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Abstract: In networked control systems (NCS), the control performance depends on not only the control algorithm but also the

communication protocol stack. The performance degradation introduced by the heterogeneous and dynamic communication environ-

ment has intensified the need for the reconfigurable protocol stack. In this paper, a novel architecture for the reconfigurable protocol

stack is proposed, which is a unified specification of the protocol components and service interfaces supporting both static and dynamic

reconfiguration for existing industrial communication standards. Within the architecture, a triple-level self-organization structure is

designed to manage the dynamic reconfiguration procedure based on information exchanges inside and outside the protocol stack.

Especially, the protocol stack can be self-adaptive to various environment and system requirements through the reconfiguration of

working mode, routing and scheduling table. Finally, the study on the protocol of dynamic address management is conducted for the

system of controller area network (CAN). The results show the efficiency of our self-organizing architecture for the implementation of

a reconfigurable protocol stack.
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1 Introduction

A networked control system (NCS) is a distributed con-

trol architecture where sensors, actuators, and controllers

are interconnected through a real time network. It is the ba-

sis of process control systems and manufacturing systems in

the information epoch. The communication protocol stack

that directly affects the perceived communication quality of

service (QoS) plays a critical role in determining the system

performance. However, a unified communication protocol

standard is not available at present for the reasons of com-

mercial benefits, history, and multi-application objects[1].

There is a large number of protocol standards for industrial

communication at present, and even for the same protocol,

differences exist. For example, the control area network

(CAN) can be different from the standards of application

layers: DeviceNet, CANopen, or user-defined[2]. Based on

different standards, industrial automation makers provide

various types of devices or systems separately, resulting in

problems of distributed infrastructure complexity and com-

munication environment heterogeneity. In addition, the

availability of the communication resources may change

unexpectedly[3], due to changes in the user demand, or dis-

turbances in the network environments. Consequently, the

control algorithm in the system will not render the intended

results if certain QoS conditions (e.g., time delay) are not

observed. It is inherently difficult to guarantee punctual-

ity and predictable QoS because the processing overhead

of protocol stack is changeable with different hardware or

software implementations, and different QoS control objects

of heterogeneous protocols are hard to be coordinated as
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a whole when lacking a unified architecture that specifies

components and interactions therein.

To cope with this challenge, there has been an increasing

emphasis on developing reconfigurable protocol stacks with

self-adaptability in such a distributed, heterogeneous, and

changeable environment. The protocol stack reconfigura-

tion is to implement a software environment that supports

the flexible composition of the protocol components for a

predictable QoS level. The reconfiguration behaviors on

the corresponding protocol component will perform once

environment constraint or system requirement change,

such as parameter reassignment, service updating, and

functionality replacement. Reconfiguration methods

can be classified into two categories: static reconfigura-

tion and dynamic reconfiguration. Although the static

manner has been widely applied in some small or soft

real time applications with benefits of rapid response

and easy implementation, the repeated reconfiguration

interruption during program running would cause a serious

degradation on system performance if the environment

changes frequently. Dynamic reconfiguration focuses

on performing a self-organized process that makes the

system converge toward desired beneficial structures or

functions while avoiding interrupts during the program

execution[4]. In practice, the general way of realizing

deadlock-free dynamic reconfiguration is to decouple the

interdependency between system resources, implement

reconfiguration for each functional segment and develop

self-organized methods for interaction and coordination

in the distributed structure[5]. In this paper, a novel

architecture is designed to implement a hybrid static

and dynamic reconfiguration scheme with the emphasis of
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the self-reconfiguration implementation by managing the in-

formation exchanges inside and outside the protocol stack.

Traditional monolithic protocol stacks are static in

nature[6]. It potentially hinders the networking of prod-

ucts from different manufactures or standards, let alone

the environment adaptability. Because of this problem, re-

searchers in the networking community have begun to fo-

cus more efforts on the design of a reconfigurable protocol

stacks since the 1990s. The concept of dynamic configu-

ration of the protocol stack was introduced by Muhugusa

et al.[7], which is an environment that lets applications dy-

namically mix and match protocol functionalities according

to their requirements and network availability. The work of

Muhugusa et al.[7] presented a hierarchical framework for

constructing adaptive protocol stacks by replacing the en-

tire protocol stack with a new one. The architecture imple-

mented as a separate micro-protocol module was given in

[8, 9], which supports the framework for constructing config-

urable protocol and services. Seng et al.[10] discussed issues

of generating the reconfigurable protocol stack. Through its

new design model, a stack could dynamically establish itself

with any updated specification simply by reading in the ap-

propriate information. However, these researches focused

on the mechanisms of enacting a reconfiguration process,

mainly implemented in a pre-planned manner, and many

functions are still centrally organized and required signifi-

cant manual configuration for the deployment and opera-

tion.

In order to improve the system self-adaptability, self-

organization theory and methods were developed to reduce

the administration effort of users or network designers and

enact the reconfiguration manner. A self-organizing design

can be characterized with behaviors of local interaction and

implicit coordination[11]. It means the coordination infor-

mation among components is not communicated explicitly

in a request-response manner, but is inferred form its local

information. Based on it, the manager is not searching for

entire system space information to obtain the best solution,

but is instead building on partially successful solutions to

achieve fast convergence to stable state. The self-organized

reconfiguration design has become a trend with the emer-

gence of IP-based networks, for example, decentralized con-

gestion control and address auto-configuration. This trend

is further accelerated by the advent of ubiquitous comput-

ing, where wireless technologies interconnect an increasing

number and diversity of devices. The protocol wireless local

area network (LAN) and IEEE 802.11 allow devices to spon-

taneously form cells even when there is no infrastructure

access point to provide central coordination of communica-

tions. Similarly, the private area protocols Bluetooth and

Zigbee support spontaneous network formation to a certain

extent. Protocols considered in the Internet engineering

task force, mobile ad hoc networks (IETF MANET) Work-

ing Group support the spontaneous formation of routing in

the absence of centralized routing control[12−15]. To our re-

gret, these practices mentioned above pay little emphasis on

the critical real time demand of industrial communication.

