
International Journal of Automation and Computing 04(3), July 2007, 281-293

DOI: 10.1007/s11633-007-0281-3

Time Complexity of Evolutionary Algorithms for

Combinatorial Optimization: A Decade of Results

Pietro S. Oliveto Jun He∗ Xin Yao
The Center of Excellence for Research in Computational Intelligence and Applications (CERCIA), School of Computer Science,

University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

Abstract: Computational time complexity analyzes of evolutionary algorithms (EAs) have been performed since the mid-nineties.

The first results were related to very simple algorithms, such as the (1+1)-EA, on toy problems. These efforts produced a deeper

understanding of how EAs perform on different kinds of fitness landscapes and general mathematical tools that may be extended to the

analysis of more complicated EAs on more realistic problems. In fact, in recent years, it has been possible to analyze the (1+1)-EA on

combinatorial optimization problems with practical applications and more realistic population-based EAs on structured toy problems.

This paper presents a survey of the results obtained in the last decade along these two research lines. The most common mathematical

techniques are introduced, the basic ideas behind them are discussed and their elective applications are highlighted. Solved problems

that were still open are enumerated as are those still awaiting for a solution. New questions and problems arisen in the meantime are

also considered.

Keywords: Evolutionary algorithms, computational complexity, combinatorial optimization, evolutionary computation theory.

1 Introduction

Evolutionary algorithms (EAs) are a wide class of ran-

domized problem solvers based on principles of biological

evolution. They have been used, often successfully, in many

computational areas such as Optimization, Learning, Adap-

tation and others[1]. Hence, there are lots of available ex-

perimental results concerning this class of algorithms, but

compared to that amount, the theoretical knowledge of how

they perform lags way behind. Indeed, the largest part of

the available research studies are of empirical nature. How-

ever, since the eighties when EAs started to become popu-

lar, there have always been theoretical studies of this class

of algorithms, albeit few.

Early studies were concerned with explaining the behav-

ior of EAs rather than analyzing their performance. The

Schema theory[2] is probably the most popular tool used in

these early attempts. In particular it was first proposed

to analyze the behavior of the simple genetic algorithm

(sGA)[3]. As Eiben and Rudolph stated when analyzing

these initial tools[4], although the schema theory was con-

sidered fundamental for understanding GAs up to the early

nineties, it “cannot explain the dynamical or limit behavior

of EAs”.

In the nineties, with the advent of Markov Chain the-

ory in the analysis of EAs, the first convergence results

appeared related to their time-limit behavior for optimiza-

tion problems. Since the state transitions of an EA are of

probabilistic nature, the deterministic definition of conver-

gence was obviously not appropriate. Hence definitions of

stochastic convergence had to be used[5]. Ideally the EA

Manuscript received date March 5, 2007; revised date May 31, 2007
This work was supported by an EPSRC grant (No. EP/C520696/1).
*Corresponding author. E-mail address: J.He@cs.bham.ac.uk

should be able to find the solution to the problem it is

tackling with probability 1 after a finite number of steps,

regardless of its initialization. In such a case the algorithm

is said to visit the global optimum in finite time. If the al-

gorithm holds the solution in the population forever after,

then it is said to converge to the optimum. Using Markov

Chains, Rudolph proved that canonical GAs using muta-

tion, crossover and proportional selection do not converge

to the global optimum, while elitist variants do[6]. Then he

extended his analysis by defining general conditions that, if

satisfied by an EA, guarantee its convergence[7]. The work

was motivated by the fact that it was “not necessary to

build a quantitatively exact Markov model for each vari-

ant of an evolutionary algorithm in order to investigate the

limit behavior”. Conditions for non-convergence were also

given. Hence, only when an EA does not satisfy the given

conditions is a specific analysis necessary. Another novelty

was that the intensive work concerning the convergence of

EAs had finally “led to simple proofs which do not require

Markov chain theory anymore”.

However, if an algorithm does converge, the analysis of

the time limit behavior does not give any hints about the

expected time for the solution to be found, far less any

precise statement. Aytug and Kohler performed an anal-

ysis of the number of generations which are sufficient to

guarantee convergence with a fixed level of confidence (i.e.

under a certain probability δ) independent of the optimiza-

tion function[8]. The obtained results have been improved

by Greenhalgh and Marshall[9]. Nevertheless, the best up-

per bound the analysis can guarantee is the same as that

of a random algorithm (RA) choosing random individu-

als independently in each generation[10]. The failure of

these approaches, to obtain useful bounds, confirmed the

282 International Journal of Automation and Computing 04(3), July 2007

idea that when analyzing the time complexity of problem-

independent search heuristics the function to be optimized

needs to be considered. Further confirmation of such an

idea came when Droste proved the existence of functions

for which the (1+1)-EA evolution strategy (ES) finds the

global optimum in time Θ(nn)[11]. Hence, the need of mea-

suring the performance of EAs on specific problems became

evident in the late nineties. In an overview of the field of

Evolutionary Computation in 1995, Yao states that to his

best knowledge a 1991 paper by Hart and Belew is the only

paper on the topic[12]. In particular, it appeared necessary

to use “standard” measures such as a relationship between

the size of the problem being tackled and the expected time

needed for the solution to be found. Beyer confirm stating

that “there were almost no results, before the mid-nineties,

estimating the worst-case expected optimization time of an

evolutionary algorithm working on some problem or esti-

mating the probability of obtaining within t(n) steps a so-

lution fulfilling a minimum demand of quality”[13].

As a consequence, an attempt was finally made towards

a systematical time complexity analysis that turns the the-

ory of EAs into “a legal part of the theory of efficient

algorithms”[13].

Due to their stochastic nature, the time complexity anal-

ysis of EAs is not an easy task. The first attempts are

related to basic EAs (such as the (1+1)-EA) on simple func-

tions with some structural properties. The goal of this ap-

proach was that of understanding what properties of a func-

tion make its optimization easy or hard for an EA. Choosing

simple pseudo-Boolean problems with “nice structures” it

was possible to[14]:

1. describe the behaviour of an EA on typical issues of

functions;

2. show some extreme behaviours of EAs;

3. disprove widely accepted conjectures;

4. compare different variants of EAs.

Following the above motivations, in 1998 Droste, Jansen

and Wegener, analyzed the (1+1)-EA on pseudo-Boolean

functions such as OneMax and bin[15]. Then, they extended

their results to linear functions by proving an upper bound

of Θ(n log n)[11]. In the same year Droste also analyzed,

again, the (1+1)-EA on unimodal functions disproving the

widely spread conjecture that EAs are efficient on all such

functions by producing an example for which the algorithm

takes exponential expected time[16]. Wegener and Witt, in

the the year 2000 proved that there are also quadratic func-

tions for which the expected optimization time of the (1+1)-

EA is exponential in the problem size n. The same year,

Jansen and Wegener analysed the algorithm on plateaus

of constant fitness values (i.e. short path problems(SPPs))

and proved that the (1+1)-EA can efficiently optimize such

functions in time O(n3)[17]. Furthermore they showed how

a (1+1)-EA, not accepting individuals with the same fitness

values, is not efficient on plateaus.

A further objective of these studies was that of obtain-

ing mathematical methods and tools that may prove to be

useful in the analysis of general EAs on more sophisticated

and realistic problems. This was necessary because it soon

turned out the use of Markov chains on their own was not

sufficient for the analysis. Some tools had to be imported

from the general field analyzing randomized algorithms[18]

and others were especially defined. An overview of the most

common tools used for the analysis of the described prob-

lems can be found in [14].

As a consequence of these preliminary efforts, nowadays

it is possible to analyze the (1+1)-EA on combinatorial op-

timization problems with “practical” applications. Further-

more some results about more realistic EAs having popu-

lations and crossover have also appeared. Such works have

become possible by using tools obtained in previous an-

alyzes directly, or by extending them to the new tackled

problems. However, in some cases, brand new tools seem

to be necessary.

A detailed overview of the first runtime results available

up to the late nineties can be found in [7]. Various open

questions in the nineties can also be found in [12]. Some

of the questions have been answered in the mean time. On

the other hand some are still open and new questions have

arisen. The aim of this paper is to extend the above re-

views by covering another decade in the time complexity

analysis of EAs. The most important achievements will be

given together with the ideas laying behind the most com-

mon mathematical tools used in the analyzes. The reader

may obtain a wider picture of how such tools are used by

studying the quoted references.

