
Network Coding for Wireless Networks

Yunnan Wu

Microsoft Research, One Microsoft Way, Redmond, WA 98052-6399.
yunnanwu@microsoft.com

July 2007

Technical Report
MSR-TR-2007-90

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052

1

Network Coding for Wireless Networks

Yunnan Wu

Microsoft Research, One Microsoft Way, Redmond, WA 98052-6399 USA

yunnanwu@microsoft.com

Abstract

Network coding refers to a scheme where a node is allowed to generate output
data by mixing (i.e., computing certain functions of) its received data. The unique
characteristics of wireless medium renders network coding particularly useful. For
instance, network coding can be used to achieve the minimum energy-per-bit for
multicasting in a wireless ad hoc network. In addition to optimizing energy ef-
ficiency, the network coding based scheme has only polynomial time complexity,
breaking through the NP-hardness barrier of the conventional routing approach.
As another example, recently network coding has been developed into a link layer
enhancement scheme. The network coding engine in the link layer can opportunis-
tically mix the outgoing packets to reduce the transmissions in the air. This paper
provides an overview of some recent development about using network coding in
wireless networks, including (i) network coding for end-to-end multicasting, (ii)
network coding in the link layer, and (iii) network coding in the physical layer.

1 Introduction

In today’s practical communication networks such as the Internet and wireless networks,
information delivery is performed by routing, i.e., having intermediate routers store and
forward data. Network coding is a recent generalization of routing in which nodes can
generate output data by encoding (i.e., computing certain functions of) previously re-
ceived input data. As illustrated by Figure 1, in network coding, each node in a network
can perform some computation, whereas in routing the output messages can only be
copies of the received messages. Intuitively, network coding allows information to be
“mixed” at a node.

y1

y2

y3

f1(y1,y2,y3)

f2(y1,y2,y3)

Figure 1: The concept of network coding: Network nodes can compute functions of input
messages

The potential advantages of network coding over routing include resource (e.g., band-
width and power) efficiency, computational efficiency, and robustness to network dynam-
ics. As shown by the pioneering work of Alswede et al. [1], network coding can increase

2

the possible network throughput, and in the multicast case can achieve the maximum
data rate theoretically possible. This is illustrated by Figure 2. Each link in the graph
can carry one bit per second. Using network coding, we can multicast information from
the source node s to the two receivers t1 and t2 at rate 2.0 bit/second, which cannot be
achieved using traditional routing.

s

t1

t2

a

b b

a

a

b

a⊕b
a⊕b

a⊕b

Figure 2: An example showing that network coding can achieve the multicast capacity
whereas routing cannot. Here a ⊕ b stands for the bitwise XOR of the two bits. This
example was introduced by Ahswede et al. [1].

In addition to maximizing throughput, network coding can also maximize the energy
efficiency. Consider the example wireless network shown in Figure 3. Assume each node
is equipped with a transmitter operating at a fixed transmission range, which is just
sufficient to reach its lateral neighbors, but not the diagonal ones. Under this setting,
each physical-layer transmission consumes a unit amount of energy. Using routing, the
minimum number of transmissions required to deliver 1 message from s to {t1, t2} is 5; a
solution is shown in Figure 3(a), where the first transmission is a broadcast transmission.
As shown in Figure 3(b), using network coding, we can multicast 2 messages using 9
transmissions, resulting in a better energy efficiency. More generally, for multicasting in
a multi-hop wireless network, it has been shown that under a layered model of wireless
networks, the minimum energy-per-bit can be found by a linear program; the minimum
energy-per-bit can be attained by performing linear network coding [2]. In contrast,
minimum energy multicast routing is NP-hard to compute and may not achieve the
minimum possible energy-per-bit.

s

t1 t2

a

a

a

a

(a)

s

t2

a⊕b

a

a

b

b

a

a b

bt1

(b)

Figure 3: (a): Minimum energy routing solution uses 5 transmissions to multicast 1
message. (b): Minimum energy network coding solution uses 9 transmissions to multicast
2 messages. (Adapted from [3].)