Yang et al.[16] applied adaptive coded modulation schemes

to a wireless networked control system and gave the method

of analyzing delay bounds for system stabilization. How-

ever, in engineering the communication code, there is still a

lack of discussions of the implementation of a reconfigurable

protocol stack for NCS at the level of software architecture.

The main contribution of this work is to propose

a new layered architecture for the protocol stack that

accommodates various communication purposes in NCS

with dynamic reconfiguration capability, therein, a self-

organization structure is employed as the foundation to

manage interaction and coordination behaviors inside and

outside the protocol stack. Users can obtain instantiations

of the reconfigurable protocol stack for different real time

application requirements from the proposed architectural

design. Specifically, our architecture is originally derived

from the reduced open system interconnect (OSI) refer-

enced model, which has been the common practice for pro-

tocol standards in the factory network community[17], e.g.,

standards of Fieldbus or Industrial Ethernet defined by

the international electrotechnical commission (IEC) com-

munity. Compared with the existing layered stack mod-

els, the routing and scheduling scheme related to the QoS

control are highlighted as the core of the protocol stack

in our architecture. The cooperation of these two schemes

can provide a whole resource control at the system level

by utilizing the information from the top application layer

and the bottom data link and physical layers. In addition

to implementation of a layered stack that comprises com-

mon functionalities of industrial communication standards,

a self-organization structure of three-level feedback adapta-

tion is adopted to characterize the reconfiguration manager

against variations: the self-reconfiguration level inside the

protocol stack, the parameter-level, and the code-level re-

configuration outside. The self-reconfiguration is to manage

the interactions between layers based on the realization of

routing and scheduling schemes with self-learning ability.

The parameter-level reconfiguration is aimed at the con-

struction of a proper formal model to evaluate and layout

the protocol stack. The code-level reconfiguration is to deal

with processes of the code propagation in the system and

the code swapping in the node. The code-level reconfigura-

tion would not act until a certain event is detected from

the protocol stack space, such as changes of application

object and system structure. Finally, the implementation

self-organizing information exchange for the reconfigurable

protocol stack is illustrated by the case of dynamic address

management for CAN.

The remainder of this paper is organized as follows. Sec-

tion 2 analyzes characteristics of communication activities

in NCS. Section 3 elaborates the architecture of the recon-

figurable protocol stack for NCS, including the communica-

tion protocol stack, the reconfiguration manager, and the

reconfiguration interface. Based on analyzing the meth-

ods of self-organized interaction and coordination, a triple-

level feedback framework for reconfiguration mechanisms

is illustrated in Section 4. Specifically, the mechanisms of

internal and external information exchange are described

in detail. Under the proposed design framework, a self-
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organizing protocol case in the CAN system is studied in

Section 5. Finally, Section 6 gives concluding remarks and

future research topics.

2 Communication requirements of

NCS

A networked control system is a fully distributed real-

time feedback control system, as shown in Fig. 1, where the

real time network that connects the devices in the system,

namely control network, is usually divided into a number

of segments with different application objects. As for the

inner segment, Fieldbus protocols (e.g., CAN, Foundation

Fieldbus (FF), and Profibus) that determine the type of

medium access controller (MAC) are the common practice

to deal with the connection of field devices. Additionally,

one master node is defined to govern the message schedul-

ing of the inner segment and the dynamic connection to

outer segments, while other slave nodes act as functional

nodes of the sensor, controller, and actuator which occupy

the channel according to the plan of the master node. On

the other hand, considering the outer segment, the nodes

distributed in different segments communicate with each

other through Intranet or Internet, where the TCP/IP pro-

tocol suite is widely applied. The Intranet is isolated from

the outer world and deployed in a fixed multi-level topol-

ogy, whereas the topology of the Internet is world wide

connected and often deployed randomly. In such a seg-

mented master-slave structure, the data forwarding among

segments should be controlled by a routing protocol of QoS

guaranteed and the master node is responsible for the re-

configuration of the scheduling table for messages from the

outer segment. Thus, all the remote operations on slave

nodes are controlled by the master node of each segment.

Fig. 1 Typical structure of networked control system

The data transmitted in NCS are classified into three

types: periodic data, sudden data, and non-real time data.

The periodic and the sudden data are real time data with

different time characteristics. The periodic data are gen-

erated by sampling and control tasks, which are time crit-

ical and their uncertainty would affect the stability of the

closed-loop control. The sudden data are commonly issued

by the emergency task, which demands the most rapid re-

sponse time and shortest transmission delay, but the delay

uncertainty is not considered.

In such a distributed control system, the protocol inter-

connection problem under the heterogeneous environment

and the real time performance under the changeable com-

munication environment become significant challenges. It

calls for the protocol stack of NCS to be capable of recon-

figuration ability that supports two types of configuration:

the static configuration and the dynamic configuration. On

the one hand, in the heterogeneous system environment,

various QoS requirements have to be mapped into protocol

properties for this selection of protocol components. Hence,

for the interconnection problem, the protocol components

are composed and downloaded into the node platform in

a static manner, which is usually deployed before the sys-

tem is put into operation. The desired static protocol stack

reconfiguration has been achieved by various approaches.

