Lombardy region of Italy (23.8K km2, 10.1M ppl) C) 
The autonomous Community of Madrid in Spain (8.0K km2, 6.6M ppl) D) New York City in the state of 
New York, USA (1.2K km2, 8.2M ppl).  E) The county of Los Angeles, California, USA (4.7K km2, 9.8M 
ppl). “New cases” and “New deaths” are daily numbers of new reports, averaged over a 7 day window 
centered on the current day. For Lombardy, New York, and Los Angeles, “Hospitalized” and “ICU” are the 
total number of patients currently in regular hospital care or critical care, respectively. In Wuhan, the same 
time series are the number of patients currently categorized as having “severe” or “critical” infection (using 
the same definitions as in our model). In Madrid, due to data availability, these series are instead the daily 
number of new admissions (with 7-day smoothing). 
 
Modeling the spread and clinical progression of COVID-19 
 
We modified the classic SEIR compartmental epidemiological model to describe the dynamics 
of COVID-19 infection (Figure 2A). After infection, individuals pass through an ~ 5 day 
incubation period before developing asymptomatic or mild infection, which could include fever 
and cough or other symptoms. This stage lasts ~ 1 week and individuals are infectious for this 
duration. A portion of individuals progress to “severe infection”, which is typically characterized 
by pneumonia requiring hospitalization, and we assume averages 6 days. Some individuals 
progress further to “critical infection”, which requires ICU-level care that often includes 
mechanical ventilation, and some of these individuals eventually die (after ~ 8 days of critical 
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care), leading to an ~2% case fatality risk. At each stage, individuals who don’t progress or die, 
recover and are assumed to be immune for the duration of the outbreak. The duration of each 
stage of infection is assumed to be gamma-distributed with mean and variance taken from the 
literature. Infectious individuals can transmit to any susceptible individuals with whom they are 
in contact, with a constant rate per time for the duration of their infection. With our baseline 
parameters, the doubling time of infection is ~ 4 days, the basic reproductive ratio R0 is ~3, and 
the serial interval is ~7 days, in agreement with epidemiological studies of COVID-19. A detailed 
description of the clinical definitions of different infection stages, the model behavior, and the 
model parameters is given in the Methods.  
 
We then simulate infection spreading stochastically through a fixed, weighted contact network. 
As a baseline scenario, we consider a simple approximately well-mixed population where 
anyone can potentially transmit the virus to anyone else in the population. To more accurately 
capture human contact patterns, and how they are altered by social distancing measures, we 
constructed a two-layer network describing connections within households and external 
connections (Figure 3A). Each individual was assigned to a household and connected to 
everyone in their house. Household size distributions were taken from the 2010 United States 
census (average household size nHH~2.5, full distribution shown in Figure 3B). External 
connections were constructed by randomly connecting individuals to people in other 
households. The distribution of the number of external connections was taken from detailed 
contact surveys that recorded daily interactions amenable to transmission of respiratory 
infections (average nEX~7.5, standard deviation 2.5) [12,13]. While these sources inform the 
number of contacts, the probability of infection depends both on the number of unique contacts 
and on the time spent together and the intensity of the contact, which can be represented by 
weights in the network. We hypothesized that household and external contacts could have 
different effective weights. For example, individuals may spend 8-10 hours a day with coworkers 
or classmates, but only a few waking hours with household members, and so external contact 
could have higher weights. Alternatively, individuals may have more intense physical contact 
with household members, such as children or spouses with whom co-sleeping can occur. Since 
these weights are unknown, we considered a range of scenarios for the relative weights of 
household (wHH) and external (wEX) contacts, keeping the total transmission intensity (basic 
reproductive ratio R0) constant. We also hypothesized that when individuals are isolated in their 
homes as a result of social distancing measures (e.g. school closures or work-from-home 
mandates), they may be spending significantly more time with household members and thus 
have a higher transmission rate. We modeled this by allowing the weight of household contacts 
to increase during an intervention.  
 
We model the implementation of social distancing measures by reducing the weight of all 
external contacts (or all contacts in the well-mixed model) by a fixed % that we term the 
“intervention efficacy”. Alternatively, we could randomly remove a fixed % of contacts, but the 
results are very similar. Our model is similar to other models that have been used to describe 
the spread of COVID-19. A unique feature of our model is that it simultaneously captures the 
clinical progression of COVID-19 (as opposed to simpler SEIR models), a reasonable 
approximation of contact network structure (as opposed to well-mixed models), and realistic 
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distributions of the durations of states (as opposed to continuous-transition models which 
assume exponentially-distributed durations, and lead to unrealistically long tails in infection after 
strong interventions). We can simulate infections for the duration of the epidemic in less than 1 
minute, in populations of a million, chosen to represent a typical metropolitan area.  
 
Prolonged clinical progression of COVID-19 leads to delay until decline in cases and 
deaths following an intervention  
 
We first considered the role of the clinical features of COVID-19 alone, in the delay from 
implementation to peak infections and deaths, by simulating our model in an unstructured 
population. The intervention was implemented when cumulative reported cases were ~200 per 
million and deaths ~5 per million (total infected ~1%), mirroring the timing of stay-at-home 
orders across major US metropolitan areas (see Methods). While we expect the number of new 
infections to begin decreasing immediately, newly infected individuals in the “exposed class (E)” 
(incubation period) cannot generally be tracked, since they are asymptomatic and not yet 
shedding enough virus to test positive. Instead, later stages of infection are monitored.  
 
We found that under a perfect intervention, we expect ~2 days delay until the peak prevalence 
of mild infections, ~9 days for severe infections, and ~15 days for critical infections, suggesting 
that the requirements for healthcare capacity may peak quite a bit after implementation (Figure 
2). In the more realistic scenario where the intervention is imperfect (70% effective), these 
timelines are significantly extended, for example to ~7, 17, and 30 days for mild, severe, and 
critical infections respectively. In most regions, individuals are reported at the time of diagnosis, 
and not tracked until recovery, and so case counts can only be used to track incidence rates, 
not prevalence levels. We consider a region where infections are only counted upon 
hospitalization (progression to severe class), and then find that peak incidence of cases occurs 
7 and 11 days after an intervention that is 100% or 70% effective. Daily deaths peak much later 
: after 18 days (100% effective) to 35 days (70% effective). Under our parameter values, a 50% 
intervention “flattens the curve” but does not prevent spread, and incidence cases and deaths 
don’t peak until 13 and 15 weeks after the intervention, respectively. The total percent of the 
population infected over the course of the whole epidemic was reduced from ~92% to ~0.6% 
with a 100% effective intervention, but only to 58%, 3%, or 0.65% with a 50, 70% or 90% 
effective intervention.  
 
The exact timings that we report here depend on the assumptions of our model, in particular, 
the average duration of each stage of infection (see Methods for details) as well as on the 
epidemic growth rate pre-intervention. However, the qualitative finding that peaks in case 
counts, hospitalizations, and deaths can be significantly delayed beyond when an intervention is 
implemented is a general finding for models tracking the natural history of COVID-19. Note that 
in our model, we assume that the intervention is adopted the same day it is instituted, whereas 
in reality, there may be a further delay until individuals are able to comply with the intervention.  
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Figure 2:  Dynamics pre and post social distancing intervention in well-mixed populations.  A)  
Model of COVID-19 clinical progression and transmission. The model is described in the text and detailed 
in the Methods.  Social distancing interventions (red X) reduce the rate of transmission and the 
generation of new infections. B-E) Simulated time course of each clinical stage of infection under different 
intervention efficacies. The intervention was implemented on day 40. Solid line is mean and shaded areas 
are 5th and 95th percentile. Black dotted line shows the time the intervention began. F) Time to peak of 
different infection stages, measured as days post-intervention. The first three quantities are peak 
prevalence levels (I1, I2, I3), while the latter two are peak daily incidence values. We assume that cases 
are diagnosed only at the time of hospitalization. Daily incidence values are moving averages using a 7 
day window centered on the date of interest. Bars represent 5th and 95th percentile. 
 