Without claiming to be complete we restrict our atten-

tion to combinatorial optimization problems with single ob-

jectives. Although such a restriction cuts out a lot of related

theoretical work, it helps in keeping focus on one general

topic without risking too much dispersion.

The paper is structured as follows. In section 2 the al-

gorithms considered in the paper are introduced. Section

3 describes the ideas behind the most widely used tools in

the runtime analysis of EAs. Section 4 is a survey of the

achievements that have been obtained in approximately a

decade of of computational complexity analyzes of EAs.

The section emphasizes the improvements since the late

nineties results of the (1+1)-EA for toy problems. The pa-

per ends with some conclusions and directions for further

research.

2 Evolutionary algorithms

There are several different types of EAs. The three most

popular branches are probably genetic algorithms (GAs),

evolutionary programming (EP) and evolution strategies

(ESs)[5]. Each type has numerous variants due to different

parameter settings and implementations. In this section the

EAs considered in this paper are presented.

Sometimes, in empirical work comparing different search

heuristics, it seems that an attempt is being made towards

P. S. Oliveto et al./ Time Complexity of Evolutionary Algorithms for Combinatorial Optimization: A Decade of Results 283

deciding which algorithm class is generally better than the

other. “The answer to the question which EA is the best, is

problem dependent. There is no universally best algorithm

which can achieve the best result for all problems. One of

the challenges to researchers is to identify and characterize

which EA is best suited for which problem”[12].

A general EA derived from ESs is the (µ + λ)-EA, that

creates λ new individuals in each generation and chooses

the best µ from the offspring and the parent population to

survive for the next generation. The standard algorithm,

with candidate solutions represented as bit-strings, works

as follows:

• Initialization: choose µ individuals x ∈ {0, 1}n ran-

domly as the initial population;

• Mutation: create λ new individuals. To create each

one choose x randomly from the parent population and

flip each bit in x with probability p;

• Selection: create the new population by choosing the

best µ individuals out of the µ + λ;

• Repeat the last two steps until a stopping criterion is

fulfilled.

The most simple and theoretically analyzed EA is the

(1+1)-EA which is obtained from the above algorithm with

µ = λ = 1. Sometimes a distinction is made between a

purely elitist (1+1)-EA and a (1+1)-EA accepting equal

valued individuals. The former algorithm accepts only in-

dividuals with strictly higher fitness values. The latter, in-

stead, also accepts individuals with the same fitness as its

predecessor. The mutation probability of p = 1/n is gener-

ally considered the best choice[19]. A similar algorithm that

just flips one individual per generation is called a random

local search (RLS) algorithm.

Common population-based evolution strategies are the

(µ+1)-EA and the (1+λ)-EA. The first has a parent popu-

lation of µ individuals and generates a new individual per

generation. The best µ individuals are chosen to survive.

Evolutionary algorithms that create one new individual per

generation are called steady state EAs. The second algo-

rithm creates an offspring population of λ individuals but

only the best, out of the λ+1, survives. A variant of this

algorithm is the (1, λ)-EA where the new individual is cho-

sen only from the offspring population. A (1, 1)-EA does

not make much sense as no selection mechanism is applied

at all, hence a random walk on the fitness landscape is ob-

tained.

Algorithms which are more similar to those used in prac-

tice are the (µ+λ)-EA and the (µ, λ)-EA or the (N+N)-EA

and the (N, N)-EA. It is not uncommon to use diversity

mechanisms with population-based EAs, to avoid prema-

ture convergence.

Other population-based EAs may use different selection

schemes, based on probability measures such as fitness pro-

portional selection or tournament selection[2]. If a crossover

operator is also applied to the parent population before the

mutation operator, then a genetic algorithm (GA) is ob-

tained. Popular crossover operators are one point crossover

an uniform crossover.

The one point crossover operator chooses a point i ran-

domly between 1 and the string length n. The bits from

positions i to n of the two bit-strings are swapped.

Given two individuals of the population x and x′, the

uniform crossover operator creates a new individual y by

setting each bit yi = xi with probability 1/2, and otherwise

it sets the bit to yi = x′i.
The algorithms described in this section are those that

are considered in the paper. Other branches of evolutionary

computation such as genetic programming (GP) and im-

munological algorithms (IAs)[20] are not covered because, to

our best knowledge, no time complexity results are available

yet. Other meta-heuristics such as ant colony optimization

(ACO) or particle swarm optimization (PSO) are beyond

the scope of this paper.

3 Mathematical tools

In general, if Xf is the random variable measuring the

time for the solution to be found by an EA for a certain

function f , then the run time analysis of a randomized al-

gorithm consists of[14]:

1. The estimation of E(Xf) in the best, the average and

the worst case;

2. The calculation of the success probability Pr(Xf ≤ t)

in the best, the average and the worst case.

Since EAs are stochastic processes with each state usu-

ally depending only on the value of the previous one, the

most straightforward and common method used to model

an EA is Markov chains. However it is not always easy to

derive explicit expressions, or time bounds, for the estima-

tion of the random variable Xf , directly from the transi-

tion matrix of a Markov Chain. This section first describes

a general Markov chain framework introduced by He and

Yao[21] together with its limitations. Next, tail inequali-

ties for the calculation of overwhelming success (or failure)

probabilities are discussed. At last the ideas behind the

most common methods used to simplify the analysis are

introduced.

3.1 A Markov chain framework

Let (Xt; t = 0, 1, ..) be an homogeneous absorbing

Markov chain, defined on state-space S. Then the matrix

of the probabilities of each state i to reach each state j in

one step, i.e. the transition matrix, can be written in the

following canonical form[22]

P =

I 0

R T

!
. (1)

Here T denotes the set of transient states, S−T the set of

absorbing states, and R the sub-matrix of the probabilities

284 International Journal of Automation and Computing 04(3), July 2007

of going in one step from each state i, with i ∈ T to each

state j with j ∈ S − T .

The matrix N = (I − T)−1 is called the fundamental

matrix of the absorbing Markov chain, and m = N1 is the

vector of the mean absorption times where each entry mi

is the expected time to reach the recurrent states when the

chain starts from state i[23].

Unfortunately for most transition matrices P , it is diffi-

cult if not impossible to invert the matrix (I−T) to obtain

the fundamental matrix, N .

An attempt of building a general framework for analyzing

the average hitting times of EAs by using the theory of

Markov chains was made by He and Yao[21]. In the paper

it is shown that when the matrix T is in a simple form (i.e.

a tridiagonal matrix or a lower triangular c) it is possible to

obtain an explicit expression for the vector m. For when it is

not possible or practical to derive bounds from the explicit

equations, conditions are given for deriving the hitting time

without the need of solving the linear system.

For a (1+1)-EA using elitist selection and any “proper”

mutation optimizing functions defined in the binary space

S = {0, 1}n, it is shown that the sub-matrix T of the canon-

ical transition matrix P is a lower triangular matrix. So the

first hitting time of the EA (i.e.the time to reach the ab-

sorbing states) is given by m = (I − T)−11, and explicit

expressions for each mi are derived.

By changing the selection scheme to elitist selection ac-

cepting equal-valued individuals, the sub-matrix T is not to

necessarily lower triangular, and it is shown that in some

special cases the matrix may be tridiagonal. In such cases

explicit expressions for m can be derived again. Unfortu-

nately, the case is related to an algorithm that just flips one

bit per generation. So the EA is reduced to a random local

search (RLS) algorithm.

A similar discussion can be applied to (N+N)-EAs with

any elitist selection scheme which always keeps the best

individual in the population. The transition matrix P as-

sociated with the EA is[21]

P =

0
BBBBBBB@

I 0 0 0 . . . 0

R10 T11 0 0 . . . 0

R20 T21 T22 0 . . . 0
...

...
...

...
. . .

...

RL0 TL1 TL2 TL3 . . . TLL

1
CCCCCCCA

(2)

and the first hitting times are given by

m1 = (I − T11)
−11,

mk = (I − Tkk)−1(Tk1m1 + . . . + Tkk−1mk−1),

k = 2, . . . , L.

(3)

“Since the matrix Tkk(k = 1, . . . , L) usually is not in

simple form, we cannot get an explicit solution to the

system”[21].