The advantages of network coding go beyond multicasting. Consider the example
shown in Figure 4, where the left node wants to send packet a to the right node and

3

A B
a a

bb

C

(a)

A B
a

b

C

a⊕b

(b)

Figure 4: (a) The conventional solution requires 4 transmissions to exchange two packets
between A and B via a relay node C. (b) Using network coding, two packets can be
exchanged in 3 transmissions.

the right node wants to send packet b to the left node. Using conventional routing, this
requires 4 transmissions, as shown in Figure 4(a); using network coding, two packets
can be exchanged using 3 transmissions [3]. It looks as if the two packets a and b are
sharing a ride in the air. Consider the extension of this scenario to a chain of nodes,
where the nodes at the two endpoints want to exchange packets via the intermediate
nodes. As the number of nodes approaches infinity, the gain over routing in terms of
resource consumption approaches 2:1 [3]. The technique has been further generalized
and developed into a generic technique in the link layer of the protocol stack, which
mixes packets belonging to different communication sessions.

In the above we have seen some examples that demonstrate the usefulness of network
coding in wireless networks. Indeed, in recent years, significant progress has been made
regarding the theory and practice of network coding in wireless networks. This paper
provides an overview of some recent development. We start by discussing the use of
network coding for end-to-end multicasting in Section 2. Then we explain how network
coding can be applied as a link layer technique in Section 3. Section 4 reviews some
latest results about applying network coding in the physical layer.

2 Network Coding for End-to-End Multicasting

2.1 Theory

In this section we present a theoretical model for analyzing the performance of multicas-
ting information in wireless networks using network coding. We cast this problem as a
mathematical optimization, where the objective function is some function of the end-to-
end multicast throughput and the overall resource (e.g., energy) consumed in providing
such throughput. For simplicity, we assume there is only a single multicast session in the
network, from a source node s to a set of destination nodes T .

To establish such an optimization, we use a popular layered model of wireless networks
(see, e.g., [4]), which is a mathematical abstraction of the well-known layered network
architecture. The basic assumptions of the layered model can be explained as follows.
The lower and upper layers are respectively abstracted as supply and demand of commu-
nication resource. The interface between the supply and demand is a network of lossless
channels with rate limits, which can be described as G = (V,E, c) where V and E are
sets of vertices and edges respectively and c is a length-|E| vector assigning to each edge
e ∈ E a bit-rate limit c(e).

The physical and link layers can supply many possible graphs G = (V, E, c), by
applying communication mechanisms such as scheduling, modulation, and channel coding

4

a b

e

c d

t1 t2

s

s’

1

G1

s

dc

s”

1

1 1

G2

a b

1 1s

a

1 1

b

Figure 5: Two example elementary graphs G1 and G2. G1 corresponds to the physical
state where s is transmitting at a power just enough to reach a and b. G2 corresponds to
the physical state where s is transmitting at a power just enough to a, b, c, d. (From [3].)

over the underlying noisy and interfering channels. We can these graphs realizable graphs
because they correspond to feasible ways of operating the wireless network, e.g., arranging
different subsets of nodes to communicate for different time fractions. In subsection 2.2,
we discuss how to obtain the realizable graphs.

Using a realizable graph G as the available communication resource, the network layer
coordinates the information flow from the source to the destinations such that certain
end-to-end throughput is achieved. In subsection 2.3, we discuss how to characterize the
achievable end-to-end throughput via network coding.

Each realizable graph G = (V, E, c) provides certain end-to-end throughput and has
an associated resource (e.g., energy) consumption that represents the cost in supplying
the bit-rate resources. Putting them together, we obtain an optimization that jointly
optimizes the supply side and the demand side. Abstractly, the optimization looks like
the following:

maximize U(r) + λp, (1)

subject to: G can provide multicast rate r; (2)

G is a realizable graph with power consumption p. (3)

In subsection 2.3.3 we shall concretely examine some optimization formulations for wire-
less networks.

2.2 Realizable Graphs for Wireless Networks

In this section, we discuss the structure of realizable graphs for wireless ad hoc networks.
The set of realizable graphs represents all possible supplies of bit-rate resources arising
from power control and scheduling in the physical and medium access layers (under
certain simplifying assumptions about the physical layer). For simplicity, we assume the
nodes are static and the link conditions do not change over time.