The relative contribution of household and external spread influences outcome of 
interventions 
 
We hypothesized that the continual spread of COVID-19 within households after the 
implementation of social distancing measures could further delay peak cases and deaths, and 
increase the number of people infected despite the intervention. Using our network-structured 
model (see Methods) for household and external contacts, we simulated the implementation of 
interventions of increasing efficacy under different assumptions about the relative weight of the 
household vs external contacts. In addition, we examined the impact that the increased time 
spent with household members (and hence an increased transmission potential) after stay-at-
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home policies begin could have on the outcome of an intervention and the timescale for disease 
elimination (Figure 3).  
 
With our baseline assumption that household and external contacts had equal weight, we 
observed that cases declined rapidly under very strong interventions (Figures 3E and H), while 
imperfect interventions (e.g. ~80%) often resulted in very gradual decreases in cases over many 
months (Figure 3F). In both scenarios the eventual fraction of the population infected was 
dramatically reduced compared to the no intervention case, but these long timescales likely 
mean that costly social distancing policies cannot be maintained long enough for suppression of 
the epidemic to occur.  This slow decline could be further compromised if the risk of 
transmission within a household increases under stay-at-home policies (Figure 3I). In this case 
the epidemic could continue to increase for months post-intervention before eventually 
declining, albeit still to a much lower final size than in the absence of interventions.  
 
When the outcome of an intervention was measured by the total fraction of the population 
infected over the course of the outbreak, we found that there was a surprisingly complex 
relationship between the relative contribution of household and external contacts to 
transmission, and the intervention success (Figures 3G and J). Keeping the total R0 constant, 
social distancing interventions are most effective when either external contacts have very high 
weights or when they have very low weights. In the former case (high external weight + low 
household weight), most of the pre-intervention transmission comes from outside the 
household, and the intervention is very effective at blocking this transmission (Figure 3K). At 
the time the intervention is implemented, many households are “seeded” with infections that 
originated outside the house (Figure 3L), but after the intervention, household transmission 
alone is not effective enough to lead to a new generation of infections in most houses, without 
seeding from the outside (i.e intervention efficacy <100%). When external contacts have low 
weight, the intervention is highly effective but for a different reason. Most transmission is inside 
the household and can continue post-intervention (Figure 3K), but very few households are 
seeded with infections (Figure 3L). The weak inter-household contacts are further weakened by 
the intervention and spillover between households is unlikely, meaning that the infection quickly 
burns through susceptibles within a household then dies out.  
 
In the intermediate regime, where household and external contacts have approximately equal 
weight, social distancing interventions are less effective, and are very sensitive to imperfect 
efficacy. For example, when external contacts have ~1/3 the weight of household ones, each 
type of contact contributes equally to the overall pre-intervention R0 (since there are ~3x the 
number of external contacts as household ones). With a 100% effective intervention, the final 
epidemic size is ~0.7%, but rises to ~7% with a 80% effective intervention (Figure 3G). The 
combination of enough household spread (R0

HH >1) to allow efficient transmission post-
intervention within “seeded” households and enough external spread (R0

EX >1) to seed 
households before the intervention is implemented to allow post-intervention spillover of 
infections to other households is the most difficult case for control. These effects are 
exacerbated if we assume household transmission rates (contact weights) can increase post-
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intervention (Figure 3J). For an 80% effective intervention, the final epidemic size can be 5-10 - 
fold higher than expected due to increased chance of within-household transmission.  
 
 
 

 
 
Figure 3. Dynamics pre and post social distancing interventions in network-structured 
populations with household and external transmission. A) Multi-layer network of transmission. 
Individuals have contacts within their households and with others outside the household. Household and 
external contacts may have different weights (e.g. different likelihood of transmission), due to for example 
different levels of physical contact or time spent together per day. Social distancing interventions (red X) 
remove or decrease the weight of external contacts. B) Distribution of household sizes. C) Distribution of 
the # of contacts (degree) within the household. D) Distribution of the # of contacts outside the household. 
E)-F) Simulated time course of different clinical stages of infection under an intervention with efficacy of 
100% (E) or 80% (F) at reducing external contacts, when household and external contacts have equal 
weight. Black dotted line shows the time the intervention began. G) The role of the relative importance of 
household vs external contacts in determining the outcome of the intervention, measured by the size of 
the epidemic. Epidemic final size is defined as the percent of the population who have recovered by day 
300. H-J) Same as above but under the scenario where the weight of household contacts doubles post-
intervention (wHH → 2wHH, due to increased time spent in house). K) The contribution of household and 
external spread to the total R0 value as a function of the relative weight of external contacts. L) The 
percent of households which are “seeded” with infection at the time the intervention was implemented (i.e. 
have at least one infected individual). In all scenarios the overall infection prevalence at the time 
intervention was started was identical.  
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Residual household transmission can further delay time to see the impact of an 
intervention 
 
We found that the expected time to peak infections and deaths after a social distancing 
intervention was implemented could be increased dramatically when we accounted for 
household structure, and was sensitive to the relative importance of household and external 
contacts before and after the intervention (Figure 4).  Under a 100% effective intervention 
(Figure 4A), the delays to peaks were driven mainly by the clinical progression alone, similar to 
the case of the well-mixed population, but were slightly extended due to residual spread 
restricted to a single household. In simulations it took around 2 weeks until peak hospitalizations 
and 3 weeks to peak critical care cases or daily deaths. However, under an imperfect but still 
strong intervention (e.g. 80% effective), the times to peak were much longer and sensitive to the 
relative weights of the external and household contacts (Figure 4B). Delay to peak cases was 
longest in the intermediate regime where external and household contribution to transmission 
was approximately equal. For example, when external and household weights were equal, it 
took an average of ~ 5.5 weeks to reach peak cases with mild symptoms, ~ 7 weeks until peak 
cases hospitalized with severe infection, and ~ 8.5 weeks to the peak of cases in critical care. 
The daily incidence of new deaths didn’t peak for ~ 10 weeks.  
 
The delays in time to peak were less extreme if external contacts had very high or very low 
weights relative to the weight of household contacts (Figure 4B). In the case of very high 
external weight, most individuals were infected from contacts outside their household before the 
intervention (Figure 3L). Household spread is relatively inefficient, and has only a minor 
contribution to the baseline R0 value (Figure 3K). In most households, there is no further spread 
after the intervention is implemented. As a result, the epidemic peaked sooner: peak daily 
deaths occured an average of ~ 3 weeks post 100% effective intervention and ~ 5 weeks post 
80% effective intervention. On the other hand, when external weight is a lot lower as compared 
to the household, only a small fraction of households are seeded with infection by the time 
intervention is started (Figure 3L). Intervention is very effective at suppressing external 
transmission and so, even though household transmission continues during intervention it can 
not spill over between households. This causes the epidemic to peak sooner as susceptibles in 
households get infected quickly and then the infection dies out. On average, peak daily deaths 
occurred ~ 3 weeks (100% effective intervention) and ~ 4 weeks (80% effective intervention) 
post intervention. 
 
These results were exacerbated if we assumed that the importance of household contacts 
increased post-intervention (Figure 4C), due to increased time spent in close quarters. In that 
case, peaks increased to up to ~ 6 months for cases in critical care and daily deaths under an 
80% intervention. With higher household weights, the efficacy of spread within a household was 
stronger, making new generations of infection post-intervention very likely to occur in 
households with at least one case. Then, these household infections are more likely to spill over 
into other households, even when most external contacts are eliminated by the intervention. 
Together, these effects allow for multiple generations of transmission to persist even after a 
strong intervention.  
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Figure 4: Time to epidemic peak after social distancing interventions depends on the relative roles 
of household and external transmission. A-C) Time to peak of different infection stages, measured as 
days post-intervention. A) Social distancing intervention with 100% efficacy at reducing external contacts 
(or all contacts in the case of a well-mixed network). B) Social distancing intervention with 80% efficacy. 
C) Social distancing intervention with 80% efficacy, and assuming that household weights double post-
intervention (wHH → 2wHH, due to increased time spent in the home).  The first three quantities are peak 
prevalence levels (I1, I2, I3), while the latter two are daily incidence values. We assume that cases are 
diagnosed only at the time of hospitalization. Daily incidence values are moving averages using a 7 day 
window centered on the date of interest. Bars represent 5th and 95th percentile. For each clinical stage 
included (each different color), the lighter-colored data point is the comparison to the well-mixed 
population, then the other points are for decreasing contributions of external connections and increasing 
role of household transmission.  
 
