In Proc. International Symposium on the CREST D:igital Archiving Project
pages 83—-106, May 23-24, 2003, Tokyo, Japan.

Vision-based Interaction with Fingers and Papers

Zhengyou Zhang

Microsoft Research
One Microsoft Way
Redmond, WA 98052, USA

e-mail: zhang@microsoft.com
http://research.microsoft.com/users/zhang/

Abstract

This paper presents two vision-based interface systems. The first, VISUAL
SCREEN, uses an inexpensive technique to transform an ordinary screen into a
touch screen using an ordinary camera. The setup is easy: position a camera so
it can see the whole screen. The system calibration involves the detection of the
screen region in the image, which determines the projective mapping between
the image plane and the screen. In runtime, our system locates the tip pointer
(fingertip in our current implementation) in the image and converts the image
position to the cursor position on the screen. The second system, VISUAL
PANEL, extends the previous system for mobile applications. It employs an
arbitrary quadrangle-shaped panel (e.g., an ordinary piece of paper) and a
tip pointer as an intuitive, wireless and mobile input device. The system
can accurately and reliably track the panel and the tip pointer. The panel
tracking continuously determines the projective mapping between the panel
at the current position and the display, which in turn maps the tip position to
the corresponding position on the display. The system can fulfill many tasks
such as controlling a remote large display, and simulating a physical keyboard.
Users can naturally use their fingers or other tip pointers to issue commands
and type texts. Furthermore, by tracking the 3D position and orientation of
the visual panel, the system can also provide 3D information, serving as a
virtual joystick, to control 3D virtual objects.

Keywords: Vision-based user interface, VISUAL SCREEN, VISUAL PANEL,
new input device, new control device, virtual touch screen, virtual mouse,
virtual keyboard, virtual joystick, plane projectivity.

1 Introduction

In many intelligent environments, instead of using conventional mice, keyboards and joysticks,
people are looking for an intuitive, immersive and cost-efficient interaction device. We describe
two vision-based interface systems. The first, VISUAL SCREEN, uses an inexpensive technique
to transform an ordinary screen into a touch screen using an ordinary camera, and a user can
use his/her finger to interact with the computer. The second, called VISUAL PANEL, employs
an arbitrary quadrangle-shaped panel (e.g., an ordinary piece of paper) and a tip pointer (e.g.,
fingertip) as an intuitive input device.

There are several works [22, 13, 3] reported to use human finger as pointing device. Although
the configurations of these systems differ in that [22] is using a wearable computer and [13, 3]
are using camera-projector pairs, they are all assuming a plane to plane image-screen mapping.
Since a large number of computer screens are not flat, this assumption does not apply in our

2 The International Symposium on CREST Ikeuchi Project

case. We have proposed in this paper an image-screen mapping algorithm to correct the non-
flatness of the computer screen. We have developed a segmentation method specially tailored
for computer screen background. We have also developed a robust method to find the tip point
location. The overall performance of the system is fast, accurate, and reliable.

We can find many applications where this type of vision-based interfaces is desired. For
an instance, in a smart room, the user wants to control a remote and large display or play a
game, but he/she is in a sofa instead of in front of a computer, and therefore the mouse and
keyboard or joystick may not be accessible. Then, what could he/she do? He/she may pick up
an arbitrary paper at hand and move his fingers or pens on the paper to drive a cursor or to
type some text, or move the paper to control the game. Certainly, such an interaction is made
possible by having a camera look at the user and analyzing the movement of the paper and the
user.

For another example, several people are discussing in a meeting room using a large display.
They may need to draw some pictures to show their ideas. However, it is unrealistic to facilitate
every user a mouse and a keyboard. What could they do? Again, they may pick up any paper
and use their fingers to draw their ideas which will be shown in the large display. By this
means, a more immersive discussion can be achieved.

Even more, in a large lecture room, the lecturer sometimes needs to write down something
on a small whiteboard. However, the audience far from him or remote audience may not be
able to see clearly what he writes. Due to the constraints of the bandwidth, it would not be
feasible to broadcast the video of the writing. In this situation, a vision-based system is needed
to analysis what the lecturer writes and retrieve it in remote displays.

In such scenarios as smart rooms, immersive discussions and tele-conferencing, conventional
mice and keyboard turn out to be not suitable, which motivates the development of a vision-
based gesture interface. There have been many implemented application systems ([2, 8, 10, 30,
28,27, 1,5, 11, 17, 18, 25, 29, 12, 21, 26, 7, 15, 20, 24] to cite a few).

Touch screens are very convenient because one can directly point to where it is interesting.
No conventional mice are needed. The first prototype we will present is called VISUAL SCREEN.
It uses an inexpensive technique to transform an ordinary screen into a touch screen using an
ordinary camera, and the user can interact with the computer directing using his/her fingers.

The second prototype system, called VISUAL PANEL, takes advantage of an arbitrary
quadrangle-shaped planar object as a panel such that a user can use any tip pointer such
as his fingertip to interact with the computer. By observing the tip pointer on the panel, we
achieve accurate and robust interaction with the computer. The 3D pose of the panel can also
be used to control the display of 3D objects.

The remainder of the paper is organized as follows. In Sect. 2, we first present the plane
perspectivity, which describes the relationship between a plane in space and its image. This
is the mathematical foundation of both systems because the computer screen/display and the
panel are assumed to be planar, although non-planarity, as will also be shown, can be corrected.
In Sect. 3, we provide an overview of the VISUAL SCREEN system, together with camera-screen
calibration and other technical details. In Sect. 4, we first give an overview of the VISUAL
PANEL system and its main components, and then provide the details of the techniques used
for detecting and tracking the panel and the tip pointer and for determining the pose of the
VisuAL PANEL. Four applications built on top of the system are finally presented. Section 5
concludes the paper.

The International Symposium on CREST Ikeuchi Project 3

2 Plane Perspectivity: Mapping Between A Rectangle
in Space And Its Image

Since we use an arbitrarily rectangle-shaped panel to control the cursor position on the remote
display, we have to know the mapping between a point on the panel and a point on the display.
Furthermore, what is available is an image sequence of the panel which may undergo arbitrary
motion (as long as the image of the panel does not degenerate into a line or a point), so we
also need to know the mapping between a point in the image plane and a point on the panel.
We assume the camera performs a perspective projection (pinhole model) [6]. As the display,
the panel, and the image plane are all planes, both above relationships can be described by a
plane perspectivity [19], as to be explained below.

