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Abstract

Low-rank adaptation (LoRA) and its variants are widely employed in fine-tuning
large models, including large language models for natural language processing and dif-
fusion models for computer vision. This paper proposes a generalized framework called
SuperLoRA that unifies and extends different LoRA variants, which can be realized un-
der different hyper-parameter settings. Introducing new options with grouping, folding,
shuffling, projection, and tensor decomposition, SuperLoRA offers high flexibility and
demonstrates superior performance, with up to a 10-fold gain in parameter efficiency for
transfer learning tasks.

1 Introduction
Large neural network models are dominating machine learning recently with the emergence
of exceptional models, such as large vision models (LVMs) including Vision Transformer
(ViT) [10], ConvNeXt [33] and Stable Diffusion [19] for vision tasks, and large language
models (LLMs) including GPT [1], PALM2 [4], Gemini [3] and LLaMA2 [39] for natural
language processing (NLP). However, the increased resource consumption and data require-
ment along with model size limits its generalization on downstream tasks. To solve this,
Parameter-Efficient Fine-Tuning (PEFT) has been widely explored to fine-tune less param-
eters while retaining high performance. Among this, adapter-based techniques like LoRA
(Low-Rank Adaptation) [21] demonstrate advantages and flexible convenience.

© 2024. The copyright of this document resides with its authors.
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Figure 1: Schematic of SuperLoRA to fine-tune multi-layer attention modules at once with grouping,
projection, folding, and factorization.

LoRA [21] approximates the weight updates of the base model by approximating the
change ∆W of each weight matrix as the product of two low-rank matrices. This decreases
the required parameters from d2 to 2rd when r ≪ d, where d and r are weight size and
the rank, respectively. Most LoRA variants work on addressing the inherent low-rank con-
straint of matrix factorization, including LoHA (Low-rank Hadamard) [42], LoKr (Low-
rank Kronecker) [42], and LoTR (Low Tensor Rank) [5]. We discuss more related work in
Section 2. However, we find these variants can be nicely unified within our framework—
SuperLoRA—with different hyper-parameters as shown in Table 1. Our proposed Super-
LoRA framework is depicted in Figure 1, which also yields to some new variants: LoNKr
(Low-rank N-split Kronecker) and LoRTA (Low-Rank Tensor Adaptation). Additionally,
we introduce three extended options: 1) reshaping ∆W to any arbitrary multi-dimensional
tensor arrays before applying LoRA variants; 2) splitting all ∆W into an arbitrary number of
groups, which breaks the boundaries for ∆W across different weights; and 3) projecting fewer
number of trainable parameters into larger weights through a projection layer F(·) with fixed
parameters. Accordingly, SuperLoRA provides more flexibility and extended functionality,
controlled by a set of hyper-parameters listed in Table 2. Our contributions include:

• We propose a new PEFT framework SuperLoRA which gracefully unifies and extends
most LoRA variants.

• With projected tensor rank decomposition, SuperLoRA can adapt all weights across
layers jointly with a wide range of adjustable parameter amount.

• We investigate the effect of tensor reshaping, grouping, random projection, and shuf-
fling.

• We demonstrate high parameter efficiency for large ViT and diffusion models in two
image transfer learning tasks: image classification and image generation, and GPT-2
model in NLP task.

• Significant parameter reduction by up to 10 folds can be achieved.
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Table 1: Hyper-parameter settings in SuperLoRA and the re-
sultant LoRA variant.

hyper-parameters settings method
F = I, weight-wise, K = 1, Cg1 = I, M = 1 dense FT
F = I, weight-wise, K = 1, Cg1 = I, M = 2 LoRA [21]
F = I, weight-wise, K = 2, Cgk = I, M = 2 LoKr [42]
F = I, group-wise, G = 1, M > 2 LoTR [5]
F = I, group-wise, K > 2, Cgk = I, M = 2 LoNKr
F = I, group-wise, K = 1, M > 2 LoRTA