For non-elitist selection schemes only in special cases will

it be possible to easily invert the fundamental matrix, but

no general rules may be given. Again advantages can be

obtained if one-bit flipping mutation is considered. Such a

mutation scheme leads to a tridiagonal matrix. He and Yao

took advantage of this situation by analyzing all sorts of dif-

ferent selection schemes in a comparison between EAs using

only one individual against population-based EAs on dif-

ferent pseudo-Boolean functions[24]. However, the explicit

application of Markov chains was possible because only 1-

bit flips were used leading to tridiagonal matrices which are

not too difficult to invert. Nevertheless, the calculations are

not simple.

The general limitations, described above, in deriving ex-

pected time expressions from the transition matrix high-

light the necessity of introducing other randomized algo-

rithm analysis tools that may be used as “tricks” to gather

information about the Markov process without having to

build the exact Markov chain model.

3.2 Tail inequalities

As described in the previous section, an important issue

in the analysis of a randomized algorithm is the calculation

of the success probability. Given a random variable Xf (for

example the expected time for an event to occur such as

the global optimum having been found), it can frequently

occur that it assumes values that are quite higher than its

expectation. For such a reason it is more interesting to

find expected run times that occur with high probability

rather than just their expectation which may be smaller.

Given a deviation, tail inequalities are tools that estimate

the probability that a random variable deviates from its ex-

pected value of the amount defined by the deviation[18]. In

the analysis of EAs, tail inequalities “are useful to turn ex-

pected run times into upper time bounds which hold with

overwhelming probability”[14]. Moreover, they can be used

for deriving bounds of intermediate “important” events in

the analysis of the optimization process that occur with

high probability since “for many intermediate results, ex-

pected values are useless”[14].

Markov inequality. The fundamental tail inequality,

which is also the basis for the others is the Markov

inequality[18]: Let X be a random variable assuming only

non-negative values, and E[X] its expectation. Then for all

t ∈ R+,

Pr[X ≥ t] ≤ E[X]

t
. (4)

The Markov inequality is usually not strong enough to

lead to useful results by itself, so other tail inequalities are

derived from this one if extra information on the expecta-

tion is considered.

Chebyshev′s inequality. Chebyshev′s inequality de-

rives from the Markov inequality by using the property that,

with a small variance, large deviations from the expectation

are unlikely[25]: Let X be a random variable, E[X] its ex-

P. S. Oliveto et al./ Time Complexity of Evolutionary Algorithms for Combinatorial Optimization: A Decade of Results 285

pectation, and V [X] its variance. Then for all t > 0,

Pr(|X − E[X]| ≥ t) ≤ V [X]

t2
. (5)

Chernoff′s inequalities. Let X1, X2, . . . Xn be indepen-

dent Poisson trials (i.e. taking values in {0,1}) such that,

for 1 ≤ i ≤ n, Pr(Xi = 1) = pi. Then, for X =
Pn

i=1 Xi

the expectation E(x) =
Pn

i=1 pi and

1. for 0 ≤ δ ≤ 1

Pr(X ≤ (1− δ)E[X]) ≤ e
−E[X]δ2

2 . (6)

2. for δ > 0

Pr(X > (1 + δ)E[X]) ≤
»

eδ

(1 + δ)1+δ

–E[X]

. (7)

Chernoff′s inequalities or “exponential” inequalities, are

used for obtaining considerably sharper bounds on the tail

probabilities[18]. They are the most used inequalities in the

time complexity analysis of EAs, as they show how a bi-

nomially distributed variable is very close to its expected

value and they “permit to produce an estimate with ex-

pected values as “true” values”[14].

3.3 Artificial fitness levels

When, in the mid-nineties, the first runtime analyzes of

EAs were performed, the study of the (1+1)-EA was a nat-

ural choice. Although it is different compared to EAs often

used in practice, its analysis is important for the following

reasons[26]:

1. The (1+1)-EA is very efficient for a large number of

functions;

2. The (1+1)-EA can be interpreted as a randomized hill-

climber that can not get stuck forever on a local opti-

mum;

3. The analysis of the (1+1)-EA reveals tools that can be

used in the analysis of more complex EAs.

The most natural method spawned in the first runtime

analyzes is artificial fitness levels. On pseudo-Boolean func-

tions of unitation, the fitness value depends on the number

of ones in the bit-string representing an individual, but not

on their position. In analyzing the algorithm on such func-

tions, it was natural to partition the space in sets depending

on the number of ones of a bit-string. Later, the method

was extended to be used in more general settings rather

than just with unitation functions. A description of the

general method follows.

Artificial fitness levels consist of creating a partition of

the search space based on the fitness function. Rather than

considering the whole search space S as a set of |S| = n

different states, it is divided into m < n states A1, . . . , Am,

such that for all points a ∈ Ai and b ∈ Aj it happens that

f(a) < f(b) if i < j. Thus, Am contains only optimal search

points.

In such a way, the Markov chain can be constructed con-

sidering only m different states rather than n. Apart from

providing a smaller Markov chain transition matrix, artifi-

cial fitness levels lead to simplified calculations.

Just by using artificial fitness levels the O(n log n) upper

bound of the (1+1)-EA for OneMax can be obtained[11].

The proof of the lower bound is less straightforward. In

order to prove a lower bound of Ω(n log n), it is necessary

to show that with overwhelming probability the algorithm

takes at least cn log n steps to reach the optimum with c a

positive constant. By using Chernoff bounds it is proved

that with exponentially high probability the starting point

has less than 2n/3 ones. The rest of the proof shows that

Ω(n log n) steps are necessary to flip the remaining n/3 zero

bits into one bits at least once[11]. The latter part of the

proof is inspired by the coupon collector′s problem.

3.4 The coupon collector′s problem

The coupon collector′s problem is used very often in the

analysis of EAs when it is necessary to derive a lower bound

for a given number of bits to be chosen at least once. The

problem is defined in the following way[18]:

“There are n types of coupons and at each trial one

coupon is chosen at random. Each coupon has the same

probability of being extracted. The goal is to find the exact

number of trials before the collector has obtained all the n

coupons”.

Let us consider a Markov process with states

S0, S1, . . . , Sn and let the process be in state Si when i

different coupons have been collected. If one coupon is

obtained in each step, then the probability at state Si of

reaching state Si+1 is Pi+1 = i/n. Then, since the expecta-

tion is E = 1/P , the expected time for all the coupons to

be collected is[18]

E(X) =

n−1X
i=0

n

n− i
= n

n−1X
i=0

1

i
= n log n + O(n). (8)

The coupon collector′s theorem states that the value of

X is sharply concentrated around its expected value with

overwhelming probability:

The coupon collector′s theorem. Let X be the ex-

pected time for all the coupons to be collected. Then[18]

lim
n→∞

Pr[(n log n−cn) ≤ X ≤ (n log n+cn)] = e−e−c−e−ec
.

(9)

As the value of c increases the probability reaches rapidly

1, centering the coupon collector′s expected time in a very

small interval around the value of n log n. Furthermore, the

bound for not too small n are very close to the bounds in

the limit[14], validating proofs for large enough n.

So by considering zero bits as missing coupons and one

bits as collected ones, the idea has been applied to the anal-

ysis of the (1+1)-EA for OneMax. However the algorithm

286 International Journal of Automation and Computing 04(3), July 2007

may flip more than one bit in each generation, meaning that

in each trial more than one coupon is obtained, hence the

coupon collector results may be applied, but not in their

original form. Since their first appearance, artificial fitness

levels and the coupon collector′s problem have frequently

been applied to the analysis of EAs[14].

3.5 The gambler′s ruin problem

When, the function′s landscape contains a plateau of con-

stant fitness, and the EA needs to cross it to reach the

global optimum, then it is forced to do a random walk

on the plateau. This occurs because the algorithm cannot

be driven towards the optimum by increasing fitness val-

ues. Big plateaus, such as those of the Needle-in-a-haystack

problem, lead to exponential run times[27]. Surprisingly, if

the plateau is not too large the (1+1)-EA accepting equal

valued individuals has a good performance. This result has

been obtained by applying the gambler’s ruin theory[25] to

the analysis of EAs.

The gambler′s ruin problem, derived from classical prob-

ability theory, was introduced in the analysis of EAs

by Jansen and Wegener when analyzing the (1+1)-EA

on plateaus of constant fitness of short path problems

(SPPs)[17]. By following similar ideas they were able to

derive a polynomial upper bound for the expected time to

optimize the SPP. Subsequently it was again found use-

ful, for similar goals, by Giel and Wegener when analyzing

the same algorithm on instances of the maximum matching

problem[28] and by Oliveto for vertex cover instances[29].