For instance, in the X-kernel runtime framework, micro-

protocol objects form the functionality of the protocol when

assembled according to a graph definition[18]. The Cactus

and Appia system extended this concept, proposing a hi-

erarchical composition mechanism for composite protocols

based on QoS requirements[19, 20]. On the other hand, in

networked systems, the communication channel is affected

by lots of uncertainty issues, such as topology change, the

traffic load variation and signal interference. These issues

represent the offered QoS and express the communication

resource availability. The dynamic reconfiguration is to pro-

vide a mechanism that lets the protocol stack adapt to the

QoS variances through adjusting the parameters, or mixing

and matching protocol components at runtime. Although

most of the aforementioned frameworks have also declared

support for dynamic reconfiguration, they still bear a seri-

ous disadvantage: the correctness of composition cannot be

completely assured or formally verified. Besides, the aspect

of real time reconfiguration is remains unclear on the archi-

tectural level. The aim of this paper is the hybrid static-

dynamic architecture for the protocol stack reconfiguration

of NCS, especially the control structure of the dynamic re-

configuration process. The dynamic process should take the

time delay as the primary goal of reconfiguration.

Because of network transmission, the performance of the

control system is assumed to be affected by QoS parameters

such as delays, jitters, packet losses, and link failures[21].

All the real time data transmissions meet the delay bound,

which is the most important performance indicator for NCS.

In order to assure good performance, the time delay Tdelay

should be in a certain range, Tdelay ∈ (TB , TC). The bound-

ary points (PB and PC) are determined by the system sta-

bility condition (see Fig. 2)[22]. If Tdelay is out of this range

of sampling period, the system performance cannot be guar-

anteed. More specifically, the total time-delay is composed

of four parts: the sending, waiting, receiving, and transmis-

sion delays. The sending and receiving time delays which

rely on the software and hardware performance of source

and destination nodes are divinable. Comparatively, the

waiting and transmission time delays are undeterministic,

which depend on the communication activities defined in

the protocol stack and available communication resource,

e.g., traffic load, bandwidth, transmission paths, etc. Thus,
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the waiting and transmission time delays are the key factors

to evaluate the performance parameter Tdelay.

Therefore, the dynamic configuration of the reconfig-

urable protocol stack in NCS is mainly designed to deal

with two issues: the reconfigurable scheduling scheme on

various traffic loads inside the segment and the reconfig-

urable routing scheme on various network resources cross

segments. The former, which manages the message send-

ing intervals on the communication channel, has a close

relation to the waiting time-delay[23]; the latter, which gov-

erns the transmission paths and network topology, deter-

mines the transmission time-delay[24]. The scheduling and

routing scheme are implemented as a part of the network

and transport layer from the viewpoint of the communi-

cation protocol stack. In contemporary industrial commu-

nication, from Fieldbus to Industrial Ethernet and wire-

less network, the reduced OSI reference model (omits the

presentation and session layer) has been taken as the ba-

sic architecture to comprise different protocol entities in a

stack (see Fig. 3). The performance routing and schedul-

ing scheme are difficult to predict due to various structures

and MAC services provided by different standards. Mo-

tivated by the existing architectures, we provide a unified

architecture supporting reconfiguration management to ac-

commodate heterogeneous protocol standards and different

application objects. The routing and scheduling schemes

related to the QoS control are highlighted as the core of

the protocol stack in our implementation. It requires co-

operation between the routing and scheduling schemes that

can provide a whole resource control on a system level by

utilizing the information from the top application layer, the

bottom data link and physical layers.

Fig. 2 Performance comparison of continuous control, digital

control, and networked control cases

3 Architecture and management of re-

configurable protocol stack

Reconfigurable protocol stack requires software architec-

tures that are flexible and can support tools and algorithms

from a variety of sources and domains. The architecture de-

sign is the key to implement a reconfigurable protocol stack,

which is a specification of protocol component and inter-

face. It lets applications dynamically adjust the parameter

configuration of each layer, or mix and match protocol func-

tion blocks according to control requirements and network

availability. In the master-slave structure, slaves are per-

formed as a reaction to the plan on the master, thus, the

protocol stack embedded in slave nodes is usually a reduced

version of that in the master node. All the discussions be-

low are concerned with the implementation of a complete

protocol stack for the master node in NCS. The architec-

ture and management framework of the reconfigurable pro-

tocol stack is illustrated in Fig. 4, which is composed of

three parts: the layered communication protocol stack, the

formalized reconfiguration manager, and the hybrid static-

dynamic reconfiguration interface. It satisfies the following

characteristics, and implementation of dynamic reconfigu-

ration is the emphasis of this paper.

1) Formalized reconfiguration engine

It provides mechanisms that keep track of data streams,

identify the type of changes, evaluate the reconfiguration

result and generate a new stack code accordingly. It is

important to determine the performance and efficiency on

the proposed reconfiguration schemes, but the field testing

is usually quite costly and even not realistic. The formal

technology is proved to be effective in validation and eval-

uation of protocol design by abstracting the protocol be-

haviors, system requirements and resources availability in

a mathematical or graphic manner. It is the key to realize

an efficient reconfiguration engine.

2) Hybrid static-dynamic workflow

It provides the flexibility to build the protocol specifica-

tion statically and adapt the stack configuration dynam-

ically. Such reconfigurations include: i) configuring the

properties or composition of protocol components in a static

way that the code is directly downloaded into the node with

reference to a predefined protocol library; ii) adding, remov-

ing or swapping protocol components in a dynamic way

that the system operation would not be stopped or inter-

rupted. In general, the workflow of dynamic reconfiguration

is more complicated than the static one, considering the uti-

lization of idle bandwidth, the online test of reconfiguration

schemes, and so on.