Given a point p = [z,y]7 on a plane II, we use p = [z,,1]7 to denote its homogeneous
coordinates. Then, the plane perspectivity between planes II and II' is described by a 3 x 3
matrix H such that

Ap' = Hp (1)

where A is an arbitrary non-zero scalar. This implies that the homography matrix is only defined
up to a scale factor, and therefore has 8 degrees of freedom. If four couples of corresponding
points (no three of them are collinear) are given, the homography matrix can be determined
(see, e.g., [31]).

It is not difficult to see that the composition of two plane perspectivities is still a plane
perspectivity. Thus, the mapping between the image of the panel and the remote display can
be described by a homography matrix. This is very important because what we really need
is to use the detected tip position in the image to control the cursor position on the remote
display. (If we instead estimate the above-mentioned two homographies, additional calibration
is necessary, making the system setup unnecessarily more complicated.)

The composed homography can be easily determined once the four corners of the panel are
located in the image. As we know the dimension of the display, we compute the homography
by mapping each corner of the panel to a corner of the display. Thus, the position of the four
corners of the panel is the only thing we need to perform the mapping. As the panel can be
detected and tracked easily and robustly, as to be described in the next section, the camera
can also move dynamically to achieve a higher degree of mobility.

3 The Visual Screen System

3.1 Overview

The system setup essentially involves only positioning a camera so as to view the screen of a
computer monitor. Ideally, the camera views the screen from a point along a line normal to
the center of the screen. However, as this will likely interfere with the user who typically sits
in front of the computer monitor, the camera can be shifted away from the normal line to get
it out of the way of the user. The camera should not be moved too far away from the normal
line, however, or errors will be introduced in the process. It has been observed that the camera
can be positioned up to about 30 degrees off of the aforementioned normal line in any direction
and still provide error-free performance.

4 The International Symposium on CREST Ikeuchi Project

Figure 1 is the diagram of the Visual Screen (VS in short) system. Four dash boxes represent
four major parts of the system. From left to right, these boxes will be referred as Calibration
block, Model Extraction I block, Main block, and Model Extraction II block, respectively.
The Main block is the kernel of the system. Its functionality is to locate the tip point of
the indicator and map its image coordinates to the screen coordinates. The task of tip point
location contains two processes, i.e., to segment the indicator from the background, and to find
the tip point of the indicator. The segmentation requires color models for both the background
and the indicator. The Model Extraction blocks I, and II in Figure 1 are used to extract the
background model and the foreground model, respectively. The Calibration block is used to
establish the mapping between the image coordinates and the screen coordinates. This mapping
is then used in the Main block to find the corresponding screen coordinates for the tip point
once its image coordinates are estimated.

Image of Image
theScreen Stream of Image of the
without Indicator on Indicator
Indicator Screen
|
v v
Image-Screen Extract P Indicator Segmentation LB Extract Indicator
Calibration Background Model + Model
¢ # Find the Tip Point of the Indicator %
Image-Screen Background Indicator Model
Mapping Model $
‘ Map the Image Coordinator of the
» Indicator's Tip Point to the Screen
Coordinator
Calibration Model Extraction | Main ModelExtranction

Figure 1: Diagram of the Visual Screen system. From left to right, four major functional parts
of the system include calibration, extraction of a background model, extraction of a foreground
model and a main processing block.

3.2 Accurate image-screen calibration

If the screen is flat, the plane perspectivity from the screen plane and its 2D projection on
the image plane is described by a homography, a 3 x 3 matrix defined up to a scale factor.
This matrix can be easily determined from 4 pairs of image-screen point correspondences. The
correspondences are not difficult to obtain because we know the screen coordinates of four
screen corners, and their corresponding image points can either be detected automatically or
specified by the user.

In most cases, however, screens are not flat. This problem has been addressed as follows.
First, we display on the screen a grid of circles (referred as calibration points hereafter), whose
centers are known in the screen plane. A circle is usually projected in the image plane as an
ellipse. We can easily compute the centroid of an ellipse. As the extent of an ellipse is small in
our case, the centroid of an ellipse can be well considered as the projection of the center of the

The International Symposium on CREST Ikeuchi Project)

corresponding circle. Second, we compute a homography from the image-screen correspondence
of the calibration points. Since the screen is actually not flat, the homography thus computed
is just an approximation. Third, we map the calibration points on the image back to the screen
(called the estimated calibration points), and compare the estimated calibration points with
the original ones. The difference between the original and the estimated points then defines a
residual vector on each grid point. This grid of residual vectors are then used to compensate
the mapping errors caused by the non-flatness of the screen. Bilinear interpolation is used
to compute the residual vectors of screen points not on the grid. Figure 4 demonstrates the
calibration result.

3.3 Reliable color segmentation

It sounds difficult to separate the indicator from the background screen because its contents
change frequently. However, it has been observed in our experiments that the images of screen
pixels have some degrees of invariance in the color space. That is, they are dominated by a
kind of blue color. This observation forms the base of our segmentation algorithm described as
follows. We firstly compute a color model for the screen without the indicator. A number of
pictures with rich color are displayed on the screen in order to make the model as general as
possible. To compute this background model all of the pixels in the image are histogrammed-
namely, for each pixel its color intensity is placed in the proper bin of a preferred possible 256
intensity levels. This is preferably done for each of the red, green and blue (RGB) channels
thus generating three separate histograms. Alternately, one histogram could be generated
using some joint space representation of the channels. Once the histogram has been computed,
a Gaussian distribution for each histogram is calculated to provide the mean pixel intensity of
the background and the variance.

Once the modeling of the background of the screen has been completed, the model for the
indicator or pointer is computed in order to separate the indicator from the background. This
is done by asking the user to select a polygonal bounding area displayed on the screen for the
indicator of choice. Only the pixels inside this polygonal area are used to compute the color
model for the indicator. The computation is done in the same way the background model was
produced. Usually the color model for the indicator will be dominated by a different color in
color space than the background. Once a color model for the indicator has been determined,
this model will not have to be recalculated unless a pointer with a significantly different color
is employed.