Table 2: Hyperparameters and nota-
tion.

notation description
r rank of factorization
F mapping function
ρ compression ratio
G number of groups
M order of tensor modes
K number of splits

2 Related Work

PEFT algorithms have been widely explored for transfer learning tasks in both computer vi-
sion [16, 22, 23] and NLP fields [12, 15, 24, 30, 31] as they not only save memory and time,
but also require much less data for fine-tuning. Thus, PEFT enables the efficient utiliza-
tion of capabilities from large pretrained models for tasks with limited data. Adapter-based
methods [7, 13, 20, 35], that freeze the base model weights and fine-tune only the additional
adapter parameters, stand out since their plug-and-play nature enables many downstream
tasks to share the same large model, while the adapter holds only the task-specific informa-
tion. The widely used method LoRA [21] and its extensions [14, 43] assume that the weight
correction term can be estimated by low-rank decomposition under the low-dimensional
manifold hypothesis.

Addressing the inherent low-rank constraint of matrix factorization in LoRA, LoHA [42]
divides ∆W into two splits and combines them with Hadamard product, and KronA [11]
combines the two splits with a Kronecker product to enlarge the overall rank. LoKr [42]
further extended KronA to convolutional layers. LoDA (Low-Dimensional Adaptation) [32]
extended LoRA by introducing nonlinearity. Our SuperLoRA can nicely generalize and
extend such variants.

Instead of approximating weight-wise updates, LoTR [5] jointly approximates all ∆W
across the model with careful handling to preserve the geometric meaning of each weight.
Differently, SuperLoRA relaxes the geometrically meaningful boundaries by caring the to-
tal number of parameters and splitting it to any number of groups. For high-order tensor
decomposition, LoTR employs more stringent Tensor Train Decomposition to deal with the
core tensor explosion, while SuperLoRA coupled Tucker Decomposition with a fixed pro-
jection layer. Besides, their proposed methods are restricted to context when ∆W is the same
high-order tensor, while with reshaping, LoRTA can be applied to any weight shape.

Most recent work [8] decomposes each convolution kernel into a learnable filter atom
and its non-learnable counterparts. The concept of filter atom is similar to the projection
layer of SuperLoRA. However, it works on each convolutional kernels separately, resulting
in a waste of parameters, while SuperLoRA considers the entire model jointly. Besides, the
atom coefficients are obtained from matrix factorization, while SuperLoRA uses a Fastfood
projection [28], which is faster, simpler and more theoretically justifiable to exploit intrinsic
dimensionality [2]. In addition, SuperLoRA can control the size of atoms directly while
atoms in their method are restricted in factorization.

Local LoRA [25] aims to reduce memory consumption at fine-tuning by splitting large
model into groups and then fine-tuning group-by-group sequentially, but no adjustment on
the LoRA structure was proposed. Instead, SuperLoRA focuses on how to split and assign
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LoRA for each group, which is a viable extension of Local LoRA.

3 SuperLoRA

3.1 Low-Rank Adaptation (LoRA)
LoRA [21] assumes the update ∆W of each weight matrix W for fine-tuning can be approxi-
mated by a low-rank mapping as ∆W = AB⊤ ([·]⊤ denotes matrix transpose), which is added
to the frozen weight matrix as shown in Figure 4(a):

W ′ =W +∆W =W +AB⊤, (1)

where A ∈ Rd1×r, B ∈ Rd2×r, and the rank is r. With a smaller r compared with the matrix
dimensions, it only requires (d1 + d2)r parameters for each weight matrix, while full fine-
tuning (FT) for dense ∆W ∈ Rd1×d2 results in d1d2 parameters. LoRA has been widely used
in fine-tuning large models as much less trainable parameters save memory usage at training
while retaining performance, making it easily adapted to downstream tasks.