3) Diverse communication channels

They provide communication channels for real time and

non-real time applications separately in the protocol stack

based on the data transmission characteristics of NCS. The

non-real time channel deals with the problem of seamless

integration to commercial network to support the moni-

toring service of control systems, such as FTP or HTTP.

Comparatively, real time channel aims at providing a set of

real time guaranteed networking and controlling services in

coordination with the real time scheduling scheme.

3.1 Communication protocol stack

The layered protocol stack usually consists of five layers:
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Fig. 3 Typical architectures of the communication protocol stack in NCS (e.g., CAN, Profinet, and Zigbee)

Fig. 4 Architecture and management framework of reconfigurable protocol stack for NCS

the physical, data Link, network, transport, and applica-

tion layers with reference to the OSI model[17]. Motivated

by the existing layering architecture, the function and layer

compositions are reconstructed for better severing the re-

configuration viewpoint. It consists of the communication

link layer (CLL), the network transmission layer (NTL),

and the application layer (APPL). This new architecture

is emphasized on utilizing cross layer information to con-

strain the working of reconfigurable routing and scheduling

schemes.

1) Communication link layer

The CLL represents the combination of physical layer

(PHY) and the data link layer (DLL). In common, the

functionalities of PHY and DLL are integrated in a special-

purpose chip. Thus, different from the NTL, the CLL is

the emphasis of hardware reconfiguration that is concerned

with the appropriate parameter configuration on the hard-

ware chip. Through the parameter configuration, the CLL

can provide a reliable point-to-point physical link for the

routing service of NTL. The reliable link involves two lev-

els of meanings: the one is to assemble or disassemble the

data between the NTL and the physical channel depending

on the communication controller; the other is to report the

link status and deal with the transmission errors, such as

conflict, link loss, and so on.

• Interface driver: The configuration of the initialization

information, such as data rate, working mode, frame

length, and message validation mode.

• Link status: The indication of the link availability,

such as busy and free.

• MAC: The state machine to govern the states of send-

ing, receiving, and resending of nodes, especially in the

case of conflict.

• Tx & Rx: They perform as an assistant to the resend

function of MAC through the management of queues

of sending and receiving data.

• Send & Rece: They match with the fault type when

errors are detected during the message checking.

• PDU-SAP: The service access point (SAP) is respon-

sible for reading and writing of protocol data.
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• CommM-SAP: The SAP of communication module

provides status fetching operations.

2) Network transmission layer

The NTL is mainly composed of three parts: the trans-

port channel, the scheduling scheme, and the routing

scheme. They are all carried out with software, i.e., re-

search objects of software reconfiguration. The transport

channel is to provide networking and controlling services

in coordination with the scheduling scheme. The flexible

scheduling scheme is implemented to control the data flow

between the APPL and the NTL according to receiving of

data transmission request and information of scheduling re-

configuration. Based on the non-periodic transmission dec-

larations or measured QoS values from the network, the

scheduling scheme can proactively reconfigure the param-

eters of scheduling algorithms accordingly, such as band-

widths for the periodic tasks and non-periodic tasks, the

polled sequence of slave nodes, or the length of a time slice.

On the other hand, after the transmission is triggered, the

routing scheme can provide the QoS guaranteed end-to-end

data link service for the scheduling scheme. Periodic and

non-periodic tasks from APPL can be scheduled with the

assumption that transmission delays are all bounded into

a certain range once the routing path and the rerouting

criteria are determined.

• RT channel: Real time (RT) channel includes the

packet assemble/disassemble for period and emergency

message tasks. The RT channel forwards the packet

from DLL to APPL directly.

• NRT channel: Non-real time (NRT) includes a

TCP/IP protocol suite to support non-real time ap-

plications, such as the web server and the code prop-

agation. The TCP/IP suite provides a seamless inte-

gration to general-purpose commercial protocols, like

HTTP, FTP, etc.

• Routing manager: The improvement of the IP protocol

to maintain the routing table distributed in nodes with

the changes of network topology. It sets the shortest

(lowest cost) path for real time messages forwarding

between network segments.

• Scheduling manager: It is a flexible scheduling scheme

to maintain the scheduling table distributed in each

segment with changes of QoS variations and applica-

tion objects. It governs the division of time slices for

both real time and non-real time messages in a single

segment.

• RT-SAP: The interfaces for the real time message

recognition and the packet assemble/disassemble.

• NRT-SAP: The interfaces for non-real time message

recognition and its packet assemble/disassemble inter-

faces.

• Sch-SAP: The SAP of scheduling module reads the

length and type of messages, submitting the schedul-

ing table to configure the tasks and renewing queues

of tasks in the APPL.

3) Application layer

The APP layer is the interface between the protocol stack

and users to collect the node information and interpret the

user task. It provides highly reliable data services for the

applications on the user layer. Meanwhile, all the applica-

tion data calling for the services of NTL are divided into

two queues: the periodic and the non-periodic. Once the

periodic and non-periodic queues are formed, the data are

ready for the network transmission. If nodes are added in

or removed from the system during the network transmis-

sion, the node management will reassign the node address

and update this information for the scheduling scheme of

NTL. Besides, when changes in system structure or appli-

cation object are detected, the system model and the node

model will be constructed to re-initialize the configuration

of platform resources that are required by the configuration

mode of CLL.

• Task queues: It allocates the space for queuing of pe-

riod, aperiodic real time and aperiodic non-real time

message tasks separately.