Once both the screen background and indicator models are determined, a standard Bayes
classifier (or the like) is used to segment the indicator from the screen background. If the
extracted models of the foreground and background are split into separate RGB channels,
the Bayes classifier determines the probability a given pixel color is a background pixel for
each channel and these probabilities are multiplied together. The classifier also determines the
probability a given pixel is a foreground pixel for each channel and multiplies the probabilities
together. Next, the background pixel probability product is divided by the foreground pixel
probability product. If this quotient is greater than one then the pixel is determined to be a
background pixel, otherwise it is determined to be a foreground or indicator pixel. Figure 5
demonstrates the segment result of a hand, of which any finger could be an indicator.

6 The International Symposium on CREST Ikeuchi Project

3.4 Robust finger tip locating

It is not trivial to define the tip point of an indicator. What is really desired is the consistency,
or the invariance of the definition. In our current implementation, the tip point is defined as the
intersection of the indicator’s center line and its boundary along the direction that the indicator
is pointing towards. In our prototype system, we have simplified the definition by allowing only
the upwards pointing direction. We have developed an algorithm to robustly find the center
line of the indicator, as well as its intersection with the upper boundary of the indicator. The
boundary of the indicator can be found easily from the segmentation result mentioned above.

The algorithm can be elaborated as the follows. A cumulative total of the number of pixels
that belong to the foreground are calculated on a scan line by scan line basis starting at the top
of the image containing the indicator. The resultant histogram will be referred as horizontal
histogram. The horizontal histogram is next analyzed to determine the scan line where the
foreground pixels first appear and increase in cumulative total thereafter (i.e., representing a
step). The identified scan line roughly corresponds to where the indicator tip location may be
found. Next, a number of lines above and below the identified line (e.g., 15 lines) are selected
and each is scanned to find the start and end of the foreground pixels in the horizontal direction.
In addition, the center point of each series of foreground pixels along each of the scan lines is
determined and a line is robustly fit through these points. The pixel corresponding to the
indicator tip location is then determined by scanning all pixels within the previously identified
indicator window (e.g., 15 lines) to find the boundary pixels. The pixel corresponding with the
tip of the indicator is the boundary pixel where the previously determined centerline intersects
the boundary of the indicator. Figure 2 demonstrates the result of tip point location.

Figure 2: Tip point location. Line [is the center line of the indicator, and point p is the tip
point. Both of them can been reliably found with reasonable accuracy. Line h indicates the
scan line where the foreground pixels first appear in the direction of the y-axis. The horizontal
histogram is shown on the right side of the image

The stability of the finger tip location is further improved by filtering the location over time
with a Kalman filter.

The International Symposium on CREST Ikeuchi Project 7

3.5 Experiment results

B iao: -~ .nv EE s
b gind {2

£l vector Fishasp® [1:1] {Backgre!

Figure 3: Photo editing with VS system. In the left image, the paint brush has been moved
by finger tip to the place where the user wants to put the bubble. The right image shows the
bubble. The paint brush is highlighted by an arrow in both images

The VS system is implemented on a Pentium IT 450MHz machine with an average frame
rate of 19fps. The system is designed to work in conjunction with the native mouse. The
native mouse is used to control the cursor as usual when no indicator is detected within the
screen area. When an indicator is detected, it takes control of the cursor over the mouse.
Figure 3 shows our system working on a photo editing environment (Paint Shop Pro) where
the finger tip is used to control the paint brush. Despite the complicated background, which is
frequently encountered in graphical systems, the VS system is able to control the brush robustly
and consistently. Actions like left-button click is now simulated by key strokes. They will be
triggered by a gesture recognition subsystem in the next version of the VS system.

4 The Visual Panel System

4.1 Overview

Figure 6 shows the basic idea of visual tracking in the VISUAL PANEL system. Figure 6a is one
frame of the video input, and Figure 6b shows the tracking result of the panel and the fingertip.
The quadrangle can be mapped to a remote display, and the mapping is a homography. As to
be explained later, the homography describes a plane perspectivity because the panel and the
display both are planar. The position of the fingertip is then mapped accordingly, and can be
used, for example, to control the cursor on the display, thus serving as a virtual mouse.

The system consists of panel tracker, tip pointer tracker, homography calculation and update,
and action detector and event generator. It can simulate both mouse and keyboard. The whole
system is shown in Figure 7.

Video sequences are analyzed by a panel tracker and a tip pointer tracker. As already
described in the last section, the panel tracker can accurately track an arbitrary quadrangle-
shaped plane object by outputting the positions of the four corners. Since their positions
are calculated in sub-pixels, we can accurately compute the homography, which describes the

8 The International Symposium on CREST Ikeuchi Project

Figure 4: Calibration result. The left image shows the original calibration points (in red) and the
estimated points (in green) with homography only. The right image shows the result with residual
vector interpolation. The error of image-screen mapping is largely reduced in the right image

Figure 5: Segmentation result. Left image shows a picture of a hand on the screen. Indicator could
be any finger of the hand. Right image shows the segmented hand. Note that the segmentation result
is not affected by the complicated screen background

mapping between the panel and a remote display. Through the homography, any point on the
panel is mapped to the corresponding position on the remote display.

The panel detector, also described in the last section, can automatically detect the panel
when it just enters the camera’s field of view, or recover the panel if its tracking is lost due to
abrupt motion.

In the VISUAL PANEL system, users can use their fingertip as a mouse to simulate a cursor
for the remote display. This requires an accurate and stable tracking of the fingertip, because
a small error in the tip position will be magnified in the remote large screen. To see why,
let us assume the resolution of the input video is 320 x 240 and that of the remote display
is 1024 x 768. Since the panel usually occupies about half of the image, it is obvious that a
tracking error of 1 pixel will incur an error of about 6 pixels on the display, making the mapped
cursor position very shaky. This problem is solved in our system by representing a tip pointer

The International Symposium on CREST Ikeuchi Project 9

Figure 6: The tracking in the VISUAL PANEL system. (a) an input image (b) tracking result:
a tracked panel and a tracked fingertip.

as a conic and fitting a parametric conic to image observations. Therefore, the tip position is
also calculated in sub-pixels.