Clustered adoption of social distancing measures can further compromise efficacy 
 
Our results so far have assumed that external contacts in the transmission network are random 
connections between pairs of individuals in the population, and that a social distancing 
intervention results in a uniform random reduction or deletion of these connections. In reality, 
human contact networks tend to be highly structured, with groups of individuals with high levels 
of interconnectedness and large variation between individuals in total contacts (e.g. [14,15]). 
Moreover, we don’t necessarily expect adherence to social distancing measures to be random. 
For certain occupations or in certain demographic groups, individuals are less likely to be able 
to work-from-home or otherwise reduce contacts outside the home. This can lead to clusters of 
individuals among whom contacts remain high despite interventions. We hypothesized that this 
clustered adoption of social distancing measures could lead to more residual transmission, 
longer times to peak cases and deaths, and longer times to eradicate infection from a given 
region.  
 
To examine these effects, we constructed more realistically-structured, age-segregated external 
contact networks. The population was divided into four broad age groups: preschool-aged, 
school-aged, working-aged and elderly. Based on large-scale contact surveys and other 
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modeling studies [12,13,15–17], we broke down external contacts into four different layers - 
school, work, social and community (Figure 5A). Age groups determined network membership. 
School and work layers consisted of connections between individuals only belonging to the 
school-aged and working-aged groups respectively. Individuals belonging to all age groups 
were part of the social and community layers. We used a variety of data sources to construct 
the networks for each layer with degree distributions (both mean and variance in # of contacts) 
as well as levels of clustering (aka transitivity, a measure of interconnectedness) that matched 
data (see Methods). We assumed that during a social distancing measure, school contacts were 
completely removed, and that work, social, and other contacts were reduced by an amount 
equal to the intervention efficacy. For work contacts, we also considered the case where edges 
weren’t removed at random, but instead, certain “workplaces” were completely dissolved, 
whereas others remained (Figure 5C, top). With this implementation, the levels of clustering in 
the external network was high both before and after an intervention. Other studies have shown 
that such clustered adoption of preventive behavior can lead to lower than expected efficacy of 
vaccines and mass drug administration [18–21].  
 
Interestingly, we did not find that most intervention outcomes were worse under this clustered 
adoption. Time to peak cases, hospitalizations and deaths were similar under random deletion 
of edges (Figure 5B, bottom) and under the correlated deletion scheme (Figure 5C, bottom). 
However, we found that the time until infection was eliminated from the population was much 
longer: increasing from ~ 180 days to ~ 220 days for population sizes of a million. Targeting 
demographic groups - where pockets of infection persist - with more aggressive cases-based 
measures and contact tracing may be necessary to reach elimination goals faster.  
 
 

 
 
Figure 5: Clustered vs uniform adoption of social distancing measures. A) Schematic of the multi-
layer network created to more realistically capture non-household contacts and how they are altered by 
social distancing measures. In each layer, the degree distribution and level of clustering were chosen to 
match data. The “community” layer represents any other contact not fitting in the other four categories. 
Colors of nodes represent four broad age groups that determine network membership and structure: 
preschool-aged (pink), school-aged (purple), working-aged (blue) and elderly (green). B) - C) Simulated 
time courses of infection in the presence of social distancing intervention with random (B) vs clustered (C) 
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adherence to measures. In both cases, all school connections were deleted post-intervention and 85% of 
connections were uniformly deleted at random in the social and community layers. In B) 85% of work 
connections were uniformly deleted whereas, in C) 85% of workplaces were dissolved, leading to clusters 
of disconnected vs connected individuals in the work layer of the network. The effective intervention 
efficacy for all layers combined was ~ 88% in both scenarios. Black dotted line shows the time the 
intervention began. 
 
Individual risk of infection depends on household size and occupation 
 
So far our evaluations of social distancing measures have focused on population-level 
outcomes such as the timing of the epidemic peak and the overall fraction of the population 
infected. However, these findings mask significant heterogeneity in individual risk. From our 
simulations, we extracted the individual probability of infection as a function of household size 
(Figure 6A), as well as in relation to the external contacts maintained after an intervention 
(Figure 6B). We found that the risk of infection increased dramatically with the household size: 
with our baseline parameters, it ranged from <0.2% for individuals living alone to 5.4% for 
households of size 7 (Figure 6A). These differences occurred independently of the relative 
weight of household vs external contacts. The supra-linear increase in risk with household size 
is driven by the fact that in larger households there is both more risk of seeding of infection from 
outside, as well as more individuals to spread to within the household leading to less chance of 
extinction of spread.  
 
We also examined the increased risk faced by “essential workers”, or others who maintained 
contacts in their “work” networks during the time social distancing measures were in place 
(Figure 6B). Under more extreme distancing (~85% reduction in contacts), the relative risk of 
infection among workers relative to the population average was 1.6, while for individuals not 
working themselves but living in the same household as someone who was working was 1.4. In 
comparison, individuals belonging to households with no workers had a relative risk of 0.8. For a 
less effective intervention (~70%), these values were 1.6, 1.3 and 0.7 respectively. These 
findings highlight the risk faced by communities in which larger households are common and/or 
in which more individuals per household may maintain external connections despite social 
distancing measures.  
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Figure 6:  Individual risk of infection depends on household size and worker status. A) Risk of 
infection versus household size in simulations. Risk of infection was calculated after 300 days. Bar colors 
represent different relative weights of external contacts (compared to household contacts).  Dotted lines 
are the population level average infection levels for the same scenarios. B) Risk of infection versus 
worker status. A “worker” is defined as someone with an occupation in which they continue to work 
outside the home despite social distancing measures. Categories include being a worker yourself (red), 
living in a household with at least one other individual who is working (orange), or having no workers in 
the house (yellow). As a comparison the population average risk is shown (dotted line). Interventions that 
reduce the overall number of people working outside the home by 70% and 85% are shown (in all cases 
all schools are assumed to be closed and the same percent of social and community contacts are 
removed).  
 
Expanding circles can be safe partial relaxation strategies only under certain conditions 
 
As a step towards relaxing social distancing measures in settings where the incidence of cases 
and deaths has stabilized or is declining, some regions are proposing partial relaxation 
strategies whereby groups of households merge to form larger “expanded circles” or “bubbles”, 
but still minimize external contacts [22,23]. Such multi-household groups could have enormous 
social benefits, such as providing childcare relief and improving productivity of working parents, 
and reducing the mental health toll of social isolation. To examine when this strategy could be 
safely implemented without risking a rebound in cases, we randomly joined households 1, 2, or 
3 months after the implementation of a strong social distancing measure (80 or 90% effective) 
(Figure 7).  
 
We found that these household-merging strategies could be safe only if a few criteria were met. 
Firstly, they must be applied in the context of steadily declining cases and deaths (Figures 7B 
and D). In situations where infection levels had stabilized but were barely declining, forming 
bubbles always led to at least some resurgence of cases which returned to or exceeded peak 
levels (Figures 7A and C). Secondly, household bubble formation should ideally be 
accompanied by a further decrease in contacts outside the house (for example, only one 
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grocery trip per dual-family household instead of two) and a redistribution of the effective 
number of household contacts instead of allowing them to double (for example, by spending 
time with subsets of the dual household instead of all time as a complete group). Otherwise, a 
previously declining epidemic could instead stabilize at a persistent level (Figure 7B), or an 
otherwise stable epidemic could temporarily resurge (Figure 7A). We did not find a strong 
dependence on the timing of household bubble formation.  
 
Clearly households with less external contacts would be at the least risk from merging with 
others, and these policies should only be encouraged in regions where general social distancing 
has clearly reduced the prevalence of infection. Similar to our findings in earlier sections, our 
predictions are more optimistic when household and external contacts contribute less equally to 
transmission.  
 

 
 
Figure 7: Effect of partially relaxing intervention by forming household bubbles. Some time after a 
social distancing intervention was implemented, each household merges with another random household. 
In each resulting two-household “bubble”, all individuals are connected to all other individuals. A)-D) 
Simulated time courses of infection before and after social distancing interventions (with 80% vs 90% 
intervention efficacy) and after partial-relaxation by household merging. Top row: External contacts of 
individuals were unchanged after two households were merged, such that overall number of contacts 
increased. Bottom row: External contacts for individuals were reduced after two households were 
merged, such that overall number of contacts remained unchanged. In all cases, intervention was started 
43 days after the onset of the epidemic (first black dotted line) and was relaxed after two months (60 
days, second black dotted line). 
 
