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Abstract 

Introduction Artificial intelligence holds promise for individualized medicine. Yet, transitioning models 
from prototyping to clinical applications poses challenges, with confounders being a significant hurdle. We 
introduce a two-dimensional confounder framework (Confound Continuum), integrating a statistical dimension 
with a biomedical perspective. Informed and context-sensitive confounder decisions are indispensable for 
accurate model building, rigorous evaluation and valid interpretation. 
Methods Using prediction of hand grip strength (HGS) from neuroimaging-derived features in a large 
sample as an example task, we develop a conceptual framework for confounder considerations and integrate 
it with an exemplary statistical investigation of 130 candidate confounders. We underline the necessity for 
conceptual considerations by predicting HGS with varying confound removal scenarios, neuroimaging derived 
features and machine learning algorithms. We use the confounders alone as features or together with grey 
matter volume to dissect the contribution of the two signal sources. 
Results  The conceptual confounder framework distinguishes between high-performance models and 
pure link models that aim to deepen our understanding of feature-target relationships. The biological attributes 
of different confounders can overlap to varying degrees with those of the predictive problem space, making 
the development of pure link models increasingly challenging with greater overlap. The degree of biological 
overlap allows to sort potential confounders on a conceptual Confound Continuum. This conceptual continuum 
complements statistical investigations with biomedical domain-knowledge, represented as an orthogonal two-
dimensional grid. 

Exemplary HGS predictions highlighted the substantial impact of confounders on predictive 
performance. In contrast, choice of features or learning algorithms had considerably smaller influences. 
Notably, models using confounders as features often outperformed models relying solely on neuroimaging 
features. 
Conclusion Our study provides a confounder framework that combines a statistical perspective on 
confounders and a biomedical perspective. It stresses the importance of domain expertise in predictive 
modelling for critical and deliberate interpretation and employment of predictive models in biomedical 
applications and research. 

 
Short description 
The paper explores the challenges of transitioning predictive models from scientific prototyping to clinical 
use, with a focus on the significant impact of confounders. Using the example of predicting hand grip strength 
in the UK Biobank, the study introduces a framework that integrates statistical and biomedical perspectives on 
confounders, emphasizing the vital role of informed confounder decisions for accurate model development, 
evaluation and interpretation.  
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1. Confounders in precision medicine 

Artificial intelligence (AI) holds promise for personalized medicine and is increasingly employed in 
biomedical research and applications. Machine Learning (ML) workflows use large, high-dimensional and 
multimodal data to arrive at predictive models to identify biomarkers of health and disease or to aid in 
diagnosis, prognosis and treatment choice, targeted to individuals1–3. For instance, deep learning-based models 
showed promising results for improved cancer diagnosis, subtyping and staging4. Beyond cancer, (chronic) 
inflammatory diseases stand as significant global contributors to mortality. AI has proven promising in 
enhancing inflammatory disease risk prediction and facilitating personalized early interventions5. In the field 
of psychiatry, predictive modelling with neuroimaging data has demonstrated the potential to outperform 
DSM/ICD-based diagnoses6. However, translation of promising models to real-world clinical applications still 
remains challenging, sometimes referred to as AI chasm7–10. The AI chasm stems from unreliable predictions11–
14, challenges with reproducibility and replicability, non-interpretability8, and limited generalizability15 of 
models (for further challenges see e.g. 3,7,12,16,17). Confounding effects contribute significantly to these concerns 
through misleading predictions and interpretations, thereby exacerbating the AI chasm18–20. 

In a predictive modelling context, confounders are variables that correlate with features and targets, 
but are not of primary interest or may even introduce misleading associations21,22 (see e.g.22–28 for in-depth 
technical elaborations). Confounders can influence predictions, especially when they carry a strong signal 
about the target. For example, in a neuroimaging context, a model predicting hand grip strength (HGS) from 
neuroimaging derived features could be primarily driven by sex, i.e. men on average being stronger than 
women. Other classical examples of confounders include measurement artifacts27,29–31, site effects32, 
demographics33–35, or lifestyle factors36.  

It is essential to deal with confounding effects to obtain models that give valid scientific insights and 
models that can be deployed in clinical practice. Established tools to control for confounders at the level of 
study design, such as randomized control trials, restriction or matching23, may not be feasible in observational 
data6,20,22,37. Consequently, post-hoc statistical approaches, such as (linear) confounder regression are 
commonly used18,19,24,27,38–40. Alternatively, the contribution of confounders can be quantified by including 
them as predictors18,27,41. 