• Queue manager: It renews and resets the message

queues.

• Node manager: It configures the address of slave nodes

of the same segment. Commonly, this service is closely

related to the implementation of plug & play function-

ality.

• AOD-SAP: It is the SAP for the exchange of appli-

cation object data (AOD) between the APPL and

the NTL. It submits the message to the APPL, and

sends the application data to the NTL according to

the scheduling table.

• PCM-SAP: It is the SAP for partial configuration

manager, which issues the request to reconfigure the

scheduling table to accommodate the changes of QoS

level and message queues to a certain extent. The

PCM would not change the composition of protocol

stack, that is, the relationship of protocol function

blocks.

3.2 Reconfiguration manager

The reconfiguration manager is a formalized configura-

tion engine to govern the static and dynamic reconfigu-

ration processes (see Fig. 4). In the reconfiguration man-

ager, the static reconfiguration on the protocol stack can

be completed according to the system profile; meanwhile,

the configuration information would be reflected in the pro-

tocol stack model (PSM) for runtime performance eval-

uation. On the other side, the dynamic reconfiguration

can be completed through the configuration engine, which
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mainly consists of PSM, model description specification

(MDS), performance metrics (PMs), protocol configuration

file (PCF), and protocol stack instantiation (PSI). The PSM

and the MDS are both formal descriptions on a specific

protocol configuration, while the former focuses on func-

tional verification and the latter is parsed to be a PCF.

Before parsing into a configurable file, the performance

evaluation should be performed first either on the formal

model or specification with PMs. The result of PCF is a

platform-independent intermediate representation that de-

scribes both the sequence and type of protocol mechanisms.

Subsequently, one or more target platform-specific PSI′s
may be generated by invoking synthesis tools to “fill-in”

and interconnect the necessary platform-dependent mecha-

nisms.

• PSI: The instantiation that is composed of three basic

elements — message content, message structure and

protocol interactions, according to the three essential

factors of protocol — syntax and semantics interaction

rules.

• PCF: The guidance file that distinguishes between the

instantiations before reconfiguration and after recon-

figuration on the elements of message content, message

structure, and protocol interaction.

• MDS: It makes the corresponding protocol specifica-

tion, which refers to the graphic formal model, for code

generation and performance evaluation based on the

formal language.

• PSM: It builds a graphic formal model to validate pro-

tocol properties — liveness, safety, boundedness, and

completeness.

• PMs: The QoS level required by application objects,

such as time delay, network utilization, and network

throughput.

• System profile: The system structure configuration,

node role allocation, and control requirement abstrac-

tion provide protocol stack code directly for static re-

configuration, as well as the initial states information

for dynamic reconfiguration. A system profile may be

directly generated by selecting one or more of the per-

sistent configurations or instantiations pre-defined in

the protocol functionalities library, when specifying

their control requirements via the static initiator in-

terface.

• QoS constraints: The actual and predicted value of

QoS, which is obtained from monitoring the changes

of network conditions and control requirements.

• Static initiator: It issues the static reconfiguration pro-

cess during the initiation or running period. Through

stopping or interrupting the system, designers or users

manually download the new code file which is fetched

from the protocol functionalities library into the node.

• Dynamic initiator: It issues the dynamic reconfigura-

tion process. The dynamic reconfiguration is imple-

mented locally without affecting the working of nodes

in normal control loops or stopping the system. Dur-

ing the running period, the dynamic initiator would

keep track of the actual QoS level from the monitor.

When the QoS does not meet the design requirements,

a self-organizing code propagation process will start in

the network based on results from the reconfiguration

engine.

• SCM-SAP: The SAP of static configuration manager

for compiling the system profile to be a platform exe-

cutable file, e.g., HEX file.

• DCM-SAP: The SAP of dynamic configuration man-

ager for assembling the reconfiguration code file in the

style of non-real time packet and setting the queues

and priorities of reconfiguration task.

3.3 Reconfiguration interface

The reconfiguration interface deals with the interactions

between the communication protocol stack and the reconfig-

uration manager (see Fig. 4). In practice, many more com-

puting resources are required by the reconfiguration man-

ager than the communication protocol stack due to the for-

mal synthesis work (modeling, analyzing, and simulating).

Hence, the functionalities of the manager and the protocol

stack are distributed on different nodes or platforms.

• Code swapping manager: The management of code

space in the protocol stack, especially on sharing,

adding, and deleting operations.

• Download: It loads the stack code manfully, orienting

to the static reconfiguration.

• Propagation: It assembles the reconfiguration code

files in the style of non-real time packet, sets the queues

and priorities of reconfiguration task and controls the

code propagation in the network, orienting to the dy-

namic reconfiguration.

• QoS monitor: It keeps track of the node status and

communication status on the CPU and network con-

troller separately.

• QoS-SAP: The SAP for collecting the QoS related val-

ues runtime.

• NW-SAP: The SAP for locating the position of the

network layer in code space and renewing it.

• TP-SAP: The SAP for locating the position of the

transport layer in code space and renewing it.
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4 Design of self-organization for recon-

figurable protocol stack

On the basis of the proposed architecture and manage-

ment framework of reconfigurable protocol stack for NCS

(see Fig. 4), the dynamic reconfiguration ability of the com-

munication protocol stack has been further strengthened.

Self-organization is a great concept for building adaptable

distributed systems. Until now, many self-organization

methods have been developed for communication networks,

wireless sensor networks in particular[12, 14, 16]. Neverthe-

less, self-organization in the design of a reconfigurable pro-

tocol stack of networked control systems is still lacking sys-

tematic discussion.