The fingertip detector automatically detects the fingertip when it is posed on the panel. Both
fingertip tracking and detection will be described later.

The current system simulates the clicking/pressing gestures by holding the tip pointer on the
same position for a while. The event generator reads input from the action detector, and issues
various mouse and keyboard events. More details will be given later.

We describe below several system issues:

e Camera Setting: The setting is quite flexible. It can be anywhere as long as the panel
is not significantly occluded. In our current implementation, a fixed camera is mounted
on the ceiling. The user can rotate, translate and tilt the panel to reach a comfortable
pose for use. Under circumstances where more mobility is necessary, we can use a pan-
tilt-zoom camera or mount a camera on top of his head by wearing a hat, on his glasses,
or on his shoulders, such that the user can be anywhere to interact with the computer.
This would be quite useful, for example, for a speaker who gives a presentation while
walking around.

e Panel Design: The panel can be anything as long as it is quadrangle-shaped. For
example, we can use a piece of white paper or a cardboard, which is widely available in
offices and at homes. Because we rely on a homography mapping, we should not bend
the quadrangle-shaped object during operation.

e Tip Pointers: The system allows arbitrary tip pointers, such as fingertips and pens, as
long as their color is distinguishable from the panel’s color. In our usability studies, many
users prefer pens to fingertips in some applications like finger painting, because pens are
more intuitive for them, although they have fun to use fingertips.

e Clicking: The current VISUAL PANEL system simulates clicking and pressing by holding
the tip pointer in the same position for a short period of time. We are exploring the
possibility of using some natural gestures.

10 The International Symposium on CREST Ikeuchi Project

[Panel Detector] !_M_o-d_e_C-)Fti_o-rTs_i
Panel Action - Virtual | Mouse
r‘ Tracker | Distantst Mouse Events
Video Homography : K
bkt : — & | Virtual gy
Input I Mapping KevBD T Events
(B e Event i
Fingertip
Detector Generator , Virtual | 3D
Joystick Events
Fingertip .
M Tiacker [Comc Fitting | % o w e
VipalPanel ... Appldontas

Figure 7: The system of VISUAL PANEL, which consists of panel tracker, pointer tracker, action
detector and event generator.

Building on top of these techniques, our system is capable of performing two types of input:
virtual mouse and virtual keyboard, as will be shown in the application section. As a virtual
mouse, the position of the tip pointer is mapped onto the remote display to simulate a cursor.
We can also use a paper with a keyboard pattern printed on it as a virtual keyboard, with
which a user can point the keys on the paper to input text.

Furthermore, our system can track the 3D position and orientation of the visual panel, and
the 3D information can be used to control 3D virtual objects. Therefore, our system can also
serve as a virtual joystick.

A video filming a live demonstration of an older version of this system is also submitted. We
have not yet had time to record a demonstration of the newer version including the 3D control
functionality (virtual joystick), but we plan to do it for the PUI. The whole system runs at
close to 29 frames per second.

Let us now look at each component in more details.

4.2 Visual Panel Detection and Tracking

We use an arbitrary rectangular object such as a piece of paper as our visual panel. Its
projection in the image is a quadrangle.

4.2.1 Quadrangle Representation

The image of the panel can be represented by a quadrangle:
Q: {l17l27l37l4} (2)

where [; is a side line. It can also be represented by the four corners Q = {qi, qs,qs, qs4} with
I = qr—1qx (We assume qp = qq).

Each side of the quadrangle in the image is expected to be a set of edge points due to the
difference between the panel and the background. We model the appearance of each side as a

The International Symposium on CREST Ikeuchi Project 11

(c)

Figure 8: Automatic quadrangle detection. (a) Original image with detected quadrangle over-
laid as green lines; (b) Edges image obtained with Sobel detector; (¢) Hough space.

random vector x = {G, I}, where G is the average gradient and I is the average intensity. The
distribution of X is assumed to be a Gaussian, i.e., x ~ N(ju,,>;). More richer modeling of
the appearance is under investigation.

4.2.2 Automatic Detection

We have developed a simple technique based on Hough transform [9] to automatically detect
a quadrangle in an image. Take the image shown in Fig.8a as an example. A Sobel edge
operator is first applied, and the resulting edges are shown in Fig.8b. We then build a 2D
Hough space for lines. A line is represented by (p,), and a point (u,v) on the line satisfies
cos(@)u + sin(f)v — p = 0. An edge point with orientation is mapped into the (p,#) space. In
our implementation, 6 is divided into 90 intervals from —90° to 90°, and p is divided into 100
intervals from range from —d to d, where d is the half of the image diagonal. The Hough space
for the edges in Fig. 8b is shown in Fig. 8c.

We then examine the strong peaks in the Hough space whether four of them form a reasonable
quadrangle. By “reasonable”, we mean:

the neighboring sides should differ at least by 20° in orientation;

the opposite sides are close to be parallel (the orientation difference is less than 20°);
the opposite sides are not close to each other (at least 40 pixels of difference in p); and
there are indeed a large number of edges on the quadrangle.

The last test is necessary because a point in the Hough space corresponds to an infinite line,
and a quadrangle formed by 4 lines may not correspond to any physical quadrangle in an
image. The quadrangle detected in Fig. 8a is shown with red lines on the image. Our current

implementation of quadrangle detection achieves 22 frames per second for image resolution
320 x 240 on a PC III 1G Hz.

4.2.3 Tracking Through Dynamic Programming

At time frame ¢, the location of the quadrangle is at Q(t) = {q1(¢), q2(t),qs(t), qs4(t) }, and the
appearance of the quadrangle is x(¢). The tracking can be formulated as a MAP (maximum a
posteriori) problem:

Q" (t+1) = arg manp(Q(t + 1)|Q(t), x(t),x(t + 1))

12 The International Symposium on CREST Ikeuchi Project

Because the panel motion between successive image frames is limited, we assume at time ¢ + 1
these four corner points will be in a range D; around p;(t), respectively. The above problem
can then be approximated by

Q*(t+ 1) = argmaxgp(Q(t + 1),x(t + 1)|Q(t), x(t)
. {Dh D27 D37 D4})

«,”

Here, means that {Dy, Dy, D3, D} are parameters for the probability. Obviously, this is
a formidable searching problem. To illustrate this (see Figure 9), we assume the size of each
search area of D; is N. The complexity of the exhausted search for this problem is O(4).
However, since the four sides of the quadrangle are sequentially connected, this problem can
be solved by the dynamic programming technique [23].