3.2 SuperLoRA
Figure 1 shows the overview of SuperLoRA, which is a generalization of LoRA variants to
allow high flexibility in the weight update ∆W . SuperLoRA can be formulated as:

∆Wgroupg = F
( K⊗

k=1

(
Cgk ×1 Agk1 ×2 · · ·×M AgkM

))
, (2)

where F(·) is a simple projection function applied on the results of SuperLoRA modules.
We denote ×m as mode-m tensor product, and ⊗ as Kronecker product1. Here, M represents
the order of the reshaped weight tensor modes, and high-order Tucker decomposition [41]
is employed to formulate this high-order tensor, where Cgk ∈ Rr1×r2×···×rM is the M-D core
tensor and Agkm ∈ Rdm×rm are 2D plane factors. SuperLoRA units in Figure 1 are combined
with Kronecker product across K splits in a proper shape. Depending on reshaping, each split
has multiple choices including a combination of dense fine-tuning (FT: 1D), LoRA (2D), and
high-order Tucker decomposition (3D, 4D, etc.).

For SuperLoRA as depicted in Figure 1, we first concatenate all ∆W ∈Rdi×di across mul-
tiple layers to get the total correction of ∆Wall ∈R∑i d2

i . Then, ∆Wall is divided into g groups:
{∆Wgroupg} for g ∈ {1,2, . . . ,G}. Each LoRA module will then produce ∆Wgroupg . Finally,
stretch ∆Wgroupg to one dimension, fetch corresponding size of ∆W from those ∆Wgroupg and
add it to candidate weight matrix, e.g., query and value projection weights for attention mod-
ules across layers. Figure 2 shows the grouping mechanism which provides various options,
including weight-wise, layer-wise, and general grouping. Reshaping in Figure 2(c) can solve
the unbalanced fan-in/fan-out issue in Figure 2(b) when stacking multiple weights.

SuperLoRA can further modify the tensor arrays through a simple mapping F(·): e.g.,
we can project much smaller ∆Wlorag into larger final ∆Wgroupg to improve the parameter
efficiency. We use the Fastfood projection [2, 28] as shown in Figure 3, which is given by

∆Wgroupg = F(∆Wlorag) = vec[∆Wlorag ]H
′ diag[G]Π Hdiag[B], (3)

1Kronecker product: C = A⊗B, where A ∈ Rm×n, B ∈ Rp×q, C ∈ Rmp×nq
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Figure 2: Examples of grouping mechanism.
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where vec[·] is a vectorization operator, diag[·] denotes a diagonalization operator, H is left-
truncated Walsh–Hadamard matrix, H′ is its right-truncated version, G is a random vector
drawn from normal distribution, Π is a random permutation matrix, and B is a random
vector drawn from Rademacher distribution. The compression ratio for the projection F(·)
is ρ = |∆Wlorag |/|∆Wgroupg |, where | · | denotes the total number of elements of the tensor. It
is a fast Johnson–Lindenstrauss transform with log-linear complexity due to the fast Walsh–
Hadamard transform, and no additional parameters are required when the random seed is
predetermined. The projection also includes a shuffling variant as in Figure 2(e).

SuperLoRA and LoKr/LoNKr: LoKr is depicted in Figure 4(b), which can be extended
as shown in Figure 4(c). We call it LoNKr, which combines K splits composed of sub LoRA
units through Kronecker products: i.e., K > 2. When K = 2, it reduces to LoKr but with an
additional flexibility. For example, LoNKr can still adapt multiple attention modules at once
with an adjustable group size G, unlike weight-wise adaptation of LoKr.

SuperLoRA and LoTR: While LoRA estimates ∆W in a weight-wise independent way,
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SuperLoRA considers the whole weights ∆Wall jointly. It can relax the restriction of the
weight shape and geometric meaning of weight axis unlike LoTR. Here, the number of
groups can be adjusted to balance between parameter amount and fine-tuning performance.
When the number of groups is the number of weights and the group boundary matches the
weight boundary, it corresponds to weight-wise LoRA. When the number of groups is G= 1,
SuperLoRA corresponds to LoTR [5], but with an additional projection mapping F .