The problem is formalized as follows[25]:

“Consider a gambler who wins or loses a dollar with prob-

ability p and q respectively. Let his initial capital be z and

his adversary’s capital be a − z. The game continues until

the gambler or his adversary is ruined. The goal of the ruin

problem is to find the probability of the gambler’s ruin and

the probability distribution of the game”.

If qz is the probability of the gambler′s ruin, hence pz =

1− qz the probability of his adversary′s ruin, then[25]

1. if p 6= q

qz =
(q/p)a − (q/p)z

(q/p)a − 1
(10)

2. if p = q = 1/2

qz = 1− z

a
. (11)

In[25] the following, formulae for the expected duration of

the game are also derived. Let Dz be the expected duration

of the game. Then

1. if p 6= q

Dz =
z

q − p
− a

q − p

1− (q/p)z

1− (q/p)a
(12)

2. if p = q = 1/2

Dz = z(a− z).

However these expectations are seldom used in the anal-

ysis of EAs. Usually it is preferred to estimate the duration

of the game by which at least the number of trials guar-

anteeing the adversary′s ruin have been accomplished with

sufficient probability (i.e. constant).

The (1+1)-EA is modeled on plateaus by considering the

conditional probabilities of steps moving towards the global

optimum as the gambler winning a bet and those of moving

away from the optimum as the gambler losing a bet. The

ruin problem considers that in each step one dollar may be

won or lost. Attention has to be paid when applying the

ruin ideas to the step length which for the (1+1)-EA varies

according to the number of bits that are flipped, hence more

than one dollar may be won or lost in each step.

3.6 Potential functions

Sometimes, partitioning the space (i.e. artificial fitness

levels) is not sufficient to obtain useful time bounds. Po-

tential functions are a “straightforward generalization of the

proof technique of artificial fitness layers”[30].

Potential functions consider a different distance heuris-

tic to measure the distance of the current solution from

the optimum rather than using the fitness function val-

ues. In other words, the EA uses the fitness function to

decide whether to accept the new solution at the next step,

while the analysis uses the potential function to measure

the algorithm′s progress. A Markov process that is slower

than the actual one is analysed in order to obtain an upper

bound for the optimization time. Obviously if the upper

bound is correct for a slower process it is still correct for a

faster one.

Originally the potential functions method was introduced

in the theory of EAs by Droste to obtain an O(n log n)

upper bound for the (1+1)-EA in the optimization of lin-

ear functions[15]. The method also turned useful for upper

bounds of the (µ+1)-EA for pseudo-Boolean functions such

as leading ones and OneMax[30]. For instance, in the proof

of the upper bound for leading ones, the potential function

at time t returns the maximum leading ones value out of all

the individuals of the population at time step t. Then the

probabilities that the potential is increased at each step and

the number of times the potential needs to be increased, be-

fore it is guaranteed the optimum has been found, have to

be estimated. Further details may be found in [14].

3.7 Typical run investigations

Typical runs have been introduced in the analysis of EAs

following the consideration that the “global behavior of a

process” is predictable with high probability contrary to the

local behavior which, instead, is quite unpredictable. For

instance, the result of just one coin toss is not easy to state

(i.e. if it will be a head rather than a tail), but it is possible

to get very tight bounds on the number of heads that have

appeared after a large number of coin tosses, allowing for

an exponentially small error probability.

The idea behind typical runs is that of dividing the pro-

P. S. Oliveto et al./ Time Complexity of Evolutionary Algorithms for Combinatorial Optimization: A Decade of Results 287

cess into phases which are long enough to assure that some

event happens with very high probability. Hence, each

phase has an exponentially low probability of failing (the

failure probability), meaning that with very low probabil-

ity the considered event does not happen in the considered

phase. Following such a sequence of events, the last phase

should lead the EA to the global optimum with exponen-

tially small failure probability. As a result, it can be proved

that in a typical run the algorithm finds the global optimum

in a time that is lower than the sum of each phase time.

Typical run investigations occur very often in run time

analyzes of EAs, combined with Chernoff bounds used to

obtain the failure probabilities. Examples are the exponen-

tial time bound for the (1+1)-EA on the trap function[27]

and the proof that the use of crossover can, at least

sometimes, reduce the run time from super-polynomial to

polynomial[31].

3.8 Drift analysis

Drift analysis, deriving from the theory of Martingales,

was introduced in 1997[32] as a model for estimating the

computational time of EAs, and published in 2001 by He

and Yao[33].

Martingales have been used in the nineties to prove the

convergence of EAs using non-elitist selection strategies[7].

Let Sopt be the set of populations containing the optimal

solution of an optimization problem, S the set of all pos-

sible populations, and d(Xt) a function for measuring the

distance from population X to Sopt, at time-step t. Then

the one-step mean drift at generation t is[33]:

E[d(Xt)− d(Xt+1)] :=
X
X∈S

“
d(Xt)− d(Xt+1)

”
· P (Xt, Xt+1; t).

(13)

If E[d(Xt) − d(Xt+1)] ≥ 0 ∀X ∈ S then the distance

function d(Xt) is a super-martingale.

The idea behind drift analysis is that if the distance of

the current solution from the optimal one is d and “the drift

towards the optimal solution is greater than ∆ at each time

step, we would need at most d/∆ time steps to find the

optimal solution. Hence the key issue is to estimate ∆ and

d”[33].

The main motivation in the concept of drift analysis is

that it may often be easier to estimate the drift of a random

sequence rather than the first hitting times directly from the

Markov chain. Obviously it is still necessary to model the

EA as a random sequence, for instance with Markov chains.

In [33] and [34] drift conditions are given to determine

whether the average time complexity of an EA to solve a

given problem is polynomial or exponential in the problem

size. The most general ones, for polynomial time, are de-

scribed in the following[33].

Let {d(Xk); k = 1, 2, } be a distance function giving the

distance of population X at time step k from the global

optimum.

Condition 1. For any given population X, there exists

a polynomial of the problem size n, h0(n) > 0 such that

d(X) ≤ h0(n).

Condition 2. For any time k ≥ 0, if the population Xk

satisfies d(Xk) > 0, then there exists a polynomial of prob-

lem size n, h1(n) > 0 such that

E[d(Xk)− d(Xk+1)] ≥ 1

h1(n)
. (14)

If d(x) satisfies conditions 1 and 2 then the expected first

hitting time to reach the optimal solution is bounded from

above by a polynomial function of the problem size.

Similarly the lower bound of the first hitting time is es-

timated by bounding the one-step mean drift from above.

The main advantage of drift analysis over Markov chains

is that the former overcomes the difficulties in deriving the

time expressions from complex transition matrices and that,

being a more general tool, there are less restrictions to the

algorithms and problems it can be applied to. The two key

issues in applying drift analysis are those of defining a good

distance function and estimating the mean drift. On the

other hand, the generality of these two steps may require

a higher mathematical confidence than that needed in the

application of Markov chains.

He and Yao have shown how results of the analysis of

EAs, previously proved by using other methods, could have

been obtained with the drift analysis technique and they

have extended the analysis of functions such as linear func-

tions and long path problems to population-based EAs

rather than just analyzing the (1+1)-EA. They have also

shown how by using drift analysis it is possible to obtain

bounds for an EA with crossover on instance classes of the

NP-hard subset sum problem[33].

The importance of carefully choosing the distance func-

tion is highlighted in [34]. He and Yao show that consider-

ably different bounds are obtained with different distance

functions and the most intuitive choice is not always the

best.

Furthermore, drift analysis has proved to be a very pow-

erful and useful tool for proving exponential lower bounds in

all sorts of recent work related to classical combinatorial op-

timization problems. An example is the analysis performed

by Giel on instances of the maximum matching problem[28].

3.9 Family trees

Family trees have been found particularly useful for de-

riving lower bounds (but not only) for population-based

EAs, in particular the (µ+1)-EA[30]. A family tree Tt(x)

contains an individual x as the root and all the descen-

dants of x at time t. Obviously T0(x) contains only the

root x. Although all the nodes in a family tree are differ-

ent individuals, they may represent the same string. The

idea behind the method when used for the obtainment of

lower bounds is that, with overwhelming probability, the

tree has to have at least a certain depth for the optimum

to be found. Then the proof consists of calculating the

288 International Journal of Automation and Computing 04(3), July 2007

time needed for a tree of such depth to be created. Family

trees are a powerful tool introduced in the field analyzing

EAs especially for examining population-based ones. The

technique is not limited to the analysis of the (µ+1)-EA.