Q*(t+1)
= argmaxg Z?:I p(Q(t+ 1), x;(t + 1)|x;(t), Qi(t)
: Di(aqi(t), ai_1(1)))
= argmax(q,} >,y p(xi(t + 1)[xi(t), qi(t), af_, (£))

That is, we try to estimate each side of the quadrangle sequentially by maximizing a suitable
criterion (see below).

p2

p3

Figure 9: Tracking a quadrangle by dynamic programming technique

In our implementation, in order to reduce further the computational complexity, we do not
search for the corners directly, where each corner should be examined in a 2D region. Instead,
we search side lines, where the search region of each corner can be approximated by a line
segment. Once side lines are determined, corner points are computed from the intersection of
these lines.

As mentioned earlier, the appearance of each side line of the quadrangle is modeled by x that
contains both the gradient information and the color information. Maximizing the probability
in (3) implies to finding a pair of line segments between ¢ and ¢ + 1 such that their appearances
are closest. This can be done by minimizing the relative entropy between their distributions [4].

The International Symposium on CREST Ikeuchi Project 13

Assume Gaussian distribution of X and Y, then the relative entropy:

DOx|Y) = Bl 22 = [)16 22 0

i s, 1py(u1) py(u)

= _—lg =L — Z 4 ZFl(x — Yo —
d. |2 1 |2, 1 B

T | R | B TN e YoM
21815, 7 2 + o] + g (e = 1y 2y (e —)

Thus, we have a symmetric distance metric:

D(X.Y) = 2(D(X]|Y) + D(Y]|X))

|Ey| |ZCE| / -1 —1
=5t T e—my) (5545,) (e —py) — 2
Xa| |5y ! Y !
By this means, we can find the best-matched line at time ¢ + 1 by:
e+ 1) —arg min | Dex(t),x(+1) - {45 i1}) ®)
Qi di—1

Note that, because our panel tracking is based on locating the side lines, it is very robust to
occlusion. It works well even when a significant fraction of a side line, including the corners,
is occluded by, for example, hands, or moves out of the camera’s field of view. Obviously, the
tracking fails when a whole side line is occluded or invisible, and in this case the quadrangle
detection algorithm described in the last subsection is activated.

Our current implementation of quadrangle tracking achieves 29.5 frames per second.

4.2.4 An Example

Figures 10 and 11 show another tracking sequence with different background. Figure 10 shows
the automatic detection result, while Figure 11 shows a few sample results of the tracking under
various situations. Note that this sequence is quite difficult since the background contains books
of similar color and there are a large number of edges. Note also that we have not used any
background subtraction or frame difference technique to reduce the background clutter. As can
be observed, our technique tracks very well under perspective distortion, illumination change,
partial disappearance, size change, and partial occlusion.

4.3 Fingertip Detection and Tracking

The tracking of a tip pointer is quite intuitive. Assume the position of the tip at time ¢ is p(¢).
Kalman filtering technique is employed to predict the tip position p(¢ + 1) at time ¢t = 1. In a
small window, say 30 x 30, we identify as many as possible edge pixels that probably belong to
the edge of the tip by thresholding the gradient and taking advantage of color of previous edge
of tracked tip. After that, we fit a conic to those pixels and identify the extreme point of the
conic to be the tip position p(¢ + 1) for time ¢ + 1. In this way, we achieve subpixel precision
for tip location. The combination of quadrangle tracking and tip tracking runs at close to 29
frames per second.

Since a tip pointer is on/off the panel frequently, the system should have the capability of
detecting the tip pointer automatically when it appears on the panel. We have developed a
technique through dynamic background subtraction, which is illustrated in Fig. 12.

14

The International Symposium on CREST Ikeuchi Project

Figure 10: Another example of automatic quadrangle detection. (a) Original image with de-
tected quadrangle overlaid as red lines; (b) Edges image obtained with Sobel detector; (c)

Hough space.

Fle Image Panel Sequence Edit Wiew Window Help

=1oix|

Fie Image Pamel Sequence Edit Wiew window Help

,,- YisualPanel - Live ¥ideo

9 [3]

File Image Panel Sequence Edt Vew Window Help

,- ¥YisualPanel - Live ¥ideo

D|=E| S[2][e <=

D|=(E| S(2|[e = |m

D|=(E| & 2|[e <|=|

wﬁ' Live ¥ideo
—— iy P

—lolx

Ready

29.97 fps [29.96 Fps 4

Ready

Print the active document

=15

F\Ie Image Panel Sequence Edit Miew Window Help

=1oix|

File Image Pamel Sequence Edit Miew ‘window Help

,,T. ¥isualPanel - Live ¥ideo

=lolx|

Flla Image Panel Sequence Edit View Window Help

D|e|E| &|2|[c <|m|

0| |E| & 2|[a [eg

D= & 2|[a <[

=

BE

1o

22,96 fps |29.95fps

L

29,97 fps [29.95fps 2

Ll

29.97 fps [28.95fps 2

Ready

(d)

(e)

(f)

Figure 11: Sample results of a tracking sequence under various situations.

The International Symposium on CREST Ikeuchi Project 15

warped
background
with H,

H,

background at t,

< P
oregroun

: . from
image at t L background

subtraction

Figure 12: Detecting tip pointer. The foreground, i.e. hand, can be segmented out from the
background, since the current position of the panel is tracked and a background template is
maintained.