In the context of this work, self-organization serves as

a general technique to deal with the interaction between

individuals and coordination with the environment during

the dynamic reconfiguration process. The self-organizing

process for the proposed reconfigurable protocol stack is

characterized by self-diagnosis on service, self-planning

on configuration, self-evaluation on performance and self-

stabilization on code. More specifically, in order to realize

self-diagnosis, the local behavior rules for each node are de-

signed based on expressing the overall function in terms of a

local property. Then, methods of environment observation,

conflict detection, and conflict resolution are defined as for

the self-planning. Meanwhile, formal description methods

are needed to make validation and evaluation on the re-

sults of self-planning. Finally, the self-stabilization element

controls the convergence of the protocol stack code to an

“intended state” regardless of the initial protocol configu-

ration. That means the old protocol code starts to con-

verge to its intended behavior in self-stabilization, after the

latest fault or change is detected in self-diagnosis and the

protocol stack model is generated in self-evaluation. How-

ever, the self-diagnosis, self-planning, self-evaluation, and

self-stabilization are usually discussed separately in the as-

pects of communication activities, code management, and

the formal analysis.

Therefore, the integrated control structure is the key to

implementing self-organization in the proposed architecture

of a reconfigurable protocol stack. It is a dynamic manage-

ment of the code and formal spaces in coordination with

information exchange activities inside and outside the pro-

tocol stack.

4.1 Triple-level self-organization structure

A triple-level self-organization structure is developed to

control the reconfiguration procedures that react to changes

in the network and user environment. The components in

the proposed architecture of reconfigurable protocol stack

are implemented in nodes, rather than in a high level of

system with a global view. As shown in the structure (see

Fig. 5), the components of the reconfigurable protocol stack

are spatially divided into three groups: the communication

protocol stack, the formal space — modeling analysis and

the code space — reconfiguration execution. Furthermore,

three levels of adaptation are distinguished as follows.

Self-reconfiguration inside (level 1): The self-

reconfiguration occurs inside the protocol stack, which

refers to the management of inner interactions between

layers through the realization of routing and scheduling

schemes with self-learning ability. It is the key to deter-

mining the self-organization performance, since the design

of self-reconfiguration focuses on the structure and behav-

iors of information exchange inside and outside the protocol

stack. The information exchange architectures are detailed

in the following sections.

Fig. 5 Triple-level self-organization structure
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Parameter configuration outside (level 2): The parame-

ter configuration occurs in the space of modeling analysis,

which means to adapt the parameters (e.g., data rate, band-

width, value of timers, segment size, and queue length) of

protocol models for achieving a valid configuration plan for

a layer or the whole stack provided that the system struc-

ture or application objects are fixed.

Code configuration outside (level 3): The code reconfig-

uration occurs when changes of system structure and ap-

plication are detected. It is designed so that it realizes if

the changes are so severe that the employed mechanisms of

levels 1 and 2 are no longer competitive. It needs the pro-

cess of model evaluation, code parser, and code composer,

through involving both the formal and code spaces. From

the composition of protocol stack instantiation, the code re-

configuration is defined as results of the relationship change

between protocol components and its impact on message

structure and message content. Here, the reconfiguration

of message structure means the redefining of an alternative

protocol type or network resource. Moreover, the reconfig-

uration of message content includes the change of message

header, which is more complicated than that defined in the

parameter configuration.

4.2 External information exchange mech-
anisms

The protocol stack plays an important role of bridging

the node platform and system environment. As shown in

Fig. 6, the node platform consists of hardware devices and

operating kernel, while the system environment is divided

into network environment and user environment.

Fig. 6 Architecture of external information exchange

1) User environment

The protocol stack gets the system model from some

human-machine interfaces, which comprises the initial con-

figuration of protocol stacks including three basic elements:

the information of control loops, the declaration of applica-

tion objects and the requirement of quality of control per-

formance (QoP). The control loop is to indicate the network

scale and message path; the application object contains the

information of message length, packet size, and real time

type; and the QoP requirement determines the demand on

the QoS.

2) Network environment

The network environment is the information of network

status that comprises two elements: network topology and

QoS value. It is an important outer issue that affects the

self-reconfiguration process inside the protocol stack. The

network topology is to indicate the change of transmission

path and the number of nodes, and based on this varia-

tion, the routing scheme will update the routing table of

each node through local interactions. The QoS value is

to represent the severity of communication interference. It

is collected and predicted at runtime as an input to the

scheduling scheme, and issues a rescheduling process in the

manner of implicit coordination.

3) Kernel

In the node, the protocol stack is only the code segment

that deals with the networking functionalities, while the

kernel provides services that manage the underlying hard-

ware resources (e.g., CPU, primary and secondary storage,

and various I/O peripherals). These kernel services could

be used to create a protocol data unit (PDU) analyzer pro-

cess, which is support for timer handling, event handling,

and memory allocation management. Implementing kernel

services efficiently is another crucial issue that affects self-

reconfiguration performance since all the functionalities of

the protocol stack ultimately operate by using these ser-

vices.

4) Hardware devices

CPU, memory, and MAC are the three main components

for the hardware platform, which can be abstracted to be

the node model that indicates the service conditions: i) sta-

tus of timer and interrupt in CPU; ii) usage of static and

dynamic space in memory; iii) status of physical link, send-

ing and receiving buffers in the medium access controller.