In many biomedical disciplines it is common to correct for a conventionally established set of 
confounders18,42,43. While for instance in the field of genetics it is common to adjust for a broader set of 
confounders, in neuroimaging studies sex and age are most prevalently considered12,44. This reliance on 
convention, however, risks overlooking other potential confounders. Overlooking confounders or insufficient 
removal of their signal contributions can lead to overestimated effects because predictions are driven by 
confounding signals rather than the actual signal of interest18. Conversely, removal of too many confounders 
can eliminate signal of interest and lead to unstable models32,45,46. Adjusting for a variable that is actually a 
consequence of the features (i.e. not a real confounder) may even induce a non-existent association (Berkson’s 
paradox)18,47–49. Overall, generic conventional and non-contextual confound removal (too many or too little) 
can result in suboptimal models19,22. Consequently, it is important to identify confounders that align with the 
goals of the modelling task at hand18,19,22. Furthermore, even if a suitable set of context-specific confounders 
is identified, particularly in a research context it often remains unclear whether a “vanilla” model with no 
confound removal or a confounder adjusted model should be preferred. Taken together, suboptimal treatment 
of confounding contributes to the challenges of transitioning models from development to clinical applications, 
aggravating the AI chasm. 

The goal of this paper is to emphasize a better understanding of confounders for a given research 
endeavour. We elaborate on the necessity of acknowledging domain expertise and biomedical knowledge to 
form a biomedical dimension of confounder considerations. We introduce a two-dimensional (2D) grid 
(Confound Continuum), of which the horizontal axis acknowledges the degree of biomedical impact of a 
confounder on a predictive problem, while the vertical axis evaluates the statistical impact. Adopting such an 
integrated perspective of statistical and biomedical confounder considerations fosters informed, context-
sensitive decisions on confounders as an indispensable step towards accurate and valid model development 
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and interpretation. Our aim is to encourage critical and deliberate employment of AI, both for medical 
applications and biomedical research. 

2. Defining the context of confound removal 

2.1. The statistical context of an exemplary GMV-HGS prediction 

We illustrate concepts with the example prediction of hand grip strength (HGS) from grey matter volume 
(GMV) features in the UK Biobank50. HGS is an ideal target variable for this demonstration. It is reliable51,52 
and eliminates further complexities associated with latent target measures such as intelligence or executive 
functioning scores. Additionally, HGS is an objective and cost-effective assessment commonly used in clinical 
settings53. 

Commonly, the relevance of a set of candidate confounders is determined by assessing their statistical 
association with the data. Variables with strong associations or high shared variance are considered as 
confounders in the predictive analysis. Understanding such associations is crucial because removing 
confounders without shared signal may inadvertently introduce confounder information into features or 
target54. Conversely, removing confounders with high shared variance may enhance the signal-to-noise ratio 
of the feature-target relationship. 

Mimicking such a statistical approach, we exemplarily correlated 130 candidate confounders from the 
UKB with both HGS and GMV (Figure 1). The correlations revealed that mostly body composition measures, 
sex and respiratory variables were associated with either the target HGS or the GMV features. Variables such 
as “length of the working week in the main job”, “systolic blood pressure”, “age” and “bone density” exhibited 
medium to small correlations with HGS or GMV. For a more comprehensive statistical investigation of 
confounders in the UKB see e.g.18. 
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Figure 1. Correlations of 130 summary behavioural variables with the exemplary target HGS (A) and the features GMV 
(B) that could potentially be considered as confounding variables. The variables were sorted into 12 higher-level 
categories. Boxplots in B) indicate median (IQR) correlation over GMV parcels. Correlations refer to Pearson’s r for 
continuous confounds, Spearman correlations for ordinal variables and point-biserial correlation coefficients for binary 
variables. 

2.2. High-performance versus pure link approach motivates a conceptual context of confound removal 

To develop unbiased models, beyond statistics, it is crucial to understand the context of a prediction task. We 
therefore introduce the distinction between a high-performance model and a model aimed at investigating a 
pure link as overarching research goal. Both setups require careful consideration of confounders. 