Assume at the beginning of the application, the panel Q(0) at time 0 is detected, and there
is no tip pointer on the panel. We save the image as [y. At time ¢, since the system tracks
the panel position Q(t), the homography H(t) between Q(0) and Q(t) can be easily calculated.
Through the homography H(¢), the pixels p,(0) in I, are mapped to the panel at time t as
pu(t) by:

Pu(t) = H(#)p:(0)

We thus have a warped image Io(py(t)). This virtual background image is what the panel
should look like if there is no tip pointer. Subtracting Io(ps(¢)) from the current image gives
us a difference image. The tip pointer is likely located in areas with large color difference. A
mask image is computed for the foreground, and the most distant pixel from the mask centroid
is considered to the tip. Figure 12 shows the basic idea of our approach.

4.4 Action Detection and Two Mouse Pressing Modes

Our system has two mouse button pressing modes: mode I (clicking mode) which simulates the
left button down then up automatically and mode II (dragging mode) which simulates the left
button down until released. In our current implementation, clicking/pressing is simulated by
holding the tip pointer for a short period of time, say, 1 second, and a beep sound is generated
as a feedback to indicate that an event is activated. This is illustrated in Fig. 13, where the
horizontal axis indicates the time and the vertical axis for the top row indicates the tip location
(i.e., trajectory).

A variable S with two states (UP and DN) is maintained to simulate the two natural states
of a button. The variable S is initialized to be UP. In the clicking mode (mode I), when the
system detects that the tip pointer has been at a fixed place for a predefined amount of time,
the state variable S is set to DN. After 0.1 second, the state variable S will be automatically
set to UP to simulate button release. Appropriate mouse events are then generated, and a
clicking action is performed.

Obviously, in clicking mode (mode I), the ability of dragging is very limited, since the release
is automatic. To simulate dragging, mode II uses another state variable D to memorize the

16 The International Symposium on CREST Ikeuchi Project

Trajectory
Button ke
|] U
DN
Mouse Events

W Il I
Mode II 1 ‘*‘l Tf

Figure 13: Simulating clicking (mode I) and dragging (mode II)

flip of clicking. When the system detects that the tip pointer has been at a fixed place for a
predefined amount of time, variable D changes its state. When the D-state changes from UP
to DN, a pressing event is triggered; when the D-state changes from DN to UP, a releasing
event is triggered. Thus, we can pick up a window and drag it to a different place.

Note that the clicking event can also be triggered in the dragging mode if the pointer tip
stays in the same location twice longer.

In our current implementation, an icon is provided in the menu bar. By clicking on that
icon, the system switches between the dragging and clicking modes. Because of noise, there are
some small jitters in the tip location during the wait time for activating an event. We consider
that the tip is immobile if the jitters are within 2 pixels.

4.5 3D Pose Estimation

In this section, we describe how the 3D pose of the VISUAL PANEL and the camera parameters
are determined and how that information is used to control the visualization of a 3D object. The
intrinsic parameters of a camera can be calibrated in advance with many different techniques
such as the one described in [31]. In our current implementation, we use a simplified camera
model, and calibrate the camera using the known size of the VISUAL PANEL.

We assume that the principal point of the camera is at the center of the image, the aspect
ratio of the pixels is known (1 in our case), and the pixels are squared (no skew), so the only
unknown camera parameter is the focal length f. Let R and t be the rotation matrix (defined
by 3 parameters) and the translation vector (also defined by 3 parameters) of the VISUAL
PANEL with respect to the camera coordinate system. We assume that the width w and height
h of the VISUAL PANEL are known, so the coordinates of the four corners, Q; (i = 1,...,4),
can be defined in a coordinate system attached to the VISUAL PANEL as [0, 0, 0], [w,0,0]7,
[w, h, 0]T and [0, h, 0]7. As described in Sect. 4.2, we detect/track the four corners in the image
which are denoted by q; (i = 1,...,4). The relationship between Q; and q; is described by the

The International Symposium on CREST Ikeuchi Project 17

perspective projection model:

f 0 u
s{‘ﬂ — AR Y m With A= |0 f v (4)
00 1

where s is a non-zero scale factor and (ug,v) are the coordinates of the principal point. Elim-
inating s yields two scalar equations. Since we have 4 points, we have in total 8 equations.
Because we only have 7 parameters (focal length + the 6 pose parameters), a least-squares
solution can be obtained for the focal length by minimizing the errors in the image space. In
order to achieve higher accuracy, we track the VISUAL PANEL through 30 frames and estimate
the focal length using all the images, again in least-squares.

Once the focal length is known, the pose (R,t) of the VISUAL PANEL at each time instant
can be determined based on the same equation (4). We still have 8 equations, but only 6
unknowns (the pose parameters). A least-squares solution can be obtained by minimizing the
errors in the image space. The computation time for pose estimation is negligible.

To control the visualization of a 3D object, we use the relative pose of the VISUAL PANEL
at the current time instant with respect to the pose when it was detected.

4.6 Sample Applications

Based on the VISUAL PANEL system, several applications are made to demonstrate the capacity
of the system. A video filming a live demonstration of an older version of the system (without
automatic panel detection and the virtual joystick functionality), is available at URL:
research.microsoft.com/~zhang/VisualPanel/video.avi
The sound track is not edited, and a beep signals a Windows event is generated.

In this section, we explain four applications: control a calculator, draw a picture with a
finger, input text without using any keyboard, and control a 3D object with the Visual Panel.

4.6.1 Controlling a Calculator

This application demonstrates the accuracy and stability of the VISUAL PANEL system. The
Calculator, with around 30 buttons, takes a very small part area of the display. In this demo,
a user can freely use his fingertip to click any buttons or menus of the Calculator. A snapshot
is shown in Fig. 14 where the cursor is positioned on the button “x” (multiplication). The
tracking error is less than 1 pixel, and the motion of the cursor is very smooth. Indeed, our
system can be used as a virtual mouse to control any Windows application.

4.6.2 Finger Painting

This application demonstrates different mouse button pressing modes. A user can now use his
finger to select tools and draw anything with Paint, a standard Windows application. Our
usability study shows that users learn quickly how to draw a picture and control the remote
display with their finger using our VISUAL PANEL system. Figure 15 shows a snapshot of the
display while a user was finishing painting “hello world”. The left window displays the panel
and the hand viewed from the camera.

18

The International Symposium on CREST Ikeuchi Project

& Framegs & pnen
L L ML L T e—

Pl Pl by b it et

Bt e i v e
R ——
Wl U e B R | B b

- e— vy Sl emmeeed by

| B e LLL

=T 1-TE T pre— o T ——

Figure 14: Controlling a calculator.