Reshaping to regular tensor: Grouping multiple layers together by concatenating ∆W
along one axis results in skew ∆Wgroupg , limiting the choice of ranks in LoRA modules and
leading to worse approximation. For example, stacking query and value weight updates as
[∆Wq,∆Wv] will be of size d1 × 2d2, which is less efficient for LoRA as A and B matrices
have unbalanced sizes. To solve this, we propose to reshape ∆Wgroupg to a regular tensor:
i.e., square-like 2D matrix, cubic-like 3D tensor, or high-order hyper-cubic tensors having
same dimension size across all axes. This reshaping can reduce the dimension per axis in
the order of O[N1/M] for N being the number of stacking weights, that in return can allow
higher rank size per plane factors. Several examples of grouping and reshaping are discussed
in Appendix A.3, and its geometric analysis in Appendix A.4.

LoRTA: Folding a matrix ∆Wgroupg into high-order tensor (e.g., 3D, 4D, 5D) can decrease
parameters with tensor rank decomposition, like Tucker decomposition, where ∆Wgroupg is
represented by M 2D plane factors and one MD core tensor. We refer to this variant of
SuperLoRA using Tucker decomposition as LoRTA. For example, when M = 3 and K = 1,
we have 3D tensor rank decomposition for ∆Wgroupg ∈ Rd1×d2×d3 as follows:

∆Wgroupg =CgK ×1 AgK1 ×2 AgK2 ×3 AgK3, (4)

where CgK ∈ Rr1×r2×r3 is a reshaped 3D core tensor, AgKm ∈ Rdm×r is a mode-m 2D plane
factor, and ×m denotes mode-m tensor product. For simplicity, we set a rank r = rm for any
mode m ∈ {1,2, . . . ,M}.

The core tensor may cause the explosion of parameters with larger rank as the number
of parameters is exponential as rM . This may be resolved by restricting the core tensor to be
strongly diagonal or identity. For instance, M = 2 with identity core tensor CgK = I corre-
sponds to the original LoRA, and M = r = 1 identity core tensor corresponds to the dense FT.
When using a diagonal core tensor, it reduces to Candecomp-Parafac (CP) decomposition.
Figure 7 shows the number of required parameters with CP decomposition. One can see
that higher-order tensor decomposition can significantly reduce the total number of trainable
parameters at a certain rank. We provide another solution without limiting the core tensor by
coupling with the projection layer F below.

Shuffling: Another simple projection is to use a shuffling function without compression.
It can be achieved by simplifying the fastfood projection without H, H′, G, and B but with
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the random permutation Π and projection ratio ρ = 1. As SuperLoRA updates all weights at
once, we have a flexibility in a way to distribute ∆Wgroupg towards which element of W . To
understand how the weight assignment method impacts, we consider a random shuffling case
for the projection function F . Several projection variants including shuffling are discussed
in Appendix A.6.

4 Transfer Learning Experiments

4.1 Classification transfer task
Transfer learning for image classification is conducted between ImageNet21k [9] and CI-
FAR100 [26] based on a ViT-base [10] model. More details of the ViT model are described
in Appendix A.1. The query and value projection layers in the attention modules are fine-
tuned with SuperLoRA. The model is trained for 5,000 steps with the stochastic gradient
descent (SGD) optimizer, with a batch size of 128 and a learning rate of 0.05. The OneCy-
cleLR [38] scheduler is used.

Classification results versus the number of parameters are shown in Figure 5 with Pareto
frontier lines. Comparing group-wise SuperLoRA (2D with/without reshape) with weight-
wise LoRA, we can find that SuperLoRA show better performance in terms of the trade-off
between classification accuracy and the number of parameters. Noticeably, we observe three
to four times advantage in terms of parameter efficiency for the same accuracy. As the largest
number of groups is set to 24 (i.e. LoRA), it indicates smaller number of groups are superior.
This may be because ViT model is excessively large for the CIFAR100 dataset, with much
more redundant weights. Grouping weights and layers together can reduce noise brought by
the redundancy. With reshaping ∆Wgroupg to a square matrix, classification accuracy further
increases in the lower parameter regime and the range of parameters the model can cover
becomes wider as higher rank can be used while maintaining a smaller number of parameters.