“The most interesting direction seems to be an extension

to (µ+λ) strategies by a combination of existing theory on

the (1+λ)-EA”[30],

4 A decade of results

This section discusses the state-of-the art concerning the

computational complexity of EAs. Subsection 4.1 considers

the improvements of population-based EAs analyzes and

describes the reasons the recent research work in this area

and points out the limitations of the current knowledge.

Subsection 4.2 focuses on the improvements achieved con-

sidering EAs for classical combinatorial optimization prob-

lems.

4.1 From an individual to a population

In a similar manner to the analysis of the (1+1)-EA, the

first theoretical results for population-based EAs were ob-

tained for functions with “nice” structures. The idea was

to understand when a population or the crossover opera-

tor could be beneficial. The first analyzes were motivated

from the conjecture that GAs were supposed to outper-

form (1+1)-EAs but no theoretical proofs were available.

In particular there was a necessity of proving the existence

of a family of functions on which GAs perform better. An-

other direction in the analysis of population-based EAs has

been to consider different evolution strategies (ESs) rather

than approaching GAs directly. In the following subsections

these two research lines will be considered separately.

4.1.1 When populations are beneficial

When comparing single-individual EAs against popula-

tion based ones, the analysis has to take into account that

the former algorithms may use restart strategies. Apart

from fairness in the comparison this is also necessary be-

cause in practice EAs may be restarted after some time. In

1998 Rudolph stated that “it is easy to see that an EA with

larger population size cannot be worse than the (1+1)-EA

with respect to the number of iterations”[7]. However, the

number of generations is not a fair performance measure for

the comparison, while the number of fitness evaluations is

an appropriate one.

In 1999 Jansen and Wegener presented, for the first time,

an analysis of a function (i.e. JUMPm) that can be op-

timized in a more efficient way with the use of uniform

crossover compared to an EA that does not use it, if replica-

tions of individuals in the population are avoided[31]. Typ-

ical run investigations and results of the coupon collector′s
problem are useful in the analysis. The problem of whether

populations alone could be beneficial remained open.

In 2001, Jansen and Wegener extended their results by

producing a class of functions for which a population-based

EA, without the use of crossover, takes polynomial time

for its optimization. On the other hand, the (1+1)-EA

takes super-polynomial optimization time[35]. In order to

obtain their results, they have to avoid that the population

does not converge too rapidly. The algorithm satisfies the

condition if a diversity measure is applied. There are two

possibilities: avoidance of duplicates and avoidance of repli-

cations. The latter diversity mechanism only assures that

every child has at least one bit mutated in each generation.

This is the mechanism used by the algorithm. Again, it is

interesting to point out that typical runs are often useful in

these analyzes.

Classes of royal road functions for which an EA (i.e. a

steady-state GA), with the use of uniform crossover and

one point crossover, outperforms any evolution strategy

(i.e. polynomial time against exponential time) are also

presented by Jansen and Wegener the same year[36]. Witt

introduced functions for which, by increasing the popula-

tion size, the run time improves from exponential to polyno-

mial without the use of diversity mechanisms or of crossover

(The best gap proved previously was super-polynomial vs

polynomial)[37]. However, examples with reverse run-times

are also given. In 2003 Storch and Wegener introduced new

royal road functions for which the same previous results

can be obtained but with the minimum population size of 2

individuals[38]. He and Yao, in 2002, presented another pa-

per proving how a population may be beneficial over single

individuals on all sorts of pseudo boolean toy problems[24].

This time the results are obtained through careful selection

strategies, although just 1-bit flips are used.

The above described results prove that sometimes popu-

lations and/or crossover may be useful by showing function

classes for which a combination of a certain population size

and a well chosen crossover operator provide a better per-

formance. But it is still not very clear when and how to

choose the population size or the crossover operator. Also,

there are numerous examples of when they are not useful

at all. Hence, the question of whether it is “normal” to

encounter the former landscapes in real-world applications

remains open. However empirical results seem to suggest

that they should be preferred.

4.1.2 Population-based evolution strategies

Another direction in the analysis of population-based

EAs has been that of considering different kinds of evolution

strategies (ESs) rather than approaching directly the GA.

Jansen analyzed the (1+ λ)-EA on leading ones and One-

Max and extended their results empirically to other more

complicated benchmark functions[39]. “Unfortunately the

analyzes presented here are not capable of making strong a

priori predictions regarding the appropriate value of λ for

an arbitrary landscape”. Still considering offspring popula-

tion ESs, Storch and Jägerskupper, instead, compared the

(1+λ) and the (1,λ) strategies and proved that not only

are there some values of λ for which the comma strategy

performs at least as well as the plus strategy, but may also

outperform it on some functions[40]. An extension, of the

artificial fitness levels method is introduced for the analysis.

On the other hand, Witt analyzed the (µ+1)-EA on well

known pseudo-Boolean functions (i.e. OneMax, Leading

P. S. Oliveto et al./ Time Complexity of Evolutionary Algorithms for Combinatorial Optimization: A Decade of Results 289

Ones, and SPPs) and produced an example for which the

algorithm is more efficient than the (1+1)-EA[30]. However

on the “classic” pseudo boolean functions no benefit was

found either for the “offspring” population ES or for the

“parent” population one. At least the function for which

populations give a drastic improvement is more complicated

than the other analyzed ones, partially confirming the em-

pirical conjecture. While the proofs of the upper bounds

usually use the potential functions technique, the family

trees approach is introduced for the obtainment of the lower

bounds.

The above results reveal a necessity of analyzing

population-based EAs on problems that may be more simi-

lar to real-world applications. Straightforward examples are

classical combinatorial optimization problems having prac-

tical applications. If a population-based EA performs bet-

ter than a single-individual EA on “difficult” combinatorial

optimization problems, then there may be a good chance

that they perform better on difficult real life applications.

However, except for He and Yao′s analysis of a (2N+2N)-

EA with crossover on some instances of the subset sum

problem[33], the few available results are related to problems

in P . Such results will be discussed in the next section.

4.2 From toy problems to classical prob-
lems

Randomised search heuristics are robust problem-

independent search algorithms. They are designed for the

following practical reasons[16]:

1. some problems in realistic applications need to be

solved quickly, and often there are not enough re-

sources in terms of money, time or knowledge to con-

struct a problem-dependent algorithm.

2. the function that needs to be optimized may not be

known, and only by sampling the search space may

some knowledge about the problem be gained.

The above goals reveal the necessity of designing

problem-independent algorithms even though an algorithm

especially constructed for solving a problem should work

better. Hence the focus is on designing heuristics which

should work well on large classes of problems. Concern-

ing their theoretical analysis, it is not possible to study the

algorithms′ performance on “unknown” functions. So, their

behavior has to be analyzed on large classes of functions and

on well-known combinatorial optimization problems with

practical applications. Both positive and negative results

can help understanding on what kind of problems an algo-

rithm may perform better or worse, hence help practition-

ers in choosing the heuristic and in setting the parameters.

Furthermore, EAs are often used for solving combinatorial

optimization problems because they are easy to use and em-

pirical results suggest their performance is often successful.

The analysis of the (1+1)-EA on pseudo-Boolean func-

tions may be criticized because the problems tackled by

the algorithm are not realistic enough. Neither is the al-

gorithm, not having populations far less a crossover oper-

ator. The main justification for such analyzes was that

the “structured” problems gave insights on the behavior of

the algorithm and that useful tools for more complex ana-

lyzes would be obtained. In fact, nowadays, some results on

“classical” combinatorial optimization problems have ap-

peared.

It is generally agreed that an algorithm is “efficient” if

its expected time is bounded above by a polynomial func-

tion of the problem size. When tackling a problem with an

algorithm the first question requiring an answer is whether

the algorithm can efficiently find the solution. If a prob-

lem is in the P class[41], then there exists an algorithm that

solves it efficiently. If it cannot be expected that an EA

may outperform the problem-specific algorithm, it should

be at least efficient on “easy” problems.