4.3 Internal information exchange mecha-
nisms

The architecture for internal information exchange inside

the protocol stack is described in Fig. 7; especially, the in-

terfaces (e.g., system model, node model, PDU analyzer,

and network status) for the external exchange are located

in the protocol layers. As is mentioned in the description of

triple-level self-organization structure (see Fig. 5), the inter-

nal information exchange activities are included in the self-

reconfiguration level adaptation. The system model and the

node model are represented as the initial conditions for the

self-reconfiguration. When the change of system structure

or application objects is detected, the system model and the

node model would be constructed manually to re-initialize

the division of network segments and configuration of plat-

form resources. Here, the internal information exchange

activities for self-reconfiguration are characterized by three

aspects:

1) Reconfiguration of working mode

Commonly, the operation mode and the fault mode are
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the two basic working modes of MAC, except for the con-

figuration mode. The mode switching is controlled by the

node self-status and neighbor status. The former is the

running condition (e.g., remaining energy and available free

space) of the hardware and software itself, and the latter is

the sensing result of neighbor nodes (normal or abnormal).

Once errors happen during the communication, it will be

recorded in the sending or receiving vector of the MAC

controller and issue an interrupt signal from the MAC con-

troller to the CPU. After that, the PDU analyzer checks

the fault type and starts the interrupt manager to switch

the working mode of the MAC controller, from the normal

operation to the fault mode. Through the execution of a

set of operations, like rollback, step out or reset, the MAC

controller will converge to the normal state. The reconfigu-

ration of working mode is to guarantee that the fault node

does not interfere the working of others until it becomes

normal again.

2) Reconfiguration of routing table

The topology structure in the open network control sys-

tem is always heterogeneous and changeable. When new de-

vices are added to the system or someone is out of work, the

topology of NCS would be changed, then the routing tables

distributed in the master nodes are required to be reconfig-

ured to update networking paths for such a new data trans-

mission requirement. Otherwise, the QoS value (e.g., the

transmission delay) may increase or decrease unpredictably,

and leads to destroy of the system performance. The rout-

ing reconfiguration of NCS is a very complicated combinato-

rial optimization problem, which can be similar to the non-

deterministic polynomial complete (NP-complete) problem.

Thus, some intelligent algorithms are required to improve

the searching ability for the complex solution space. More-

over, the routing reconfiguration of NCS should consider the

specific requirements of NCS such as the time constraint.

In the previous work[25], an improved mechanism based on

genetic algorithm was designed to find the minimum time-

delay path for the routing table reconfiguration.

3) Reconfiguration of scheduling table

Roughly speaking, the problem of network scheduling in

NCS is to assign a scheduling table (in master nodes) to

each transmission entity (non-periodic and periodic tasks

in slave nodes) with a network based scheduling algorithm

(a set of time and event triggered rules that determine the

order in which messages are transmitted). Based on the pre-

dicted value of QoS, the scheduling scheme can pro-actively

reconfigure the parameter of scheduling algorithms accord-

ingly, such as bandwidths for the periodic tasks and the

non-periodic tasks, the polled sequence of slave nodes, and

the length of a time slice. Here, considering implicit in-

formation from the prediction of QoS, the scheduling al-

gorithms is calculated off-line on and on, but the schedul-

ing table will be updated online only when the predicted

and actual QoS are matched. In such a hybrid off-line and

on-line operation mode, the cost of reconfiguration of the

scheduling table can be controlled at a very low level.

5 Case study

In this section, the dynamic address management for

CAN is taken as a case to illustrate the previous

self-organization structure that implements the dynamic

Fig. 7 Architecture of internal information exchange
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reconfiguration of the proposed protocol stack architecture.

In practice, it is very important, for it is not a good idea to

expect workers of industrial fields to do some complicated

configuring work, and to achieve the dynamic address man-

agement for CANopen, which will make it easier to deploy

and maintain the control system. If any slave node fails in

the industrial field, it could be replaced by a well-behaved

device. After a simple operation in the master node (maybe

only by pressing a button), the newly connected node would

be configured automatically, without any more work.

The CAN is one of the existing architectures that focus

on real time communication under the master-slave struc-

ture, and a popular standard that defines physical and data

link layers of the protocol and leaves higher layer definitions

free to the user. For instance, CANopen is a kind of stan-

dard of application layer. In a CANopen-compliant control

system, the master node controls all the configuration ac-

tivities of the slaves through corresponding Node-IDs, in-

cluding the reconfiguration of the scheduling table and the

hardware working mode. The dynamic address manage-

ment, i.e., automatic Node-ID assignment, is very impor-

tant to the realization of a self-organization network. In

the standard CANopen architecture, the scheduling func-

tionality is defined as a part of the application layer and

the network status report can be obtained from the data

link layer.

5.1 Protocol implementation

Our proposed architecture of a reconfigurable protocol

stack can serve as the foundation of the information ex-

change for self-organization networking functionalities. It

means that the reconfigurable architecture could be various

in the implementation of certain protocol components, but

should be stable for the interactions among these compo-

nents. For instance, in this case study, the network trans-

mission layer is added for real time scheduling, and the re-

configuration capability is achieved by a well devised Node-

ID management protocol. Moreover, the real time schedul-

ing component is implemented as the core of the protocol

stack and reconfigured with an alternative algorithm for the

calculation of the scheduling table compared with CANopen

at the architecture level.

At present, the Node-ID assigning work can be accom-

plished by means of layer setting services (LSS) defined

in CANopen. However, the standard LSS only provides a

mechanism to configure the Node-ID for one slave node, but

is not competent for configuring Node-ID for all slave nodes

automatically. Here, the proposed self-organizing structure

(in the above sections) is to improve the LSS protocol. As

a self-organizing process, all the slave nodes can obtain a

unique Node-ID through the information exchange between

the master and slave nodes. Specifically, as shown in Fig. 8,

the Node-ID dynamic management protocol (implemented

in the master node) comprises three phases: the first is

the preparation phase to count all slave nodes online; the

second is the discovery phase to detect the unknown nodes;

and the third is the binding phase to configure the Node-ID.