The high-performance approach aims to achieve accurate predictions by utilizing all available 
information irrespective of its origin. Here, confounders may even be included as features if they improve 
model accuracy. It nevertheless remains essential to satisfy the fundamental assumption of predictive 
modelling that training and testing data are drawn from the same distribution and are independent and 
identically distributed (iid). Satisfying the iid assumption avoids sampling bias and helps build generalizable 
models that can apply patterns learned from the training set to unseen testing data. Otherwise, a model may 
perform well on training but fail on testing data, exacerbating the AI chasm. Differences in training and testing 
data distribution are sometimes referred to as data distribution shift55. For instance in healthcare applications, 
differences in patient demographics or medical practices between hospitals can cause such a shift. Covariate 
shift is a specific form thereof, where particularly the distribution of the independent variables (features and/or 
confounders) changes56. To avoid shift-related issues, even in the high-performance setting, training and 
testing data must be comparable in their key characteristics, including their relationship with confounders.  

The pure link setting aims to deepen our understanding of specific feature-target relations by 
discovering systematic, biologic mechanisms underlying the feature-target interactions. Such models 
selectively utilize specific aspects of the available information in the data. Concretely, this approach prioritizes 
the signal components in the features that hold biomedical meaning to predict the respective outcome, such as 
a phenotype, behaviour or disease, but aims to exclude encoded information of confounders in the biomedical 
feature signal (e.g. neuroimaging-derived features). By doing so, it aims to uncover the “pure” biology of the 
problem space and contribute to a broader comprehension of biomedical mechanisms. 

However, achieving such “purity” becomes an idealized goal when dealing with biologically highly 
linked confounders. To illustrate this challenge, we consider two of the statistically evaluated potential 
confounding variables for the GMV-HGS prediction task: “Length of working week in the main job” and “sex” 
(Figure 2A). Unlike “length of working week”, “sex” significantly overlaps in its biological attributes with 
those of the GMV-HGS problem space, i.e. “sex” and the problem space have a high “shared biology” (not to 
be confused with a high shared variance in a statistical sense). From biomedical domain knowledge it is known 
that sex influences testosterone levels, which, in turn, impact muscle growth and the muscle mass determines 
HGS. In the pure link setup, confound removal is expected to preserve all meaningful connections between 
GMV and HGS, while eliminating unwanted influence of confounders, expecting to obtain the “pure” biology 
of the problem space (Figure 2A bottom: middle & left). This expectation of “purity” can be fulfilled for non-
overlapping variables, such as “length of working week” (which in this extreme would then not be considered 
as confounder). However, removing highly overlapping variables, such as “sex”, results in a new (artificial) 
set of biological attributes of the GMV-HGS problem space (Figure 2A bottom: right, non-circular red 
outline). This artificial shape is biologically ambiguous and challenging to interpret. Consequently, the more 
a confounder overlaps in its biology with the problem space, the less its removal can lead to “purity”. This 
problem particularly arises in the biomedical field due to the low-dimensionality and interconnected nature of 
many biological phenomena and necessitates to acknowledge a conceptual dimension of confound removal. 
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Figure 2. The concept of biological overlap of a potential confounder with the predictive problem space. A) The grey 
circle represents the set of biological attributes of the predictive problem space. The smaller blue circles visualize the set 
of biological attributes of the potential confounders “Length of working week” (brighter blue) and “sex” (darker blue). 
The red outlines surrounding the grey circle depict the “pure” biology of the problem space. In contrast to “length of 
working week”, “sex” quite overlaps in its biological attributes with the GMV-HGS problem space. Therefore the wished 
“pure” biology of the problem space when removing sex as a confounder (red outline middle) cannot be reached. Instead 
the removal results in the peculiarly shaped red outline (bottom right). This new set of biological attributes of the GMV-
HGS is biologically ambiguous and unclear in its interpretation. It motivates to acknowledge a conceptual dimension of 
confound removal to determine the reachable biological “purity” when adjusting for confounders. B) Nested overlap of 
confounders with the problem space and respective impact of removal. Sex and age demonstrate a nested overlap with 
the GMV-HGS problem-space. While in a non-nested scenario, removing one confounder alone would reveal the entire 
impact of removal, in the nested sex-age scenario illustrated here, only the joint removal reveals their full impact. Note: 
This figure employs Venn diagrams to visualize the degree of “shared biology” between variables and the consequences 
for model interpretation. This should not be confused with “shared variance” in a statistical sense. 