To examine the effect of higher-order tensor folding, the order M is set to be 3, 4 and 5 for
SuperLoRA (i.e. LoRTA) as well as 2. For M = 2 cases with 2D tensor, we use identity core
tensor like typical LoRA. With the increase of order from 2 to 5, higher order takes place
lower-order at fewer-parameter regimes. Moreover, data points for high-order LoRTA show
a hill-like trend with the increase of parameters. This may be caused by the inefficient core
tensor, which increases parameters rapidly without benefiting the accuracy. When comparing
the lowest rank LoRA (which achieves around 0.9 accuracy with about 4×104 parameters),
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our LoRTA (3D) significantly improves the accuracy by about 1% at the comparable number
of parameters, and more significantly reduces the number of parameters by 10 folds to keep
the comparable accuracy of 0.9.

Finally, we address the impact of the projection layer F(·). Fixed fastfoood projection
as in Figure 3 is applied on SuperLoRA. For 1D dense, the plot for a projection ratio of
{1,0.5,0.25,0.1,0.01} is placed from right to left in Figure 5. The classification accuracy
dropped less than 1% from projection ratio 1 to 0.1 (i.e. 90% less parameters), but it is worse
than LoRA. To get some results of projection for the number of parameters around 104 and
105, we select a few settings for SuperLoRA (2D, reshape) with G = 1 as shown in the figure
with a marker of dark stars. Most projection results demonstrate better accuracy compared
with other SuperLoRA settings without projection in the same number of parameters level.
This result shows a smaller adapter with fixed projection layer is a strong functionality to
improve the parameter efficiency of SuperLoRA.

We confirmed the remarkable gain of our SuperLoRA on a transfer learning task for
image classification with ViT models. In Appendix A.4, we further discussed the geometric
analysis of SuperLoRA, and grouping impacts in Appendix A.5. In addition, We evaluated
the advantage in another transfer learning task for image generation with diffusion models
in Section 4.2 and appendices A.9, A.11 and A.12.

4.2 Image generation transfer task

4.2.1 Settings

For the image generation task, SuperLoRA is evaluated by transfer learning between SVHN
[34] and MNIST datasets [29]. Both datasets have 10 classes corresponding to images of the
digits 0 to 9, where the SVHN images have a more complicated color background, while the
MNIST images are nearly black-and-white with black background. The generative model
is a classifier-free diffusion model [18] and more details can be found in Appendices A.2
and A.8. We focus on the transfer learning from SVHN to MNIST. The reverse transfer
learning from MNIST to SVHN is discussed in Appendix A.12. As we found ℓ1-distance
based IS is more consistent to the perceptual visual quality, we focus on IS metric results in
the main content, while the results for other metrics can be found in Appendix A.11. For
following figures, Pareto frontier lines/dots are mainly shown to provide the limit of each
method, while Appendix provides more complete figures with all data points.

4.2.2 Grouping effect

First, we evaluated how splitting all ∆Wall into multiple groups affects the performance.
Figure 9 shows the results of dense, original weight-wise LoRA and group-wise SuperLoRA
with different number of groups. Sweeping the rank and the number of groups, we plot the
image quality metrics in y-axis and the required number of trainable parameters in x-axis.
Pareto frontier lines/data points are also shown in the figure.

Figure 9 shows that the dense FT for ∆W presents the best IS, while requiring most pa-
rameters. Original weight-wise LoRA is closest to dense, in terms of both IS and parameter
amount. However, in low-parameter regimes, SuperLoRA (2D, group1), i.e. LoTR, shows
the best results compared with other grouping. While in the middle of parameter amount
axis, other splittings including groups G = 8 and 12 show slightly better IS compared with
LoRA. Besides, splitting ∆Wall yields much more tradeoff points compared with both LoRA
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Figure 8: SuperLoRA (LoNKr)
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Figure 10: BLEU scores

and dense, providing us higher flexibility to adjust the trade-off between quality and param-
eter efficiency especially when the memory resource is limited.