Figure 15: Finger painting.

The International Symposium on CREST Ikeuchi Project 19

4.6.3 Virtual Keyboard

This application demonstrates that the physical keyboard can be replaced by a printed virtual
keyboard in our VISUAL PANEL system. We print a keyboard pattern on the panel, which is
shown in Figure 16. When the user points to any of the keys on the panel, a key-down message
is sent to the operating system, such that the current active application will receive such key.
For example, we can use Windows Notepad to receive text inputted by the user. Figure 17
shows a snapshot of the display while a user was inputting “hello world. THANK YOU” with
the virtual keyboard. (Note that the lock key was pressed in the middle.)

In our current implementation, users can only use one of their fingers. The typing speed
is slow because of the one-second wait time. We are not claiming that we can get rid of the
physical keyboard. However, our system could be a very promising alternative when the physical
keyboard is not available under some circumstances. The typing speed could be increased by
using hand gestures to activate the events rather than waiting for a short period of time.
Alternatively, instead of using the traditional keyboard, we could use special keyboards similar
to Cirrin [14] and Quickwriting [16] which can input multiple letters without explicit keyboard
events.

4.6.4 Virtual Joystick

As described in Sect.4.5, we can determine the 3D orientation and position of the VISUAL
PANEL at each time instant, and we can therefore use this type of information to control the
display of a 3D object. That is, the VISUAL PANEL can serve as a virtual joystick. Figure 18
shows a few screen dumps of controlling a tiger model using the VisuaAL PANEL. In each
picture, the left side displays the live video with the tracked VISUAL PANEL indicated by red
lines; the right side displays a 3D tiger model. As we can see, when the VISUAL PANEL moves
closer to the camera, the tiger is zoomed; when the VISUAL PANEL rotates, so does the tiger;
when the VISUAL PANEL translates, so does the tiger.

One obvious limitation of our system is that we cannot rotate an object all around contin-
uously because the VISUAL PANEL may degenerate to a line in the image, making the pose
estimation failed. There are several ways to overcome this difficulty: detect explicitly this case;
perform temporal filtering. In our current implementation, we just re-initialize the VISUAL
PANEL, and pursue the 3D control from where the tracking was lost previously.

5 Conclusion and Future Work

In this paper, we have described two vision-based human-computer interaction systems.

The first system, called VISUAL SCREEN, turns a regular computer monitor screen into a
touch screen using an ordinary camera. It includes an image-screen mapping procedure to
correct for the non-flatness of the computer screen. It also includes a segmentation method to
distinguish the foreground from the background of a computer screen. Additionally, this system
and method includes a robust technique of finding the tip point location of the indicator (such
as the finger tip). The screen coordinates of the tip points are then used to control the position
of the system indicator.

The second system, called VISUAL PANEL, is capable of performing accurate control of remote
display and simulating mouse, keyboard and joystick. The VISUAL PANEL system employs an

20

The International Symposium on CREST Ikeuchi Project

Figure 16: Virtual keyboard

& Puopwigs B Dephns
I bawsner 000 TP . Ti) Seses fess

Fragems Flise leseset Loborseed

 p— e | e e ol cmi B b E 0 F b
et | c—
—ama g

- e d ey ried rsmsasrde|ie

Figure 17: Virtual keyboard in action

The International Symposium on CREST Ikeuchi Project 21
ioixi ~ioixi

Flle Image Panel Sequence Edi Wiew Window Help Flle Image Panel Sequence Edit Wiew Mindow Help

O|=|e| 22| [~ |=|@E [~ | M N ENE R =

- = 1of x| [

e Edt View Wndow Help

|29.90 Fps [29.95fps 2 |e7.19fps [2715fs 2
—lof x| =10l x|

e Edi Yew Window Help

=100 x]

Ready [29.57fps [29.95ps 7 Enable tp tracker [30.00fps [30.04Fps 7

Figure 18: Virtual joystick: Control the visualization of a 3D object by moving the VISUAL
PANEL

arbitrary quadrangle-shaped plane object as a panel, which can be considered as a display or
a keyboard. It can robustly and accurately track the panel and the tip pointer. A user can
use their fingers or other tip pointers to simulate a cursor pointer and issue clicking/pressing
instructions. After the action is detected, various events can be generated and sent to the
computer operating system. Furthermore, by tracking the 3D position and orientation of the
visual panel, the system can also provide 3D information, serving as a virtual joystick, to
control 3D virtual objects. Four applications have been described: control a calculator, paint
with fingers, input text with a virtual keyboard, and control the display of 3D objects. They
have clearly shown the high robustness, accuracy and flexibility that the VISUAL PANEL can
provide. Many other applications are possible. For example, the 3D pose information of
the VISUAL PANEL will allow real-time insertion of a texture-mapped virtual object into the
scene to make it appear as if it is a part of the scene and move with the VISUAL PANEL. The
VISUAL PANEL system leaves a lot of room for extensions and improvements in various aspects,
especially in action recognition. In our current implementation, action is triggered when the tip
pointer stays immobile for a short duration (say 1 second). We are investigating more natural
ways to do that, for example, by combining hand gesture recognition.

Acknowledgment

The author thanks Ying Shan, Ying Wu and Steven Shafer for their contributions. The work
described in this paper was first presented in [32, 33]

22 The International Symposium on CREST Ikeuchi Project

References
[1] S. Ahmad. A usable real-time 3D hand tracker. In Proc. IEEE Asilomar Conf., 1994.

[2] Greg Berry. Small-wall: A multimodal human computer intelligent interaction test
bed with applications. Master’s thesis, Dept. of ECE, University of Illinois at Urbana-
Champaign, 1998.

[3] J. Coutaz, Crowley, J. L., and F. B rard. Things that see: Machine perception for human
computer interaction. Communications of the ACM, 43(3):54-64, 2000.

[4] T. M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley, 1991.

[5] J. Crowley, F. Berard, and J. Coutaz. Finger tracking as an input device for augmented
reality. In Proc. Int’l Workshop on Automatic Face and Gesture Recognition, pages 195—
200, Zurich, 1995.