3. Integrating the statistical and conceptual level of confound removal 

3.1. The Confound Continuum 

Beyond the extreme examples of “length of working week” and “sex”, numerous further potential confounders 
exist for the GMV-HGS prediction task. Statistically, these can be ordered along a vertical axis based on 
increasing (absolute) strength of statistical association with the prediction task, as introduced in Figure 1. 

Conceptually, further potential confounders can be ordered along a horizontal axis based on their 
increasing overlap with the biological attributes of the problem space (Figure 3A). On this continuum, “length 
of working week” exemplifies a low biological overlap or link, followed by the further potential confounder 
“bone density”. The latter likely has differing driving factors than both GMV and HGS, yet the possibility of 
a biological link cannot be entirely ruled out. Advancing in the direction of increasing overlap, “systolic blood 
pressure” potentially shares driving factors with HGS, such as physical fitness, without a clearly identified 
pathway. “Sex” and hormonal composition almost reflect a 1:1 mapping of the same underlying biology, 
forming an example of a high biological link.  

Integrating this horizontal conceptual axis (Figure 3B, blue) with the vertical statistical axis (Figure 
3B, red) creates a two-dimensional (2D) orthogonal space (Figure 3B), emphasizing the independence of 
conceptual and statistical considerations. This independence becomes particularly evident for the off-diagonal 
variables in the 2D grid (Figure 3B, grey shaded areas). For instance, although “systolic blood pressure” only 
correlated marginally with GMV, biologically both may be influenced by a third factor such as physical fitness. 
Conversely, “length of working week” was correlated with HGS yet lacks evident overlap of biological 
attributes. The statistical dimension determines the amount of shared signal and thereby either ensures that no 
confounder information is inadvertently introduced to the data (no shared signal) or reveals which variables’ 
removal may enhance the signal to noise ratio (high shared signal). While statistical evaluations are essential, 
they cannot address the semantic meaningfulness of removing confounders. Put differently, they cannot assess 
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the biomedical validity of confound-adjusted features, targets and resultant models and predictions. In contrast, 
the conceptual dimension offers valuable insights in the achievable purity of a feature-target (here: brain-
behavioural) link, complementing statistical approaches with domain expertise and biological knowledge. 
Together, these dimensions dissect the different roles of potential confounding variables for a specific 
predictive problem from complementary viewpoints.  
 

 
Figure 3. Conceptual and two-dimensional Confound Continuum. A) The conceptual Confound Continuum is the logical 
consequence of a gradual overlap in biological attributes between a set of potential confounders and the GMV-HGS 
predictive problem space. It is formed by ordering potential confounders in increasing order of shared biology with the 
problem space. The two example confounders “length of working week” and “sex” introduced before form two somewhat 
extremes on this conceptual continuum. B) The conceptual axis from A) can be combined with forementioned statistical 
evaluations (Figure 1) to form a two-dimensional grid. Importantly, the two dimensions are independent, which becomes 
particularly obvious by the variables in the grey shaded off-diagonals. The two-dimensional assessment helps to dissect 
the different roles of potential confounding variables for a particular predictive problem. 

3.2. Nested and cascadic influences 

Potential confounding variables may exhibit nested or cascadic overlaps with the problem space. For instance, 
sex and age demonstrate a nested overlap with the GMV-HGS problem-space (Figure 2B, top left, “no 
removal”). Adjusting for age preserves the shared area of sex, age and the problem space (Figure 2B, bottom 
right, “no age”: green area) because it is encompassed by the sex-problem-space overlap. Consequently, only 
a small section of the red problem space outline (visually spoken) is missing in Figure 2B (bottom right, “no 