On the other hand, if a problem belongs to the NP-Hard

class[41], then it is not expected that an algorithm can find

the solution of every instance of the problem efficiently, un-

less P = NP which is unlikely. In this case the interest is

turned to the quality of the approximate solution the EA

can guarantee on the problem given polynomial time. In

other terms, given any instance of the problem, how worse

will the solution the EA delivers be compared to the global

optimum? If it is not expected that an algorithm performs

well on some instances of an NP-Hard problem, this does

not exclude the possibility of it performing well on the rest.

Hence, average case analyzes are also of great interest.

Once the above questions are answered comparison with

problem specific algorithms and with other heuristics may

be attempted.

4.2.1 Problems in P

The problems of sorting a sequence of elements and that

of finding shortest paths in graphs are basic but impor-

tant computer science problems. The (1+1)-EA can ef-

ficiently sort a sequence of n elements in expected time

Θ(n2 log n)[42]. The algorithm mutates individuals by ex-

changing the positions of two randomly chosen elements

(exchange operator). The algorithm is also efficient if it

mutates an individual by moving an element to a different

position and shifting the ones after that place (jump opera-

tor). On this problem the importance of choosing the fitness

function carefully is highlighted. Scharnow[42] analyze the

performance of the algorithm by using different measures

of presortedness and prove that a bad choice leads to expo-

nential run-times. As previously conjectured the algorithm

performs worse than Quicksort or Mergesort but is efficient

anyway for sorting. Matters become worse when consider-

ing the problem of finding shortest paths between a source

and the other vertices of an undirected graph. It is pointed

out by Scharnow that the (1+1)-EA can get trapped in a

landscape similar to that of a needle-in-a-haystack, hence

the expected time, in such a case, is exponential. The

authors prove that by modeling the problem as a multi-

objective optimization problem the time can be bounded

by O(n3). The n− 1 objectives are to minimize the lengths

290 International Journal of Automation and Computing 04(3), July 2007

of each of the n− 1 paths. Modeling single-objective prob-

lems as multi-objective ones has also been considered for

spanning trees[43] and for vertex covers[44].

So the (1+1)-EA is not always efficient for “easy” prob-

lems, although by changing the algorithm slightly, the run-

times may vary considerably. This can be noticed again

for the Eulerian cycle problem. By using the canonical ex-

change operator, the (1+1)-EA has exponential expected

runtime, while with the jump operator, it is O(m5), with

m being the number of graph edges[45]. Doerr reduce the

bound to O(m3) by modifying the jump operator[46]. They

also prove the existence of classes for which the bound is

tight. Recently, two different kinds of graph representation

have been studied. In this way, firstly, the expected runtime

has been lowered to Θ(m2 log m)[47]. Secondly, by consid-

ering adjacency lists representations, the expected runtime

has been further reduced to Θ(m log m)[48].

Another problem in P for which the (1+1)-EA is not effi-

cient is the maximum matching problem as proved by Giel

and Wegener [28]. They prove that the (1+1)-EA is a PRAS

(i.e. a (1 + ε)-Approximation algorithm for the problem).

In particular, the expected time to guarantee the approxi-

mation is O(m2d1/εe) for ε > 0. They use augmenting path

ideas from the theory of maximum matchings to obtain the

above result. Furthermore, they prove the existence of in-

stances for which the expected exact optimization time is

exponential in the problem size. A crucial tool for the expo-

nential time result is drift analysis, while the gambler ruin

problem proves to be useful when analyzing other instance

classes.

Expecting polynomial upper bounds for “easy” problems

does not seem to be exaggerated even when the problem is

considered one of the most difficult in P . It would be in-

teresting to understand whether populations and crossover

may lead to improved time bounds, although the authors

conjecture they will not.

Matters get better when considering the spanning tree

problem. Neumann and Wegener prove a bound of

Θ(m2 log n) for the (1+1)-EA as long as the edge weights

are polynomially bounded[49]. Again, notions from the the-

ory of spanning trees are useful for the results as are typical

runs and ideas derived from the coupon collector′s problem.

It is also proved that with λ = dm2/ne a (1+λ)−EA has an

upper bound of O(n log n). This, again, holds if the weights

are polynomially bounded. However no improvement due

to populations can be seen from the result. Considering

recombination, “only problem-specific crossover operators

seem to be useful”. However, “It is difficult to analyze

heuristics with these crossover operators”[49].

It is striking that for most of the described problems

there is no difference in terms of asymptotic performance

or approximation quality between the (1+1)-EA and the

random local search (RLS) algorithm. It would be expected

that a global search algorithm such as the (1+1)-EA would

exploit its advantage of being able to perform larger steps

than a RLS algorithm. However this is not evident in the

results discussed above.

4.2.2 NP-hard problems

Considering “difficult” problems (i.e. NP-Hard prob-

lems) there may be higher chances that EAs may be com-

petitive. On the NP-Hard partition problem Witt has

proved that both the (1+1)-EA and an RLS algorithm find

at least a 4/3-approximate solution in an expected num-

ber of O(n2) steps. Furthermore, the algorithms are both

PRAS if multiple runs are used. An average case analysis,

also shows that the (1+1)-EA creates solutions that “con-

verge to optimality in expectation”[50]. Although the parti-

tion problem has a fully polynomial approximation scheme

(FPAS)[51], not much better can be expected for NP-hard

problems and “this is also as strong as the result for the

LPT rule”[50].

Sometimes general search randomized heuristics can do

nearly as well as problem specific algorithms. Storch has

proved that a Metropolis algorithm can find maximum

cliques on random planar graphs in time Θ(n) with over-

whelming probability and in expectation[52]. The (1+1)-

EA, although being “efficient”, needs Θ(n6) generations.

Similar results also hold for semi-random planar graphs.

The work was extended proving that on semi-random sparse

graphs, populations (i.e. a (µ+1)-EA with distinct individ-

uals) are beneficial compared to single individuals[53]. In

particular, the existence of random classes of graphs where

even a super-polynomial decrease of the expected number

of steps is proved, by applying a large enough population.

For vertex cover, a similar problem to Clique[41],

Friedrich have proved that there exist instances for

which the (1+1)-EA can produce arbitrarily bad

approximations[44]. They have further shown that a

simple evolutionary multi-objective optimizer (SEMO)

does not suffer of the same problem. Oliveto have also

shown that the same holds if the (1+1)-EA uses multi-

starts[29]. However, if for both the Clique and the Vertex

Cover problems the existence of exponential time instance

classes has been proved, the quality of the approximate

solutions that can be guaranteed by an EA remains to be

ascertained.

5 Conclusion and future work

The early results of the time complexity theory of the

(1+1)-EA on toy problems have led to the development of

several tools and tricks that, being general, can be applied

to the analysis of the same algorithm on more sophisticated

problems.

The time complexity analysis of evolutionary algorithms

seems to be developing along two different but converging

lines. On one hand the current research is directed towards

analyzing the (1+1)-EA on famous classical combinatorial

optimization problems which are NP-Hard. For such classes

of problems it is not expected that an algorithm, especially

designed for the problem, is able to find the solution in poly-

nomial time, far less a general purpose algorithm like an EA.

As a consequence the attention is focused on the quality of

approximate solutions the EA is able to produce indepen-

P. S. Oliveto et al./ Time Complexity of Evolutionary Algorithms for Combinatorial Optimization: A Decade of Results 291

dent from the instance class being tackled. Although not on

a NP-Hard problem, Giel and Wegener have proved that the

(1+1)-EA is a PRAS for the Maximum Matching problem
[28]. The achievement of this result (i.e. analyzing EAs as

approximation algorithms for maximum matching),“similar

to that for simulated annealing”[54], was considered “very

valuable” in the mid-nineties[12].

Another open issue was to understand “whether an EA

offers any advantage over the classical optimization algo-

rithms for TSPs in terms of average case complexity. This

is a very difficult problem as the average case analysis is

already difficult to conduct for a deterministic algorithm,

let alone for a population-based stochastic algorithm”[12].

While the problem concerning TSP is still open, an aver-

age case analysis of the (1+1)-EA for the NP-Complete

Partition problem has been performed by Witt and the

result is that the algorithm “converges to optimality in

expectation”[50]. Witt also proves that the algorithm pro-

duces at least a 4/3-approximate solution in expected time

O(n2) on any instance of the problem, and that it is a PRAS

if multiple runs are used.