Discussion 
 
In this paper we show that the clinical and epidemiological features of COVID-19 interact to 
produce long expected delays between the implementation of a strong intervention to prevent 
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transmission and when its effects become apparent. Part of the delay is clinical. After infection, 
individuals pass through an asymptomatic incubation period before entering a phase of mild flu-
like symptoms, and some fraction then require hospitalization. Documented deaths often occur 
after extended stays in critical care wards. The progression from initial infection to a reportable 
case (often at hospital admission) or death can be weeks, and is not interrupted by current 
interventions. In addition, social distancing measures reduce transmission outside the 
household, but in general they involve isolating individuals within their normal places of 
residence and thus do not prevent household transmission. They may in fact amplify it, by 
increasing the time household members spend together. If even a small fraction of households 
have been “seeded” with infection at the time an intervention is implemented, cases may 
continue to increase for multiple serial intervals. This residual transmission is exacerbated if 
weak inter-household connections remain, and especially if there are clusters of individuals less 
able to comply with social distancing measures, for example among communities with a high 
prevalence of “essential workers”.  
 
Our results show that it is very difficult for interventions which only target transmission outside 
the house to effectively control the outbreak. Unless these interventions reduce the vast majority 
of contacts, ongoing transmission in households combined with occasional spillover to other 
households means that the epidemic may continue to increase long after social distancing 
begins and when it turns around, declines in cases can be extremely slow. We found that the 
relative contribution of household and external contacts to transmission was a critical 
determinant of the overall outcome of social distancing interventions, and the timescale over 
which effects could be observed.  The number of contacts alone was not very informative for 
predicting intervention efficacy.  It is not possible to predict the effect of an intervention that 
differentially affects household and external contacts by simply estimating the proportional 
reduction in the total R0. For example, even if the component of R0 from household transmission 
alone is greater than 1, infection cannot continue if external connections are substantially 
weakened. These findings highlight the need for more studies to determine the contribution of 
different types of contacts to transmission.  
 
The role of household transmission in the spread of COVID-19 is still not clear. Several studies 
with detailed contact tracing have attempted to estimate the household “secondary attack rate”, 
i.e. the probability of transmission per susceptible household member when there is a single 
infected individual in the house. In a large study in Shenzhen, China, Bi et al estimated this rate 
at 11% [24]. In Guangzhou, China the estimate was 20% [25], in Beijing 23% [26], in Seoul, 
South Korea 16% [27] and in Taiwan, around 5% [28]. In a small German town with a large 
outbreak due to a superspreading event at a carnival, the household secondary attack rate was 
closer to 30% but decreased in larger households [29]. Liu et al considered a collection of 
known clusters involving close contacts in a single gathering (not just household, often group 
meals), and estimated a 35% secondary attack rate. Recently, a review by Curmei et al [30] 
attempted to collect all these estimates and correct them upwards by accounting for false 
negative rates of diagnostic tests and for asymptomatic infections. They reported estimates 
between 10-60%, with generally higher values in the US and Europe and lower values in Asia. 
Given that the average household size is relatively small in all these countries (~3 or less), 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.04.20121673doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.04.20121673
http://creativecommons.org/licenses/by/4.0/


 

these numbers suggest that infection from outside the house must play a large role in order to 
explain the overall R0 values observed. Many more studies have examined the role of 
household transmission in influenza spread, but the results are also equivocal: a review by 
Tsang et al found that household secondary attack rates varied from 1-40% across studies [31]. 
A massive cohort study from Japan recently shone some light on this complexity; finding that 
the risk of household influenza transmission was highly dependent on household structure and 
on the familial relationship between the primary and secondary case [32]. They also found that 
the relative role of external vs household spread was highly age-dependent, children were much 
more likely to be infected outside the home (~80% of risk), while for adults infection within the 
home dominated (50% or more). 
 
The networks we use to simulate infection were parameterized based on detailed surveys that 
used “contact diaries” to track the number of individuals someone interacted with on a randomly 
chosen day [12,13]. Contacts were generally defined as physical contact or face-to-face 
conversations, and were meant to capture interactions thought to be important for the spread of 
droplet-borne respiratory infections like influenza and coronaviruses. The data that is easily 
accessible from these studies is the average number of daily contacts by age of each individual 
in the pair. However, these surveys also collected information on the duration, frequency, and 
physical nature of contacts, all of which could help inform estimation of the relative weights of 
different types of contacts, if it were made accessible. One limitation of these sorts of surveys is 
that they are “ego-centric”, meaning that they only inform the distribution of the number of 
contacts but not the higher order network structure, which can be important for infection spread 
[16,33]. When we constructed our multi-layer network of external contacts, we used additional 
information from other studies to include clustering and modularity in our networks. Another 
limitation is that certain contacts that might be relevant to respiratory infections may be missed 
in surveys. For example, transmission via contaminated surfaces can occur between individuals 
who have never directly interacted, as can transmission in group settings where air is shared 
(e.g. in fitness classes [34] or at restaurants [35]).  
 
There are multiple strategies to augment social distancing policies by reducing household 
spread, and these have been implemented to different degrees in different countries. We have 
not considered such combination policies in our analysis, but other models have explored them 
in detail. Household spread would be reduced by earlier diagnoses of cases (as soon as 
symptoms begin), proactive testing of exposed household members of cases, options for out-of-
home care for individuals with mild symptoms, or better education and assistance with 
individuals caring for sick household members to avoid infection, for example via household use 
of face masks and disinfectants [26]. Population-level contact tracing initiatives would obviously 
also help [36,37]. Early and influential modeling studies that provided the impetus for 
widespread social distancing policies around the world assumed these policies would be 
accompanied by case-based interventions that would reduce household spread (e.g. [8,38]), but 
these measures have not been uniformly adopted, and are still completely absent in most of the 
United States.  
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Clearly a major determinant of the efficacy of social distancing policies for COVID-19 is the 
fractional reduction in contacts, but quantifying this value is difficult. A variety of data sources 
can provide some information. Surveys conducted in Wuhan and Shanghai, China comparing 
contacts before and after COVID-19 lockdowns found that the average number of daily contacts 
was reduced from ~14 in Wuhan and ~20 in Shanghai to ~2, suggesting a more than ~95% 
reduction in external contacts [39]. In the US, nationally-representative polls by Gallup found 
that around three quarters of households were self-isolating [40], and estimated a median 
reduction in contacts between 80-95% for non-workers [41]. Since contact surveys are rare, 
measures of reductions in human mobility have been used as a proxy for contact rate 
reductions. Google [42] and Apple [43] provide reports on mobility changes based on user 
locations sourced from their smartphone mapping apps, as does Cuebeq [44]. Transit, a live-
tracking and schedule-aggregating application for public transit, reports changes in service use 
[45], and SafeGraph publishes changes in foot traffic to different classes of locations [46].  
 
Different measures of mobility often give very different estimates for the efficacy of social 
distancing interventions. For example, Klein et al found peak US national average reductions in 
both the radius of mobility and the number of events where device users came within near 
proximity of each other were about ~50%, whereas communing volume was reduced by ~75% 
[47,48]. For the same time period, Apple reported ~50% reductions in direction requests, Transit 
reported ~70% reduction in transit use, Google reported ~40% reductions in visits to retail 
locations and ~50% in visits to workplaces, and SafeGraph reported an ~80% reduction in foot 
traffic at bars but only a 20% reduction to grocery stores. Together these results suggest that 
our simulations assuming ~80% reduction in external contacts - which still often only results in 
mediocre outcomes - are likely overestimates, if anything, of reality. Wellenius et al attempted to 
infer the association between these mobility reductions and the particular social distancing 
policies that caused them. Using Google data they concluded that in the US, initial emergency 
declarations lead to ~10% reductions, that each additional policy led to another ~20% reduction, 
and that “shelter-in-place” orders resulted in additional ~30% reductions [49]. By comparing 
mobility changes to estimates of R0 from case counts in countries around the world, Bergman et 
al estimated that each ~10% reduction in mobility resulted in an ~0.05 reduction in R0 [50]. 
Interestingly, they also found two other results in agreement with our findings here: there was a 
long delay between reductions in mobility and reductions in inferred R0 in many regions, and, 
the association between reductions in mobility and R0 was weaker in regions who implemented 
large scale contact tracing, which likely reduces household transmission.  
 