Scan-time
Scan-site

Systolic blood 
pressure

Body-fat

Mood

Motherhood

Bone 
density

Job

Respiration

Depression
Alcohol 
intake

Convenience 
sample

Length working 
week main job

Sex

AgeCognition

Low
 statistical link

H
igh statistical link

Low biological link high biological link

Age

Biased 
sample

Scan-site

Length 
working week Bone density Blood 

pressure Sex

Biased 
sample

Length 
working week Bone density

Blood 
pressure

Sex

Age

Scan-site

Length 
working week Bone density

Sex

Biased 
sample

Length 
working week Bone density

Blood 
pressure

Sex

Age

Scan-site

Negligible biological 
link

Direct biologically 
describable link

No biological evident 
link; potential other 
shared influences

Different driving 
factors; possibility of 
biological link cannot 

be ruled out 

No clearly identified 
pathway but potential 

common driving factor

Express same 
underlying biology

Biased 
convenience 

sample

Length 
working week 

main job - HGS
Bone density - 

HGS
Systolic blood 

pressure - GMV

sex → 
testosterone → 

muscles → HGS

sex and 
hormonal 

composition

Conceptual Confound ContinuumA 

B 
Low biological link High biological link

2D Confound Continuum

Biased 
sample

Blood 
pressure

Conceptual dimension 
Statistical dimension

conceptual axis

statistical axis

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 4, 2024. ; https://doi.org/10.1101/2024.02.02.24302198doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.02.24302198


Komeyer et al. Confounders in AI for precision medicine  

 

 

8 

age”), preserving most interpretability of the problem space. With sex adjustment, a comparable scenario 
emerges, but with a somewhat higher impact due to the larger overlap of sex-problem-space attributes (Figure 
2B, top right, “no sex”). Adjusting for multiple confounders results in an additive removal effect in both nested 
and non-nested settings. However, in a non-nested scenario, removing one confounder alone would reveal the 
entire impact of removal. In contrast, in the nested sex-age example, only the joint removal reveals their full 
impact (Figure 2B, bottom left, “no sex & age”). 

Cascadic influences emerge because biomedical mechanisms usually form complex networks (see 
e.g.57,58 for a formulation using directed acyclic graphs). For example, sex and hormones influence body fat 
composition. However, body fat composition in conjunction with sex can also influence hormones59, which 
then can affect the biological cascade sex → testosterone → muscle growth → HGS. Body fat compositions 
may further overlap with respiratory performance, shaping additional factors such as physical fitness. 
Consequently, even seemingly unrelated variables may indirectly impact the actual relationship between GMV 
and HGS. 

In summary, statistical and conceptual evaluations of confounder influences are independent but can be 
integrated as a two-dimensional grid – the Confound Continuum. This framework emphasizes that biomedical 
and statistical validity are distinct but complementary concepts to enhance our understanding of the role of 
confounders in a predictive task. The Confound Continuum can facilitate informed decisions on confound 
removal, acknowledging problem-specific nuances. 

4. Confound removal can influence predictions more than feature or algorithm choice  

To illustrate the importance of considering confounding variables in predictive workflows, we conducted the 
GMV-HGS prediction based on cortical60, subcortical61 and cerebellar62 GMV features. The “vanilla” model, 
without removing confounders and using a linear support vector regression (SVR), yielded a Pearson 
correlation between true and predicted HGS of R2 = 0.39 (r = .63, Figure 4A, left). We compared this “vanilla” 
model with models that linearly regressed out confounders prevalent in the field (scan-site, age, and sex)12,44. 
Additionally, we examined the combined effect of sex and age to illustrate a nested (additive) scenario. The 
scan-site adjusted model performed similarly to the vanilla model (R2 = 0.40, r = 0.64). Adjusting GMV for 
sex substantially reduced performance (R2=.03, r = 0.20), while age adjustment had no effect (R2 = 0.39, r = 
0.63). However, removing both sex and age resulted in a pronounced drop in performance (R2 = -0.0, r = 0.08, 
Figure 4A, right), suggesting a nested additive scenario where regressing out sex revealed the signal 
contributions of age in GMV. 