However, if some past open questions have been an-

swered, there still is a need of understanding how well EAs

work on other “famous” problems, especially NP-Hard ones.

In particular, average-case analyzes still lack and results re-

lated to EAs as approximation algorithms are still very few.

It still is a mystery whether there is an important problem

where an EA can outperform the best algorithm known for

solving it.

On the other hand, the research concerning more realistic

EAs, using at least populations if not crossover, is still way

behind. The current research seems to be following a simi-

lar strategy as that applied to the analysis of the (1+1)-EA,

which starting from “nice structured” problems, has en-

abled its extension to more realistic ones in just a few years.

These attempts will hopefully lead to mathematical tools

which will simplify the analyzes of (N+N)-EAs first and

GAs later. Empirical work suggests that population-based

EAs should perform well on various “difficult” combinato-

rial optimization problems. However there are no available

theoretical results confirming the conjecture. Even though

there has been a consistent improvement in the last decade

it still is not clear how long it will take before it will be pos-

sible to make precise statements about GAs for important

problems.

Another issue that needs great consideration is under-

standing if the results concerning EAs for classical com-

binatorial optimization problems actually do help practi-

tioners in using them for optimizing “unknown” functions.

The results reported throughout the paper are certainly

very valuable concerning the application of EAs for clas-

sical combinatorial optimization problems. However, the

main real-world application domain for randomized search

heuristics, such as EAs, is “unknown” functions. It is not

clear whether the available and desirable results, in such

a setting, help in choosing a randomized search heuristic

rather than another one, or if they help the choice of the

parameter values.

References

[1] R. Sarker, M. Mohammadian, X. Yao. Evolutionary Opti-
mization, Kluwer Academic Publishers, Norwell, MA, USA,
2002.

[2] D. E. Goldberg. Genetic Algorithms for Search, Optimiza-
tion, and Machine Learning, Addison-Wesley, USA, 1989.

[3] J. H. Holland. Adaptation in Natural and Artificial Sys-
tems, 2nd ed., MIT Press, Cambridge, MA, 1992.

[4] A. E. Eiben, G. Rudolph. Theory of Evolutionary Algo-
rithms: A Bird′s Eye View. Theoretical Computer Science,
vol. 229, no.1–2, pp. 3–9, 1999.

[5] T. Bäck, D. B. Fogel, Z. Michalewicz. Handbook of Evo-
lutionary Computation, IOP Publishing Ltd, Bristol, UK,
1997.

[6] G. Rudolph. Convergence Analysis of Canonical Genetic
Algorithms. IEEE Transactions on Neural Networks, vol.
5, no.1, pp. 96–101, 1994.

[7] G. Rudolph. Finite Markov Chain Results in Evolutionary
Computation: A Tour d′Horizon. Fundamenta Informati-
cae, vol. 35, no.1–4, pp. 67–89, 1998.

[8] H. Aytug, G. J. Koehler. Stopping Criteria for Finite
Length Genetic Algorithms. ORSA Journal on Computing,
vol. 8, no.2, pp. 183–191, 1996.

[9] D. Greenhalgh, S. Marshall. Convergence Criteria for Ge-
netic Algorithms. SIAM Journal on Computing, vol. 30,
no.1, pp. 269–282, 2000.

[10] M. Safe, J. A. Carballido, I. Ponzoni, N. B. Brignole. On
Stopping Criteria for Genetic Algorithms, In 17th Brazilian
Symposium on Artificial Intelligence, Lecture Notes in Ar-
tificial Intelligence, Springe-Verlag, vol. 3171, pp. 405–413,
2004.

[11] S. Droste, T. Jansen, I. Wegener. On the Analysis of the (1+
1) Evolutionary Algorithm. Theoretical Computer Science,
vol. 276, no. 1–2, pp. 51–81, 2002.

[12] X. Yao. An Overview of Evolutionary Computation. Chi-
nese Journal of Advanced Software Research, vol. 3, no. 1,
pp. 12–29, 1996.

[13] H. G. Beyer, H. G. Schwefel, I. Wegener. How to Analyse
Evolutionary Algorithms. Theoretical Computer Science,
vol. 287, no. 1, pp. 101–130, 2002.

[14] I. Wegener. Methods for the Analysis of Evolutionary Algo-
rithms on Pseudo-Boolean Functions. In Evolutionary Op-
timization, R. Sarker, M. Mohammadian, X. Yao (eds.),
Kluwer Academic Publishers, Norwell, MA, USA, 2002.

[15] S. Droste, T. Jansen, I. Wegener. A Rigorous Complexity
Analysis of the (1+1) Evolutionary Algorithm for Separable
Functions with Boolean Inputs. Evolutionary Computation,
vol. 6, no. 2, pp. 185–196, 1998.

[16] I. Wegener. On the Design and Analysis of Evolutionary
Algorithms. In Proceedings of the Workshop on Algorithm
Engineering as a New Paradigm, Kyoto University, Japan,
pp. 37–47, 2000.

[17] T. Jansen, I. Wegener. Evolutionary Algorithms: How to
Cope with Plateaus of Constant Fitness and When to Re-
ject Strings of the Same Fitness. IEEE Transactions on Evo-
lutionary Computation, vol. 5, no. 6, pp. 589–599, 2000.

292 International Journal of Automation and Computing 04(3), July 2007

[18] M. Motwani, P. Raghavan. Randomized Algorithms, Cam-
bridge University Press, UK, 1995.

[19] T. Bäck. Optimal Mutation Rates in Genetic Search. In
Proceedings of the 5th International Conference on Genetic
Algorithms, Morgan-Kaufman, pp. 2-8, 1993.

[20] V. Cutello, G. Nicosia, P. S. Oliveto, M. Romeo. On the
Convergence of Immune Algorithms. In Proceedings of the
1st IEEE Symposium on Foundations of Computational In-
telligence, Honolulu, Hawaii, USA, 2007.

[21] J. He, X. Yao. Towards an Analytic Framework for Ana-
lyzing the Computation Time of Evolutionary Algorithms.
Artificial Intelligence, vol. 145, no. 1–2 pp. 59–97, 2003.

[22] M. Iosifescu. Finite Markov Processes and Their Applica-
tions, John Wiley & Sons, 1980.

[23] D. L. Isaacson, R. W. Madsen. Markov Chains: Theory and
Applications, John Wiley & Sons, 1976.

[24] J. He, X. Yao. From an Individual to a Population: An
Analysis of the 1st Hitting Time of Population-based Evolu-
tionary Algorithms. IEEE Transactions Evolutionary Com-
putation, vol. 6, no. 5, pp. 495–511, 2002.

[25] W. Feller. An Introduction to Probability Theory and Its
Applications, vol. 1, John Wiley & Sons, 1968.

[26] I. Wegener. Theoretical Aspects of Evolutionary Algo-
rithms. In Proceedings of the 28th International Colloquium
on Automata, Languages and Programming, London, UK,
pp. 64–78, 2001.

[27] S. Droste, T. Jansen, I. Wegener. On the Optimization of
Unimodal Functions with the (1 + 1) Evolutionary Algo-
rithm. In Proceedings of the Parallel Problem Solving from
Nature Conference, Lecture Notes in Computer Science,
Springer-Verlag, vol. 1498, pp. 13–22, 1998.

[28] O. Giel, I. Wegener. Evolutionary Algorithms and the Maxi-
mum Matching Problem. In Proceedings of the 20th Annual
Symposium on Theoretical Aspects of Computer Science,
Speringer-Verlag, pp. 415–426, 2003.

[29] P. S. Oliveto, J. He, X. Yao. Evolutionary Algorithms and
the Vertex Cover Problem. In Proceedings of the Congress
on Evolutionary Computation, to be published.

[30] C. Witt. Runtime Analysis of the (µ+1) EA on Simple
pseudo-Boolean Functions. In Proceedings of the 8th An-
nual Conference on Genetic and Evolutionary Computa-
tion, Seattle, Washington, USA, pp. 651-658, 2006.

[31] T. Jansen, I. Wegener. On the Analysis of Evolutionary
Algorithms - A Proof that Crossover Really Can Help. In
Proceedings of the 7th Annual European Symposium on
Algorithms, Springer-Verlag, pp.184–193, 1999.

[32] J. He. Study on the Foundation of Evolutionary Computa-
tion. Technical Report, Department of Computer Science,
Harbin Institute of Technology, China, 1998 (in Chinese).