[6] Olivier Faugeras. Three-Dimensional Computer Vision: a Geometric Viewpoint. MIT
Press, 1993.

[7] D. Hall, C. Le Gal, J. Martin, O. Chomat, T. Kapuscinski, and J. Crowley. Magicboard:
A contribution to an intelligent office environment. In Proceedings of the International
Symposium on Intelligent Robotic Systems, University of Coimbra, Portugal, 1999.

[8] K. Imagawa, S. Lu, and S. Igi. Color-Based hands tracking system for sign language
recognition. In Proc. of Int’l Conf. on Face and Gesture Recognition, pages 462—-467, 1998.

9] R. Jain, R. Kasturi, and B.G. Schunck. Machine Vision. McGraw-Hill, New York, 1995.

[10] K. Jo, Y. Kuno, and Y. Shirai. Manipulative hand gestures recognition using task knowl-
edge for human computer interaction. In Proc. of IEEE Int’l Conf. on Automatic Face
and Gesture Recognition, Japan, 1998.

[11] Nebojsa Jojic, Barry Brumitt, Brian Meyers, and Steve Harris. Detecting and estimating
pointing gestures in dense disparity maps. In Proc. IEEE Int’l Conf. on Face and Gesture
Recognition, pages 468-475, Greboble, France, 2000.

[12] S. Ju, M. Black, S. Minneman, and D. Kimber. Analysis of gesture and action in technical
talks for video indexing. In Proc. IEEE Int’l Conf. on Computer Vision and Pattern
Recognition, 1997.

[13] C. Maggioni and B. Kammerer. Gesturecomputer - history, design and applications. In
Ed. R. Cipolla and A. Pentland, editors, Computer Vision for Human-Machine Interaction.
Cambridge University Press, 1998.

[14] J. Mankoff and G. Abowd. Cirrin: A world-level unistroke keyboard for pen input. In
Proceedings of the ACM Symposium on User Interface Software and Technology (UIST),
pages 213-214, San Francisco, CA, 1998.

The International Symposium on CREST Ikeuchi Project 23

[15]

[27]

[28]

T. Moran, E. Saund, W. van Melle, A. Gujar, K. Fishkin, and B. Harrison. Design and
technology for collaborage: Collaborative collages of information on physical walls. In
Proceedings of the ACM Symposium on User Interface Software and Technology (UIST),
Asheville, NC, 1999.

K. Perlin. Quikwriting: Continuous stylus-based text entry. In Proceedings of the ACM
Symposium on User Interface Software and Technology (UIST), pages 215-216, San Fran-
cisco, CA, 1998.

F. Quek. Unencumbered gesture interaction. IEEE Multimedia, 1997.

J. Rehg and T. Kanade. Model-based tracking of self-occluding articulated objects. In
Proc. of IEEE Int’l Conf. Computer Vision, pages 612-617, 1995.

J.G. Semple and L. Roth. Introduction to Algebraic Geometry. Oxford: Clarendon Press,
1949. Reprinted 1987.

T. Starner, J. Auxier, D. Ashbrook, and M. Gandy. The gesture pendant: A self-
illuminating, wearable, infrared computer vision system for home automation control and

medical monitoring. In Proceedings of the Fourth International Symposium on Wearable
Computers (ISWC’00), pages 87-94, Atlanta, Georgia, October 2000.

T. Starner and et.al. A wearable computer based american sign language recognizer. In
Proc. IEEE Int’l Symposium on Wearable Computing, Oct. 1997.

T. Starner, S. Mann, B. Rhodes, J. Levine, J. Healey, D. Kirsch, R. W. Picard, and
A. Pentland. Augmented reality through wearable computing. Presence, Special Issue on
Augmented Reality, 6(4), 1997. Also as MIT Media Lab Technical Report TR-397.

G. Strang. Introduction To Applied Mathematics. Wellesley-Cambridge Press, 1986.

N. Takao, J. Shi, S. Baker, I. Matthews, and B. Nabble. Tele-Graffiti: A pen and paper-
based remote sketching system. In Proceedings of the 8th International Conference on
Computer Vision, volume II, page 750, Vancouver, Canada, July 2001. IEEE Computer
Society Press.

J. Triesch and C. von de Malsburg. Robust classification of hand postures against complex
background. In Proc. Int’l Conf. On Automatic Face and Gesture Recognition, 1996.

Christian Vogler and Dimitris Metaxas. ASL recognition based on a coupling between
HMMs and 3D motion analysis. In Proc. of IEEE Int’l Conf. on Computer Vision, pages
363-369, Mumbai, India, Jan. 1998.

P. Wellner. Interacting with paper on the DigitalDesk. Communications of the ACM,
36(7):86-96, July 1993.

C. Wren, A. Azarbayejani, T. Darrel, and A. Pentland. Pfinder: Real-time tracking of the
human body. In Photonics Fast, SPIE Proceedings, volume 2615, Bellingham, WA, 1995.

24

[29]

[30]

[31]

[32]

The International Symposium on CREST Ikeuchi Project

Ying Wu and Thomas S. Huang. Human hand modeling, analysis and animation in the
context of HCI. In Proc. IEEE Int’l Conf. on Image Processing (ICIP°99), Kobe, Japan,
Oct. 1999.

M. Zeller and et al. A visual computing environment for very large scale biomolecular
modeling. In Proc. IEEFE Int’l Conf. on Application-Specific Systems, Architectures and
Processors, pages 3—12, Zurich, 1997.

Z. Zhang. A flexible new technique for camera calibration. IEEFE Transactions on Pattern
Analysis and Machine Intelligence, 22(11):1330-1334, 2000.

7. Zhang and Y. Shan. Visual Screen: Transforming an ordinary screen into a touch screen.
In Proc. IAPR Workshop on Machine Vision Applications, pages 215-218. Tokyo, Japan,
November 2000.

Zhengyou Zhang, Ying Wu, Ying Shan, and Steve Shafer. Visual Panel: Virtual mouse,
keyboard and 3D controller with an ordinary piece of paper. In Proceedings of ACM
Workshop on Perceptive User Interfaces (PUI), Orlando, Florida, November 2001.