4.2.3 LoKr vs. LoNKr

In 2D ∆W , we also compared LoKr with our proposed extension LoNKr, a variant of Su-
perLoRA. We evaluated LoNKr when the number of splits is K ∈ {2,3,4}, where K = 2
corresponds to the original LoKr. For the dense factor on the left in LoNKr/LoKr as shown
in Figure 4(c), dimension is fixed to 6, 8 or 10. Figure 8 shows that more splits provide us
more choices in low-parameter regimes, especially for group-wise LoNKr. LoNKr shows
much more data points and better IS when the number of parameters is less than 5,000. And
the least parameter for LoKr and LoNKr dropped greatly from 500 to 150 as in Figure 31(b).

4.3 Transfer learning on LLM task
We also evaluated SuperLoRA on LLM task. Specifically, following LoRA’s settings, we
also evaluated SuperLoRA on the GPT2-M model and with the E2E NLG challenge dataset.

4.3.1 Comparison with other adapter-based methods

For SuperLoRA, we selected the hyperparameters that required least trainable parameters
while it can achieve comparable/better BLEU score. And the final metrics are obtained by
averaging the scores from 3 different seeds. As shown in Table 3, with 70% less trainable
parameters compared with LoRA, SuperLoRA still achieves better results in terms of all
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Table 3: GPT-2 medium with different adaptation methods on E2E NLG Challenge. For all metrics,
higher is better. * indicates numbers published in prior works, as compiled by Hu et al. [21].

Method # Trainable E2E NLG Challenge
Parameters BLEU NIST MET ROUGE-L CIDEr

FT* 354.92M 68.2 8.62 46.2 71.0 2.47
AdapterL* 0.37M 66.3 8.41 45.0 69.8 2.40
AdapterL* 11.09M 68.9 8.71 46.1 71.3 2.47
AdapterH* 11.09M 67.3±.6 8.50±.07 46.0±.2 70.7±.2 2.44±.01
FTTop2* 25.19M 68.1 8.59 46.0 70.8 2.41
FTWq,Wv 48.00M 69.4±.1 8.74±.02 46.0±.0 71.0±.1 2.48±.01
LoRA 0.40M 69.28±.01 8.73±.08 46.51±.00 71.4±.00 2.49±.02

SuperLoRA 0.12M 69.82±.00 8.76±.02 46.54±.00 71.5±.00 2.50±.01

metrics, BLEU, NIST, MET, ROUGE-L and CIDEr, demonstrating the efficiency of Super-
LoRA.

4.3.2 Exploration of SuperLoRA on GPT2-M model

As in image classification task, we evaluated SuperLoRA with many different hyperparame-
ter settings to span across the parameter axis as shown in Figure 10. Comparing Figures 5, 6
and 10, most observations are similar, except for dense with projection, larger compression
ratios can return a better BLEU score than smaller compression ratio in LLM task, while
the accuracy dropped with the increase of compression ratio in image classification tasks.
Results from other metrics and geometric analysis can be found in Appendix A.10.

5 Conclusion
We proposed a new unified framework called SuperLoRA, which generalizes and extends
LoRA variants. SuperLoRA provides some extended variants, which we refer to as LoNKr
and LoRTA. It offers a rich and flexible set of hyper-parameters, including the rank of factor-
ization, the choice of projection function, projection ratio, the number of groups, the order
of tensor, and the number of Kronecker splits. Through transfer learning experiments, we
demonstrated that SuperLoRA achieves promising results in parameter efficiency for fine-
tuning at low-parameter regimes. We could reduce the required number of parameters by 3
to 10 folds compared to LoRA. Future work includes studying the projection functions to
further improve the efficiency in extremely-low-parameter regimes.
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