[33] J. He, X. Yao. Drift Analysis and Average Time Complexity
of Evolutionary Algorithms. Artificial Intelligence, vol. 127,
no. 1, pp. 57–85, 2001.

[34] J. He, X. Yao. A Study of Drift Analysis for Estimating
Computation Time of Evolutionary Algorithms. Natural
Computing: An International Journal, vol. 3, no. 1, pp.
21–35, 2004.

[35] T. Jansen, I.Wegener. On the Utility of Populations in
Evolutionary Algorithms. In Proceedings of the 3rd An-
nual Conference on Genetic and Evolutionary Computa-
tion, IEEE, pp. 1034–1041, 2001.

[36] T. Jansen, I. Wegener. Real Royal Road Functions: Where
Crossover Provably is Essential. Discrete Applied Mathe-
matics, vol. 149, no. 1–3, pp. 111–125, 2005.

[37] C. Witt. Population Size vs. Runtime of a Simple EA. In
Proceedings of the Congress on Evolutionary Computation,
Canberra, pp. 1996–2003, 2003.

[38] T. Storch. Real Royal Road Functions for Constant Popu-
lation Size. Theoretical Computer Science, vol. 320, no. 1,
pp. 123–134, 2004.

[39] T. Jansen, K. A. De Jong, I. Wegener. On the Choice of the
Offspring Population Size in Evolutionary Algorithms. Evo-
lutionary Computation, vol. 13, no. 4, pp. 413–440, 2005.

[40] J. Jägerskupper, T. Storch. When the Plus Strategy Out-
performs the Comma Strategy and When Not. In Proceed-
ings of the 1st IEEE Symposium on Foundations of Com-
putational Intelligence, Hawaii, USA, pp. 25–32, 2007.

[41] M. R. Garey, D. S. Johnson. Computers and Intractability
a Guide to the Theory of NP-Completeness, W. H. Freeman
and Company, New York, 1979.

[42] J. Scharnow, K. Tinnefeld, I. Wegener. Fitness Landscapes
Based on Sorting and Shortest Path Problems. In Proceed-
ings of 7th Conference on Parallel Problem Solving from
Nature Conference, pp. 54–63, 2002.

[43] F. Neumann, I. Wegener. Minimum Spanning Trees Made
Easier Via Multi-objective Optimization. Natural Comput-
ing, vol. 5, no. 3, pp. 305–319, 2006.

[44] T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, C. Witt.
Approximating Covering Problems by Randomized Search
Heuristics Using Multi-objective Models. In Proceedings of
the 9th Annual Conference on Genetic and Evolutionary
Computation, 2007, to be published.

[45] F. Neumann. Expected Run-times of Evolutionary Algo-
rithms for the Eulerian Cycle Problem. In Proceedings
of the Congress on Evolutionary Computation, IEEE, pp.
904–910, 2004.

[46] B. Doerr, N. Hebbinghaus, F. Neumann. Speeding Up Evo-
lutionary Algorithms through Restricted Mutation Oper-
ators. In Proceedings of the 9th Parallel Problem Solving
from Nature Conference, Leture Notes in Computer Sci-
ence, Springer-Verlag, Reykjavik, Iceland, vol. 4193, pp.
978–987, 2006.

[47] B. Doerr, C. Klein, T. Storch. Faster Evolutionary Algo-
rithms by Superior Graph Representation. In Proceedings
of the 1st IEEE Symposium on Foundations of Computa-
tional Intelligence, Hawaii, USA, pp. 245–250, 2007.

[48] B. Doerr, D. Johannsen. Adjacency List Matchings - An
Ideal Genotype for Cycle Covers. In Proceedings of the An-
nual Conference on Genetic and Evolutionary Computa-
tion, 2007, to be published.

[49] F. Neumann, I. Wegener. Randomized Local Search, Evo-
lutionary Algorithms, and the Minimum Spanning Tree
Problem. In Proceedings of Genetic and Evolutionary Com-
putation Conference, Leture Notes in Computer Science,
Springer-Verlag, Seattle, Washington, USA, vol. 3102, pp.
713–724, 2004.

[50] C. Witt. Worst-case and Average-case Approximations by
Simple Randomized Search Heuristics. In Proceedings of
the 22nd Annual Symposium on Theoretical Aspects of
Computer Science, Lectures Notes in Computer Science,
Springer-Verlag, Stuttgart, Germany, vol. 3404, pp. 44–56,
2005.

P. S. Oliveto et al./ Time Complexity of Evolutionary Algorithms for Combinatorial Optimization: A Decade of Results 293

[51] D. S. Hochbaum. Approximation Algorithms for NP-Hard
Problems, Wadsworth Publishing Company, USA, 1996.

[52] T. Storch. How randomized search heuristics find maximum
cliques in planar graphs. In Proceedings of the Annual Con-
ference on Genetic and Evolutionary Computation, Seattle,
Washington, USA, pp. 567–574, 2006.

[53] T. Storch. Finding Large Cliques in Sparse Semi-random
Graphs by Simple Randomised Search Heuristics, Technical
Report No. CI-211/06, Fachbereich Informatik, Universitat
Dortmund, 2006.

[54] G. H. Sasaki, B. Hajek. The Time Complexity of Maximum
Matching by Simulated Annealing. Journal of the Associa-
tion of Computing Machinery, vol. 35, no. 2, pp. 387–403,
1988.

Pietro S. Oliveto received the Laurea
degree in computer science from the Univer-
sity of Catania, Italy, in 2005. Since 2006 he
has been a Ph.D. candidate at the School
of Computer Science, University of Birm-
ingham, UK.

His Ph.D. topic is the computational
complexity analysis of evolutionary algo-
rithms which is part of an EPSRC funded

project. His main research interest is the time complexity anal-
ysis of randomized algorithms for combinatorial optimization
problems. He is currently considering local search, evolutionary,
and artificial immune system algorithms.

Jun He received his Ph.D. degree in
computer science from Wuhan University,
China in 1995. Currently he is a research
fellow at the School of Computer Science,
University of Birmingham, England.

His research interests include evolution-
ary computation, data mining and network
security.

Xin Yao obtained his B.Sc. from the
University of Science and Technology of
China (USTC) in Hefei, China, in 1982,
M.Sc. from the North China Institute of
Computing Technology in Beijing, China,
in 1985, and Ph.D. from USTC in Hefei,
China, in 1990.

He was an associate lecturer and lecturer
between 1985 and 1990 at USTC while

working on his Ph.D.. His Ph.D. work on simulated annealing
and evolutionary algorithms was awarded the President′s Award
for Outstanding Thesis by the Chinese Academy of Sciences. He
took up a postdoctoral fellowship in the Computer Sciences Lab-
oratory at the Australian National University (ANU) in Can-
berra in 1990, and continued his work on simulated annealing
and evolutionary algorithms. He joined the Knowledge-Based
Systems Group at CSIRO Division of Building, Construction and
Engineering in Melbourne in 1991, working primarily on an in-
dustrial project on automatic inspection of sewage pipes. He re-
turned to Canberra in 1992 to take up a lectureship in the School
of Computer Science, University College, the University of New
South Wales (UNSW), the Australian Defence Force Academy
(ADFA), where he was later promoted to a senior lecturer and

associate professor. Attracted by the English weather, he moved
to the University of Birmingham, England, as a professor (chair)
of computer science on 1 April 1999. Currently he is the director
of CERCIA (the Center of Excellence for Research in Compu-
tational Intelligence and Applications) at Birmingham, UK, a
distinguished visiting professor of the University of Science and
Technology of China in Hefei, China, and a visiting professor of
three other universities.

He has more than 200 refereed research publications. In his
spare time, he does the voluntary work as the editor-in-chief of
IEEE Transactions on Evolutionary Computation, an associate
editor or editorial board member of several other journals, and
the editor of the World Scientific book series on ”Advances in
Natural Computation”. He has been invited to give more than
45 invited keynote and plenary speeches at conferences and work-
shops world-wide. His major research interests include evolution-
ary computation, neural network ensembles, and their applica-
tions.

Prof. Yao is an IEEE Fellow and a distinguished lecturer of
IEEE Computational Intelligence Society. He won the 2001 IEEE
Donald G. Fink Prize Paper Award for his work on evolutionary
artificial neural networks.