Our results highlight the importance of residual contacts between households that remain 
despite social distancing measures. Many of these contacts are likely to be driven by  
individuals who must continue to work. Our own analysis of occupations held by residents of 
Philadelphia, USA, population ~1.5 million, suggested that ~30% of workers had jobs that fell 
into categories flagged as “essential”.  A review by Lan et al of case reports within the first 
month of the outbreak in multiple countries found that about 15% of these cases were clearly 
work-related, and that even earlier in the outbreak, this was as high as 50% [51]. A report 
released by the UK Office of National Statistics found COVID-19 related deaths were much 
higher in certain occupational groups (e.g. relative risk of 4.5 for male security guards and 2 for 
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female care workers), and the UK Biobank found an 8x higher rate of COVID-19 diagnoses in 
healthcare workers compared to the general population. Major clusters of infection have 
occurred in workplaces as varied as call centers [27] and meatpacking plants [52]. Given the 
limited apparent ability to reduce workplace contacts and transmission, reducing household 
transmission or other external contacts may be even more important. Another strategy we have 
not considered is selective restructuring of contact networks to increase clustering and decrease 
mean path length, so that transmission risk is minimized without further reducing contacts [53].  
 
Separate assumptions of our modeling approach could lead our predictions to be slightly 
pessimistic. We assume a baseline value of R0 ~ 3, whereas some other studies have used 
values between 1.9 - 2.7 [1–3,37,54]. There are several reasons why we believe those 
estimates are likely a little too low. Firstly, they tended to assume very short serial intervals and 
infectious periods, whereas other studies have estimated longer serial intervals [24,55,56], 
particularly in the absence of quick isolation of mild cases, which is more likely to reflect what is 
going on in most of the world outside of east Asia. Secondly, those estimates often fit to cases 
counts that were doubling every 5-6 days, whereas in many settings doubling times were closer 
to 3 days early in the outbreak [57–60]. Finally, nearly all previous estimates of R0 fit a 
randomly-mixing population (with or without age structure), whereas in our highly structured 
network population, higher R0 values are needed to achieve the same doubling time. R0 values 
as high as 3-6 have been estimated using rigorous epidemiological methods [6,38]. With lower 
R0 values, any estimates of the % reduction in external contacts needed to achieve a certain 
rate of reduction of cases and deaths would be reduced. However, our main qualitative results 
about delays to epidemic peak and the complex role of household transmission hold.  
 
Our results are not sensitive to our assumptions about the fraction of cases that progress to 
more serious clinical stages nor to the case fatality risk. However, our estimates for the timing of 
peak values do depend on the distribution of delays we assume, for example between symptom 
onset and hospitalization, or between ICU admission and death. There is variability in the 
estimates of these values across studies (see Methods), and these values likely differ by 
country, depending on the standard of care and the underlying health of the population. While 
we have considered wide intervals for the interpatient variation in these durations, we have not 
propagated uncertainty in the distribution of these values. We hope that by providing our code, 
researchers who are interested in specific contexts where these values may differ significantly 
can explore those scenarios.  There are other factors which influence the delay between 
implementation of social distancing measures and peak cases and deaths that we have not 
included in our model. One factor is reporting delays, which may be especially long for deaths in 
certain regions. Another factor is that there could be a delay between implementation of 
distancing measures and adoption by a majority of the population.  
 
By including more details of transmission network structure, we are able to examine effects that 
would not be apparent in well-mixed epidemic models. However, our population structure is still 
simplistic in many senses. For example, we do not explicitly model the dynamics of certain 
institutions that have been particularly hard-hit by COVID-19, such as retirement homes and 
long-term care facilities, prisons, and meat-packing plants. Understanding the unique contact 
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networks, transmission risks, host susceptibility, and mortality risks in these populations is an 
important area for future research. We also do not consider the potential for hospital-acquired 
transmission and the role of healthcare workers. Doctors, nurses, and other health professionals 
are reported to make up 5-10% of cases in some regions, and while increased testing is likely 
one factor driving these rates, it is clear that there are also unique risks to this profession.  
 
Many studies are now attempting to estimate the degree to which different social distancing 
measures (e.g. school closures, stay-at-home policies) reduce the reproductive ratio or the 
exponential growth rate of cases. Our results point out a few challenges to these efforts. The 
long delays we describe in this paper mean that methods that fit simple growth functions to data 
and look for changes in their values may have trouble identifying effects. If there are a series of 
interventions that tend to be implemented in similar orders or at similar intervals across settings, 
and the goal is to estimate the effect of each (e.g. [8,61]), then the delays we describe here 
could lead to falsely attributing the effect of one intervention to another that occurs later (e.g. 
see [5] and comments in response). Some of these problems can be avoided by explicit use of 
mathematical models that take into account the prolonged clinical progression of COVID-19 
(e.g. [9,62]), which is the first order cause of these delays. However, our results show that 
transmission network structure also plays an important role. Importantly, the amount by which 
overall transmission is reduced by social distancing measures and the delay until effects are 
seen depends on the relative role of household vs external transmission, which is unknown and 
may be different by setting.  
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METHODS 
 
Model of COVID-19 spread and clinical progression 
 
We use a compartmental epidemiological model, based on the classic SEIR model, to describe the 
spread and clinical progression of COVID-19 (Figure 2). The basic model structure is inspired by 
many studies on the natural clinical progression of COVID-19 infection. Infected individuals do not 
immediately develop severe symptoms, but instead pass through milder phases of infection first. For 
a nice summary, see Wu and McGoogan [63]. Susceptible (S) individuals who become infected start 
out in an exposed class E, where they are asymptomatic and do not transmit infection. Progression 
from the exposed stage to the infected stage I, where the individual is symptomatic and infectious, 
occurs at rate a. The clinical descriptions of the different stages of infection are given below. Infected 
individuals begin with mild infection (I1), from which they either recover, at rate γ1, or progress to 
severe infection (I2), at rate p1. Severe infection resolves at rate γ2 or progresses to a critical stage 
(I3) at rate p2. Individuals with critical infection recover at rate γ3 and die at rate μ. Recovered 
individuals are tracked by class R and are assumed to be protected from re-infection for the duration 
of the epidemic. Individuals may transmit the infection at any stage, though with different rates. The 
transmission rate in stage i, βi. 
 
The clinical definitions of the infection stages are as follows 
 

● Mild infection - These individuals have symptoms like fever and cough and may have mild 
pneumonia. Hospitalization is not required (though in many countries such individuals are 
also hospitalized) 

● Severe infection - These individuals have more severe pneumonia that leads to dyspnea, 
respiratory frequency <30/min, blood oxygen saturation <93%, partial pressure of arterial 
oxygen to fraction of inspired oxygen ratio <300, and/or lung infiltrates >50% within 24 to 48 
hours. Hospitalization and supplemental oxygen are generally required. 

● Critical infection - These individuals experience respiratory failure, septic shock, and/or 
multiple organ dysfunction or failure. Treatment in an ICU, often with mechanical ventilation, 
is required. 