The choice of both, features and learning algorithm plays a crucial role in neuroimaging predictive 
modelling. Features should provide sufficient information about the target variable, and different learning 
algorithms can capture different aspects of the feature-target relationship (e.g.  linear vs. non-linear relations). 
Therefore, in neuroimaging predictive workflows, often the features and learning algorithms are tweaked to 
explore if other neuroimaging derivatives carry a stronger signal about the target or other learning algorithms 
can detect the relationship better. In our example, using functional connectivity (FC) features instead of GMV, 
maintained comparable accuracy (R2 = 0.34, r = 0.58, Figure 4C), while cortical thickness (CT) features less 
good (R2 = 0.13, r = 0.36). Tweaking the learning algorithm or its fine-tuning had minimal impact (Figure 
4C). Importantly, these influences were observed without confound removal. Thus, the lower performance of 
CT does not necessarily indicate it contains less information about HGS but could imply that CT carries less 
information about sex (and age) compared to GMV and FC.  
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Figure 4. Impact of confound removal on a model’s performance in (exemplary) comparison to tweaking neuroimaging 
features or learning algorithm. A) The impact of five different confound removal scenarios on the predictive performance 
(“vanilla”, scan-site, age, sex, sex&age) with features and learning algorithm kept constant as GMV and Linear SVR with 
L2 loss and heuristic hyperparameter C, respectively. B) Five examples of differently (tuned) algorithms, while both 
feature choice (GMV) and confound removal scenario (“vanilla”) were kept constant. C) Influence of feature choice 
(GMV, functional connectivity (FC), cortical thickness), with no confound removal (“vanilla”) and hyperparameter tuned 
ridge regression. The orange boxes mark the two models differing most in performance. 

To validate these findings, we additionally used confounders directly as features, with and without 
neuroimaging-derived features (Figure 5). Age and sex together as features (without “brain” features) 
outperformed models solely based on neuroimaging derived features (R2 = 0.60, r = 0.77, Figure 5C, left). 
Adding GMV or CT to “sex & age” or “sex” as confound-features did not improve accuracy (Figure 5B & 
C). Incorporating FC alongside these two confound-feature setups even resulted in slight performance drops 
(R2 = 0.37, r = 0.65 and R2 = 0.36, r = 0.64, respectively, Figure 5B & C, right). In contrast, all brain-derived 
features contributed meaningfully to age as a confound-feature (Figure 5A). These insights align with Figure 
4, emphasizing that the high performance of the HGS “vanilla” model is strongly driven by neural encodings 
of sex (and age) in the neuroimaging derived features. 
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Figure 5. Confounders as features with and without brain features. A) For age as confound-feature (left), adding GMV, 
cortical thickness or FC, respectively adds information and increases the predictive performance for the target. B) and C) 
For Sex or Sex and Age as confound features, none of the additional brain features adds information about the target, 
which can be seen in same or even reduced predictive accuracy. Note: Although the distribution for the predicted HGS in 
B looks categorical, r = 0.74 shows the Pearson correlation coefficient, as both, the true and the predicted HGS are 
supposed to be a continuous outcome. The impression of a categorical distribution even when adding brain information 
shows even stronger that the prediction is driven by sex information. 

While sex and age confounder adjustment significantly impacted predictive performance (r = .63 to r = 
.08), the most substantial difference due to feature or algorithm choice was only between GMV (r = .63) and 
CT (r = .36). This underscores that confounders can have a more pronounced impact on predictions than feature 
or learning algorithm selection. Selecting meaningful features and aligning algorithm choice with the assumed 
nature of the feature-target relationship is undoubtedly important. However, our results highlight that it is (at 
least) equally important to consider and understand the role of confounders in a predictive workflow. 

5. Discussion 

Precision medicine ML workflows are susceptible to context-dependent confounding influences. We 
differentiate between two overarching research endeavours, high-performance and pure link. Both require a 
nuanced understanding of confounders, either to avoid generalizability issues and identify potential covariate 
shifts (in high-performance case) or to determine the achievable purity of the problem space (in pure link case). 
We elaborated that such purity is difficult to achieve, if even reachable, in the case of biologically highly linked 
variables. To address the gradual nature of shared biology between potential confounders and a predictive 
problem space, we introduced a conceptual dimension of confound removal, ordering variables based on 
increasing biological link. This supplements statistical confounder evaluations by providing insights into 
biomedical implications of confound removal. The empirical HGS predictions underpinned the pivotal role of 
confounders in predictive workflows.  
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The substantial difference between the “vanilla” and the age-sex-adjusted model, raises the crucial 
question of which model is the correct one. Although this decision depends on the research endeavour (high-
performance vs. pure link), yet the interpretation must align with this decision. The high-performance vanilla 
model predicts HGS decently but does not allow a statement about the finding of neural encodings of HGS. 
Additionally, also in this high-performance setup, training and test distributions must match to avoid covariate 
shift and enable transition from development into clinical practice, counteracting the AI chasm. Conversely, 
the sex-age-adjusted model may show lower performance but elucidates that sex and age encodings in GMV 
drive linear predictions of HGS. Despite lower accuracy, such models can enhance the understanding of (in 
this example) brain function beyond biologically overlapping other behavioural and phenotypical measures. 
Removing the influence of relevant variables, such as sex, uncovers smaller underlying signals and unmasks 
the necessity for deeper investigations. In fact, the nested additive effect of age in the GMV-HGS prediction 
would not have been discerned without removing the influence of sex. 