The assigned node-IDs are equal with the slot numbers

which reflect logic positions of slave nodes in the control

system, so a node-ID also reflects the logic address of a

physical slave node in fact. Details of the dynamic address

management protocol are shown as follows (see Fig. 9).

First, in the preparation phase, the master detects each

slave node with node guarding service. The detection is

achieved by the master broadcasting a node guarding frame

to the slaves. Then, the switch mode global frame is used to

switch all LSS slaves into operational mode, and the switch

mode selective frame is used as a response to the request

frames to put the selected slave nodes into configuration

mode. Next, the switch identification state selective frame

is sent to slave nodes, of which the ones already registered

in the master node are transferred to be identified.

Fig. 8 Reconfigurable protocol stack with dynamic address management
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Fig. 9 Time sequences in exchanges between the master and the

slave nodes

Second, in the discovery phase, the node discovery pro-

cedure is defined to comprise a sequence of identification

phases. It is an improvement of the work discussed in [26],

which can be used to detect all slave nodes and adopts stan-

dard LSS address instead of the 6 bytes self-defined address.

Specifically, each of these phases contains a request initiated

by the master, followed by different numbers of responses

from the slaves. The master node repeats inquiries to the

attached devices with more and more precise criteria, un-

til a single node responds and, thus, it is identified. Such

procedures will be repeated until all nodes become known

in the network. The discovery is based on four new kinds

of unconfirmed services: identify unknown remote slaves

(IURS), identify unknown slave (IUS), directly identify re-

mote slave (DIRS) and directly identify slave (DIS). These

four services form the node identification procedure. As

shown in Fig. 10, sometimes, it is necessary for the master

to be able to set the state of nodes back to “unknown” or

“identified” directly (for example, to force a new detection

of devices).

Third, in the binding phase, the node-ID assignment re-

lies on a particular sorting algorithm on LSS addresses. Af-

ter note-IDs have been pre-assigned to each newly discov-

ered node in the address table of the master node, the LSS

configure node-ID service is used to configure all the recent

discovered nodes indeed. The switch mode global service

and switch mode selective service are used alternatively to

ensure only one slave node to be in configuration mode at

a time, so as to conform to the constraints of the LSS con-

figure node-ID service.

Fig. 10 Frame formats and node discovery procedure
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5.2 Performance evaluation

We evaluate the performance in a network simulation tool

to confirm the efficiency of node management protocol un-

der practical conditions.

The CANoe tool[27], a network analyzer for CAN sys-

tems, is used to trace the frame flows over the bus, and real

time messages generated by the virtual nodes is recorded

in log files, which reflects the current states and results of

the virtual system. By this tool, the correctness and the

performance of the binding protocol could be verified. In

our scheme, the extended 29 bits frame format of CAN is

adopted. The data field of node guarding frame is empty

and the response frame is 1 byte. Considering the worst

case transmission time on the CAN bus, the length of the

node guarding frame is 150 bits and the response frame is

160 bits. A screen-shot of the output obtained by the CA-

Noe is present in Fig. 11. The “trace window” shows the

sequence of the frames exchanged over the bus, while the

“write window” shows the state of the master and slave

nodes as the algorithm proceeds.

From the simulation logs, the time taken to detect 30

online nodes in a 50 kb/s CANopen network (which is very

slow) where the worst-case slave response time is 4ms and

the master processing time is equal to 1ms is at least

190ms. The assumed conditions will be applied to the fol-

lowing evaluation phase. The time needed to discover 30

unknown nodes is at least 11.2 s, which is shorter than that

of the standard LSS service of CANopen (16.09 s). The time

cost of binding phase for all these 30 nodes is 1.15 s, and

the average is 0.038 s for each known nodes.

6 Conclusions

The dramatic growth of networked control systems con-

fronts designers with serious difficulties of distributed in-

frastructure complexity, communication environment het-

erogeneity, and control strategy incompatibility. It has

motivated the call for a reconfigurable protocol stack with

self-recovery, self-tuning, and self-management. The prin-

ciples of self-organization can be useful for these goals of

autonomous behavior.

In this paper, the contribution is to give the architecture

of the reconfigurable protocol stack for a networked con-

trol system, propose a triple-layer self-organization struc-

ture, and point out its foundation role of implementing the

self-organization to deal with the dynamic reconfiguration

process. It goes beyond the previous work by extracting

common features, which contributes to the self-organized

protocol design, as fundamental elements: local interactions

and implicit coordination. These two basic design elements

suggest a general guideline on the internal and external in-

formation exchange in the self-reconfiguration level adapta-

tion. Furthermore, considering one of the fieldbus control

system, the dynamic reconfiguration schemes on improving

the address management is implemented and verified under

the idea of self-organizing reconfigurable protocol stack. It

is designed to provide the plug & play mechanism in the

existing CANopen architecture.

In the future, under the proposed architecture and man-

agement of the reconfigurable protocol stack (see Fig. 4), the

detailed self-organization manager specifications and their

reference implementations, which are not the focus of this

paper, still need researchers′ continuing efforts. This paper

focuses on the illustration of dynamic reconfiguration proce-

dure but not on how to evaluate the reconfiguration result

before implementation. Thus, one of the next directions

is the implementation of management framework based on

formal technologies, including the related functionality val-

idation and performance evaluation methods on the formal

protocol stack model.

Fig. 11 Sample output produced by the emulation tool
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