A summary of the variable definitions: 
● S: Susceptible individuals 
● E: Exposed individuals - infected but not yet infectious or symptomatic 
● Ii: Infected individuals in severity class i. Severity increases with i and we assume individuals 

must pass through all previous classes 
○ I1: Mild infection 
○ I2: Severe infection 
○ I3: Critical infection 

● R: Individuals who have recovered from disease and are now immune 
● D: Dead individuals 
● N=S+E+I1+I2+I3+R+D Total population size (constant) 

To describe the average time course in a large, well-mixed population, the model can be 
represented by the following set of differential equations: 
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The basic reproductive ratio R0 of this model is: 
 

 
 
Which can also be expressed as, where Ti is the duration of stage i and fi is the probability of 
progressing (vs recovering) from stage i: 
 

R0	=	N	β1	T1	+	N	f1	β2	T2	+	N	f2	β3	T3	
 
Our model makes several assumptions with regards to the clinical and epidemiological dynamics of 
COVID-19. We do not explicitly track asymptomatic infections, which have been estimated to be 
around 20% of infections [24] (but estimates range from 1% to 50%, reviewed in [77]). However, in 
our model asymptomatic infections can be considered to be part of the “mild infections” 
compartment. There is significant evidence that asymptomatic individuals are infectious, and with 
this assumption their infectiousness would be equal to those with mild infection. For simplicity we 
assume that critical infection always occurs after passing through a stage of severe infection, while 
in reality there appears to be some individuals who progress directly from mild to critical infection. 
Similarly, we assume that only individuals who have progressed to critical infection die, though there 
is now some evidence that death can occur unexpectedly in individuals who are not already 
hospitalized.  We do not think that any of these assumptions affect the main conclusions of our 
paper, which does not focus on hospital resource use or morbidity/mortality estimates. In general our 
model allows for individuals at all stages of infection to transmit to others. However, for this paper we 
have assumed that only individuals with mild infection can transmit. We think it’s likely that an 
individual is most infectious during this stage, when they would still be in the community and feeling 
well enough to interact with others. We thus ignore transmission from hospitalized patients to their 
healthcare providers. We make the standard SEIR model assumption that the time until an infected 
individual experiences symptoms is the same as the time until they become infectious, whereas it 
has now been shown for COVID-19 that there is significant transmission risk starting ~1 day before 
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symptom onset. While this disease feature is important for studies that examine symptom based 
case detection/isolation, for simplicity we have ignored this feature in our model, which doesn’t focus 
on these issues. The serial interval produced by our model parameters agrees with observed values, 
and so we believe our timescales for infections spread are realistic. We do not explicitly consider 
age-dependent rates of infection or progression to more serious stages.  
 
The differential equation version of our model is available as an online simulation tool in which users 
can explore the effects of these assumptions of model structure as well as parameter values on 
model outputs: https://alhill.shinyapps.io/COVID19seir/ 
 
Stochastic network implementation 
 
To avoid the assumptions inherent in formulating an epidemiological model as differential 
equations (e.g. assuming a well-mixed population, deterministic dynamics, and exponentially-
distributed durations of each infection stage), we implement the model as a stochastic process 
simulated on a transmission network.   
 
We believe that this implementation is important for our research questions, for a few main 
reasons. Firstly, respiratory infections are spread by close physical contact that occurs in highly 
structured contact networks, which impact the growth rate of outbreaks, the relationship 
between an individual’s inherent infectiousness and the basic reproductive ratio R0, the 
variability in secondary infections between individuals, and the effects of control measures on 
spread. Secondly, differential equations implicitly assume that the durations of infection stages 
are extremely long-tailed, which can lead to unrealistic conclusions about the timescale of the 
epidemic response to control measures as well as to the relationship between the early growth 
rate, serial interval or generation time, and R0. Finally, we believe it is important to model the 
uncertainty in epidemic trajectories that arises from the inherent stochasticity of transmission.  
 
In our stochastic formulation, we assumed that the duration of each stage of infection was 
gamma-distributed, with both the mean and variance taken from the literature. Individuals were 
connected with a fixed, weighted contact network that determined the potential paths of 
transmission. The network is represented as a sparse matrix to save memory (a list of the index 
of each node in an edge, along with the edge weight). The model was implemented with a 
discrete time stochastic process that tracked the state of each individual and the time since they 
first entered that state. The model was implemented in Python using JAX, a framework for 
generating high-performance code optimized to run on GPUs. Our code was entirely run in the 
cloud on Google Colab. The code is available at : 
https://github.com/alsnhll/COVID19NetworkSimulations 
 
Model parameters  
 
We estimated the distribution of the duration of each stage of infection from the literature.  For 
the incubation period, we used an estimate of 5±4 days from [24,64], which is consistent with 
most other estimates. The duration of mild infection, which we assume is roughly equal to the 
infectious period, can be estimated from a few different sources: a) the duration of mild 
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symptoms, b) the time from symptom onset to hospitalization (e.g. time to progress to severe stage), 
or c) the duration of viral shedding via sputum or throat swabs, d) inferred from both the incubation 
period and the “serial interval” between symptom onset in an index case and a secondary case they 
infect. Considering (d), we took an estimate of the serial interval from Bi et al [24], who used a large 
cohort of transmission pairs and reported values separately for situations where the index case 
was not isolated or hospitalized during mild infection. Similar values were found in [54,56]. 
Some other studies have estimated smaller values (e.g. [37]), likely due to rapid isolation of 
symptomatic cases in Asia, but another very comprehensive study in Italy estimated up to 10 
days [55]. This value implies an infectious period of 6±2 days. This is relatively consistent with 
estimates of the time from symptom onset to hospitalization [38,65–67], and is roughly 
equivalent to the time at which average viral loads drop 4-5 orders of magnitude from peak 
values [68].  
 
The duration of severe infection in our model is equivalent to the time from hospital admission to 
recovery for individuals who did not progress to the critical stage, or the time from hospital 
admission to ICU admission (since critical cases require ICU-level care). Since it is hard to find 
direct estimates of this duration, we instead used estimates of the total time from symptom 
onset to ICU-admission (e.g. combined length of mild + severe infection) [66,67], and subtracted 
the inferred duration of mild infection. This led to an estimate of 6±4.5 days. We estimated the 
duration of critical infection (the length of ICU stay) directly from cohort studies to be 8 +/- 6 
days [66,69]. With these estimates, we verified that the total time from symptom onset to 
death/recovery agreed with data (~20±10 days) [54,66,70]. Note that we assumed that the 
duration of each stage of infection was independent of the previous stage and was also 
independent of the eventual outcome.  
 
In each stage of infection, an individual can either progress to the next stage or recover, and the 
probability of each was also estimated from the literature [5,63,71]. These large clinical cohort 
studies estimated that ~ 20% of infections required hospitalization (i.e. progress to severe 
stage),  ~5% require ICU care (i.e. progress to critical stage), and an overall case fatality risk of 
2%. This leads to probabilities of progression of 0.2 from I1 → I2, 0.25 from I2→ I3, and 0.4 from I3 

→ D. However, there is significant uncertainty in these values. More recent estimates suggest 
the rates of progression to more serious stages of infection might be lower after correcting for 
asymptomatic/undiagnosed cases in China [70], but in contrast, recent studies from the US 
suggest higher rates of ICU admission and death among hospitalized patients compared to in 
Asia [72,73]. Since the results of our paper focus on the timing of the peaks of different infection 
stages but not on the prevalence at these peaks, they are not sensitive to these assumptions.  
 
We chose a value of the transmission rate β such that the early epidemic doubling time was ~ 4 
days (growth rate r = 0.17/day) and the basic reproductive rate R0 = 3. While some studies have 
estimated R0 values as low as 2, these have generally used estimates based only on the serial 
interval which are mathematically problematic, used short estimates of the serial interval that 
are influenced by rapid case isolation in Asia as opposed to longer values found in other studies 
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that correct for this, and fit to longer doubling times that what was observed early in the 
outbreak in the US and Europe.  
 
The time at which we implemented interventions in our simulations was chosen to occur at a 
realistic time in the epidemic relative to real responses to COVID-19. To estimate this time for a 
typical US metro area, we downloaded case and death counts for each US county and 
aggregated them into the top 50 largest metro areas. Then we collected the time that stay-at-
home orders were implemented in each of these regions, and looked at the median cumulative 
case and death counts by that day, and chose our intervention time to match those values. We 
found that there were on average around 200 cases per million inhabitants at time of stay at 
home intervention (range [30,1000]), and  ~5 [0-20] deaths per million. We assumed that 
reported “cases” are hospitalized individuals only (I2 + I3). These values were recreated in our 
simulation in well-mixed populations on Day 40, which we used as the intervention time. At this 
time, ~0.5% of the population had ever been infected (including E, I1, I2, I3, R, and D). Since the 
median day shelter-in-place orders were implemented across these metros was April 1, Day 0 in 
our simulation corresponds to ~ Feb 20. For simulations in other networks, we kept R0 constant 
but due to the population structure, the exponential growth rate of the epidemic varied between 
different values of the household and external contact structure. Thus for each structure we 
chose slightly different intervention start times to keep the infection prevalence consistent 
across comparisons. The start times varied from Day 43 (when wEX /wHH = 3, 1), Day 45 (when 
wEX /wHH = 1/3) to Day 55 (when wEX /wHH = 1/9).  
 