The Confound Continuum aims to support informed confound removal decisions in a problem-
dependent manner, bridging the gap between statistical and conceptual perspectives. It emphasizes that 
biomedical and statistical validity are distinct concepts and connects confound removal to model interpretation. 
In the realm of biology, no variable exists in complete isolation from others. Certain datasets might create the 
impression of some variables being biologically unrelated, but this likely reflects the inherent limitations of 
any dataset, which can only capture a finite number of measured variables. Therefore, it is crucial to dissect 
the interconnectedness of biological variables from a bio-conceptual perspective and combine this perspective 
with statistical data-insights to derive valid models and corresponding interpretations – a bridge provided by 
the Confound Continuum.  

The necessity for integrating a bio-conceptual dimension with a statistical dimension of confound 
removal extends beyond neuroimaging predictive scenarios, being relevant for the entire domain of precision 
medicine. Despite successes in various prediction tasks, including cancer diagnosis and prognosis, 
inflammatory disease risk prediction, Alzheimer’s disease progression prediction, identification of 
hyperkalaemia from electrocardiograms or identification of genetic conditions from facial appearance63, the 
integration of AI in clinical practice still faces significant challenges. Most AI systems are far from achieving 
reliable generalizability, a prerequisite for clinical applicability63. For example, prognostic breast cancer 
models or predictive models for schizophrenia treatment outcomes only perform well in internal validation 
cohorts, but fail in external validation cohorts or trials64,65, i.e. the models fail to generalize to unseen data. 
This is problematic because accuracy achieved during model development does not necessarily represent 
clinical efficacy, particularly if high performances were achieved by neglecting confounder influences. While 
various factors contribute to failure in generalizability, confounding influences, such as technical differences 
between sites, variations in local clinical practices or differing demographics between patients in different 
hospitals, represent a major obstacle. Undoubtedly, high performance is crucial for constructing useful clinical 
AI systems. Nevertheless, there will be always a degree of uncertainty and error in predictive models, so that 
it is essential to understand the strengths and limitations of AI tools66. Recognizing the impact of confounders 
on predictive models and particularly their biological and clinical meaning, as supported by the conceptual 
dimension of the Confound Continuum, can contribute to a more nuanced understanding and future 
development of these tools. 

The present study has a limited statistical scope, focusing on correlations for the statistical Confound 
Continuum and linear regression for confounder adjustment. Exploring non-linear methods was not the 
intention as that can be found elsewhere (e.g.18). Although current non-statistical guidance for confound 
removal in brain-behavioural predictive modelling is limited, the conceptual considerations are not meant as a 
step-by-step guide to determine which confounders to remove. Future research in biomedicine or causal 
modelling may offer more specific guidance. Instead, it aims to raise awareness of the non-statistical 
biomedical dimension of confound removal, emphasizing the importance of appropriate model and results 
interpretation and of providing biomedical meaning and validity to predictive outcomes. 
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6. Conclusion 

In data-driven predictive models, confounder decisions often rely solely on statistical and historical criteria. 
We here want to stress the necessity of supplementing statistical approaches with domain expertise and 
biomedical knowledge. The introduced 2D Confound Continuum integrates statistical and conceptual 
considerations, aiding in assessing the statistical and biomedical role of specific confounders for a particular 
research question and predictive context. When a statistical relationship exists between a confounder and the 
feature(s)/target, both removing or not removing potential confounders holds validity. However, the chosen 
strategy must match the intended goal of the model and interpretation of outcomes must differ accordingly. 
While reaching high performances is important, reflecting on the meaning of a model and how it can help to 
improve the medical field and our understanding of biomedical mechanisms is at least as important. The 
Confound Continuum fosters such an overall perspective, supporting accurate model interpretation and 
discouraging uncritical model employment. 
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