 
Table 1: Model parameters for duration of each stage of infection 

 Duration (days)  

Infection stage Mean STD Source 

Exposed (incubation 
period) 

E 5 4 [24,64] 

Mild infection I1 6 2 Estimated to agree with serial interval 
and [38,65–68,74] 

Severe infection I2 6 4.5 Estimated to agree with time to ICU 
admission 

Critical infection I3 8 6 Estimated to agree with [66,69] and time 
to recovery/death 

Serial interval  8 4.5 Derived from above, agrees with 
[24,54,55] 

Hospitalization (avg, w 
or w/o ICU stay) 

 8 6 Derived from above 

Hospital (incl. ICU 
stay) 

 14 7.5 Derived from above 
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Symptom onset to ICU 
admission 

 12 5 [66,67] 

Symptom onset to 
death or recovery 

 20 10 [54,66,70] 

     

 
Table 2: Model parameters for probability of progressing from each stage of infection 
 

Infection stage Probability of 
progression 

Source 

Exposed (incubation 
period) 

E 1  

Mild infection I1 0.2 [5,63,71] 

Severe infection I2 0.25 [5,63,71] 

Critical infection I3 0.4 [5,63,71] 
 
Well-mixed network structure 
 
We approximated a well-mixed population by randomly connecting each individual to 100 other 
individuals in the population. While a truly “well-mixed” network would connect every one to 
everyone else, with the large population sizes we use (106), this would require huge amounts of 
memory and negate the computational efficiency of using sparse matrices to represent the 
networks. Since in reality each individual will only transmit to a few others before recovering, 
any uniform random network with a large degree is a good approximation to a fully-connected 
network.  
 
Two-layer household network structure 
 
Construction: We constructed a weighted two-layer network, consisting of a layer for within-
household connections and another for external connections. Individuals were first assigned 
households using the distribution of household sizes in the United States (data obtained from 
the 2010 census, mean household size nHH∼ 2.5). All individuals in a household were connected 
to each other. Each individual was then assigned random external contacts. The degree 
distribution for external connections was obtained from contact survey data that recorded daily 
interactions of individuals [12,13]. This data was originally collected for a subset of countries 
and then projected to other countries using a wide range of demographic data. The contacts are 
age structured and include the type, duration, location and frequency of the contact. These 
surveys were designed to capture interactions relevant to the spread of respiratory diseases, 
and include interactions consisting of either physical contact or close face-to-face 
conversations.  From this data, we obtained daily non-household contacts by summing ‘work’, 
‘school’ and ‘other’ contacts. For the United States there were on average nEX ∼ 	7.5	 ± 	2 (mean 
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± standard deviation) daily non-household contacts, equivalent to 3x household contacts. The 
variance was obtained by the variance in the mean across all age groups. We assigned external 
degrees to individuals following a binomial distribution with this mean and standard deviation. 
This assignment was done randomly and did not depend upon the size of the person’s 
household. The network layer was created by giving ‘stubs’ to individuals equal to their external 
degrees. These stubs were then randomly paired between individuals in the population to create 
connections. In addition to the number of contacts, the probability of infection also depends 
upon the duration and intensity of the contact. We assigned weights (wHH, wEX) to the two layers 
of the network to account for this. We considered different scenarios (keeping R0 fixed) where, 
wHH= 	1 and varied wEX = 	3, 1, 1/3, 1/9 to reflect the relative importance between household 
and external contacts. 
 
Intervention: Intervention, corresponding to social distancing measures, was modeled by 
reducing the weight of the external layer, w’EX= (1 − 𝜀)wEX  where, 𝜀	(0 ≤ 𝜀 ≤ 1) is the 
‘intervention efficacy’. Household contacts were either unaffected (w’HH =wHH) or doubled (w’HH 
= 2wHH) during intervention, to represent the increased time spent with household members.  
 
Partial relaxation of intervention: We modeled a scenario of partial relaxation of social distancing 
measures in which every household could “merge” with another household. This relaxation 
altered the household layer so that all households in the network were paired with another 
random household and the two were merged to create a fully-connected joint household (n’HH∼
	5). We considered two scenarios for how the external layer changed during partial relaxation of 
intervention. In the baseline scenario, the external layer was the same as during intervention. In 
a second scenario, the number of external contacts per individual was reduced so that the 
average number of total contacts was the same before and after merging  (n’EX=nEX - nHH). This 
partial relaxation was only conducted for the scenario where household and external 
connections had the same weight (wHH= 	1 and wEX= 	1). 
 
Individual probability of infection as a function of household size: We computed the individual 
probability of infection retrospectively, after the epidemic had died out, for the case of a 100% 
effective intervention. We counted the number of individuals who were ever infected by the end 
of the epidemic and calculated the corresponding distribution of their household sizes. This is a 
conditional probability that gives the probability of household size, given that an individual was 
infected P(HH size|inf). The probability of infection given household size was then calculated 
using Bayes’ rule,  P(inf|HH size) = P(HH size|inf) *  P(inf)/P(HH size) where, P(inf) is the 
fraction of the total population that was infected during the epidemic and P(HH size) is the 
distribution of the household sizes in the population. The probability was averaged over 10 
iterations of the simulation. 
 
Five-layer network structure 
 
We constructed a non-weighted 5-layer (1 household and 4 external) network for an age-
structured population with realistically structured external layers. The population was divided 
into four age groups: preschool aged (ages 0-5), school-aged (ages 5-19), working-aged (ages 
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19-64) and elderly (ages 65+). The distribution of ages in the United States was obtained from 
the 2018 World Bank Age Structure data which consists of the population divided into 5-year 
age groups. In addition to the broad age groups, we also kept track of the 5-year age group that 
an individual belonged to. The contact survey data [13] used to construct the 2-layer network 
was also predominantly used here to determine the statistical properties of the layers.  
  
Household layer: The household layer was constructed in the same manner as in the 2-layer 
network. Individuals were assigned to fully-connected households using the distribution of 
household sizes in the United States from the 2010 census data (mean household size, nHH∼
2.5). 
 
School layer : The school layer contained connections between the school-aged age group in 
the population. This external layer was constructed using the technique described by Ball et al 
[75], where a network layer with a given degree distribution and correlations among connections 
(i.e. “clustering” or “transitivity”) can be constructed. The degree distribution in this layer was 
obtained from the school contact survey data [13], which estimated that the school-going 
population in the United States, on average, had nSCHOOL ∼ 	7.3	 ± 	1.8 school-related contacts 
daily. The variance was obtained by the variance in the mean across the school-aged (5-19) 
age groups.  Individuals were assigned degrees randomly from a binomial distribution with this 
mean and standard deviation. The age-structure of contacts at school suggests a significant 
level of clustering by age group.  To create correlated connections, the method of Ball et al 
requires two additional parameters: The number of groups 𝑛 to divide the population into, and 𝑟, 
which is roughly the extent to which individuals within the same group are connected. 𝑟 = 1 
corresponds to individuals being connected only within their group whereas 𝑟 = 0 implies 
completely random connections without any correlation with members of their own group. 
Averaged over the school age groups (5-19), we found that ∼ 57% of school contacts for an 
individual belonged to their own age group. Since there are three 5-year age groups in our 
school-aged population, we divided our population into those three groups (𝑛	 = 	3) and chose 
𝑟	 = 	0.57. 
 
Work layer : The work layer consisted of connections between the working-aged group in the 
population. This layer was constructed similarly to the school layer. We obtained the mean and 
standard deviation in number of daily work contacts from the contact survey data (5.0	 ± 	2.3). 
The variance was obtained by the variance in the mean across working-aged (20-64) age 
groups. Individuals were randomly assigned a work-place degree from a binomial distribution 
with the mean and standard deviation. Then we used a separate study by Potter et al that 
mapped real work-place networks to estimate the level of clustering (transitivity), at ~0.1 [15]. 
Note that Potter et estimated a higher degree, since their network contained total contacts in a 
work network and not just the daily contacts as given by the contact survey data, but the 
coefficient of variation is similar. We again used  the Ball et al technique [75] to create clustering 
in the network. High transitivity can be achieved by choosing appropriate correlation parameters 
𝑛 and 𝑟.  We assumed this clustering arose from the fact that people belonging to the same 
work-place have a higher chance of being connected to each other. According to NAICS (North 
American Industry Classification System), ∼ 80% of businesses in the United States have ≤ 	10 
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employees and so for the sake of simplicity, we assigned each individual to a ‘work-place’ of 
size ten (𝑛 = #	@A	B@CDEFG	EFHEIEHJKLM

NO
). We picked 𝑟	 = 	0.8 in order to have a high level of 

transitivity (∼ 0.12) while also ensuring inter work-place connections. 
 
Friend (social contacts) layer: The friend layer represents social contacts of people, their ‘friend 
circles’. Individuals were assigned to fully-connected friend groups, where friend groups 
consisted of people belonging to the same age group (preschool, school, working, elderly). The 
distribution of sizes of these friend groups were obtained from Wrzus et al [17], which is a meta-
analysis of the effects of age on social networks. From their data, we estimated that the mean 
sizes of friend groups for individuals less than 20 years of age is ∼ 10, that for the working age 
population ∼ 7 and ∼ 5	 for the elderly. These constitute total social contacts for the individuals 
and not just their daily interactions as given by the contact survey data. The ‘other’ category in 
the contact survey data [13] gives the number of daily interactions that an individual has that are 
not within the household, at school or at the work-place. In our network, the friend layer and the 
community layer together constitute this ‘other’ category. According to the data, averaged over 
the age groups, there are ∼ 	4.3	 ± 	1.9 such interactions for an individual in the United States. 
The variance was obtained by the variance in the mean across all age groups. Since the total 
social contacts are much higher than this daily value, we scaled the sizes of the friend groups 
(nFRIEND →	nFRIEND/4) to reflect daily social contacts. The scaling factor was chosen to ensure 
that the community layer didn’t end up being too sparse. We chose to do this instead of creating 
a weighted network for the sake of simplicity. The friend group sizes were drawn using the 
negative binomial distribution to account for the large variance (estimated variance post scaling: 
6.25, 2.5, 1.75 for the three age-groups) seen in the data.  
  
Community layer: This layer constitutes the additional random contacts an individual has during 
the course of their day. As mentioned previously, together with the social layer this constitutes 
the ‘other’ category in the contact survey data. We chose the average degree for this layer, 
nCOMM∼ 1.72	 ± 	0.76 such that the combined degree for the two layers matches what is seen in 
the data. We used a binomial distribution and assigned degrees randomly to the individuals. 
This layer was constructed in the same manner as the external layer in the 2-layer network. It 
amounts to using the Ball et al [75] technique with 𝑛 = 1 and 𝑟 = 0. 
 
Intervention : The social distancing intervention was modeled by deleting a certain percentage 
of external connections. School connections were always completely deleted during 
intervention, whereas social and community connections were deleted depending upon what we 
termed as the ‘efficacy’ of intervention. For example, 85% efficacy corresponds to deleting 
85%of contacts in these layers. We considered two scenarios for the effect of intervention on 
the work-layer. In one case, similar to the social and community layer, a percentage of work 
contacts was deleted depending upon the intervention efficacy. Random deletion of connections 
leads to a large reduction in the transitivity of the work layer, from ∼ 0.12 to ∼ 0.02. In the 
second case, the effect of intervention was modeled as a clustered deletion of workplaces 
instead. For example, 85% intervention efficacy corresponds to 85% of workplaces being 
dissolved. Clustered deletion still maintains a high level of transitivity ∼ 0.10 in the work layer. 
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Note as all school connections were completely deleted during intervention, the total effective 
efficacy of intervention was a bit higher than that for the social, community and work layers. For 
example, 85% efficacy in these external layers corresponds to a total efficacy of 88%. 
 
Probability of infection for an individual working during intervention: We calculated the 
probability of infection for two intervention efficacies (85%, 70%) at day 300 after the start of the 
outbreak. We first obtained the fraction of the infected people (at day 300) who were still 
working during the intervention. This gives the conditional probability that an individual was 
working during intervention given that they were infected, P(working|inf). We calculated the 
probability of infection given that an individual was working during intervention using Bayes’ 
rule, P(inf|working) = P(working|inf) * P(inf)/P(working) where, P(inf) is the fraction of the total 
population that was infected by day 300 of the epidemic and P(working) is the fraction of the 
total population that was working during intervention. The probability was averaged over 10 
iterations of the simulation. 
 
Probability of infection for an individual living with working household members during 
intervention:  This was also calculated at day 300 of the epidemic for the two intervention 
efficacies and, averaged over 10 iterations of the simulation. We obtained the fraction of the 
infected people (at day 300) who had at least 1 household member who was working during 
intervention. This corresponds to the probability that an infected individual had at least one 
working household member during intervention, P(HH working|inf). As before, the probability of 
infection given that an individual was living with working household members during intervention 
was then calculated using Bayes’ rule, P(inf| HH working) = P(HH working|inf) * P(inf)/P(HH 
working) where, P(inf) is the fraction of the total population that was infected by day 300 of the 
epidemic and P(HH working) is the fraction of the total population that had at least one working 
household member during the intervention. 
 
Probability of infection for a non-working individual with no working household members during 
intervention:  This was calculated in the same way as the other probabilities. We obtained the 
fraction of the infected people (at day 300) who were not working and had no working 
household member, P(HH not working|inf). As before, the required probability was then 
calculated using Bayes’ rule, P(inf| HH not working) = P(HH not working|inf) * P(inf)/P(HH not 
working) where, P(inf) is the fraction of the total population that was infected by day 300 of the 
epidemic and P(HH not working) is the fraction of the total population that was not working and 
had no working household members during the epidemic.  
 
COVID-19 Data 
 
Wuhan, China: Data from Wuhan, China was obtained from the two daily situation reports 
published each day: http://wjw.wuhan.gov.cn/ztzl_28/fk/yqtb/index_11.shtml. We extracted new 
cases, new deaths, the number of individuals currently hospitalized with severe infection (which 
we took as a proxy for “hospitalized”) and the number of individuals currently hospitalized with 
“critical” infection (which we took as a proxy for individuals in the ICU). Data was already 
digitized by Li et al [76] for January and February (https://github.com/c2-d2/COVID-19-wuhan-
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guangzhou-data); we added data into March. For some dates the numbers of severe and critical 
cases were only reported for the entire province of Hubei, and in those instances, following Li et 
al, we assumed the proportion of those attributable to the city of Wuhan was equal to the 
proportion of currently active cases occurring in Wuhan. The vast majority of the Hubei outbreak 
took place in Wuhan.  
 
Lombardy, Italy: Data on daily new cases and deaths as well as current patients hospitalized or 
in ICU for the Lombardy region of Italy was downloaded from Github repository maintained by 
the Department of Civil Protection in Italy : https://github.com/pcm-dpc/COVID-19 
` 
Madrid, Spain: Data for daily new cases, daily deaths, daily new hospital admissions, and daily 
new ICU admissions were obtained from an online application maintained by the National 
Center for Epidemiology, using data from the Ministry of Health: 
https://cnecovid.isciii.es/covid19/. In the “documentation and data” section of the application 
there is a link to a .csv file with all the data used in the web app.  
 
New York City, New York, USA: Daily new cases and deaths were downloaded from the Github 
repository of the New York City Department of Health and Mental Hygiene: 
https://github.com/nychealth/coronavirus-data. Number of currently individuals hospitalized or in 
ICU by date was obtained from the Github repository for digital news platform The City, who 
obtains this data directly from the New York state governor’s office: 
https://github.com/thecityny/covid-19-nyc-data 
 
Los Angeles County, California, USA: Daily new cases and deaths were obtained from the 
Github repository maintained by the Los Angeles Times newspaper: 
https://github.com/datadesk/california-coronavirus-data. The number of individuals currently in 
the hospital or ICU was obtained from the California Health & Human Services Open Data 
Portal: https://data.chhs.ca.gov/dataset/california-covid-19-hospital-data-and-case-
statistics/resource/6cd8d424-dfaa-4bdd-9410-a3d656e1176e?view_id=b23b0158-a85d-4bf2-
95b1-96f7556f7342 
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