A wireless ad hoc network can operate in many different physical states, where each
physical state represents a “snapshot” of all nodes in the physical layer, such as which
nodes are transmitting, what transmitting powers are being used, and what the channel
conditions are. A physical state may support a collection of concurrent links, which are
assumed to be point-to-multipoint in general. Let V0 denote the set of nodes in the
network. A link can be described as u

c→ Yu where u ∈ V0 is the transmitter, Yu ⊆ V0 is
its receiver set, and c is the associated bit-rate in a reliable communication.

5

Each collection of links supported by a certain physical state corresponds to an ele-
mentary (realizable) graph. Loosely speaking, an elementary graph refers to a graph that
can be directly realized in the physical layer. For example, Figure 5 shows two physical
states and the corresponding elementary graphs. Figure 5 corresponds to the special
case of omnidirectional transmissions. In a first state shown in Figure 5, only node s is
transmitting, and the transmission power is just enough to reach a and b. This supports

the link s
1.0→ {a, b}. The corresponding elementary graph is shown as G1. In a second

state, only node s is transmitting, and the transmission power is just enough to reach a,

b, c, and d. This supports the link s
1.0→ {a, b, c, d}. The corresponding elementary graph

is shown as G2.
Generally, an elementary graph consists of a number of concurrent broadcast links.

To reflect the broadcasting of common information, we use the following graph model
for broadcast links. For each link u → Yu, we add to the associated elementary graph a
distinct1 virtual vertex (e.g., u′), and unit capacity edges uu′, u′v, v ∈ Yu. Two examples
are given in Figure 5 as G1 and G2, in which s′ and s′′ are the virtual vertices introduced.
The virtual vertex plays the role of an artificial bottleneck that constrains the rate of
new information going out of the transmitter.

By timesharing among different physical states, it is possible to achieve any convex
combination of the elementary graphs. That is, if λk is the relative share of time for
the elementary graph Gk = (Vk, Ek, ck), then it is possible to achieve on average the
graph G = (∪kVk,∪kEk,

∑
k λkc

′
k). Here the edge capacities ck are each extended to a

length-|∪k Ek| vector c′k in the obvious way. Denote such combinations by G =
∑

k λkGk.
Let the set of all elementary graphs be B0. The number of elementary graphs, |B0|,

generally grows exponentially with the number of network nodes. For analytic tractabil-
ity, we shall identify a limited number of promising elementary graphs that provide a
reasonably good span for a specific application. For details on how to do so in a gen-
eral setting, see, for example, [4]. For the minimum-energy multicast problem, however,
we only need to examine a polynomial number (in the number of nodes) of elementary
graphs, or corresponding physical states. This is because separating interfering transmis-
sions into different time slots improves the energy efficiency. Since we are focusing on the
minimum energy-per-bit, we can restrict our attention to those physical states involving
only a single transmitter. It is this fact that results in the polynomial solvability of the
minimum-energy multicast problem for a wireless ad hoc network.

With a finite set of elementary graphs B ⊆ B0, the set of realizable graphs is

G(B) =

{
G

∣∣∣∣∣G =
∑

k

λkGk,
∑

k

λk ≤ 1, λk ≥ 0 ∀k, Gk ∈ B
}

,

where the dependence on B is explicitly shown. The power consumption of a composite
graph G =

∑
k λkGk is

∑
k λkp(Gk), where p(Gk) is the power consumption of elementary

graph Gk. The power consumption reflects one possible metric that measures the cost of
providing the bit-rate resources at the physical and medium access layers.

1To see why it can be problematic to treat the virtual vertices associated with a same transmitter as
the same in different elementary graphs, please refer to [5].

6

2.3 Characterizing End-to-End Throughput of Network Coding
in a Given Graph

In this subsection, we assume we are given a network of lossless links represented by
G = (V, E, c); the graph can be a particular realizable graph supported by the lower
layers. We characterize the achievable end-to-end multicast throughput using network
coding in G via a set of linear inequalities.

2.3.1 Unicasting and Max-Flow-Min-Cut

Before talking about multicasting, let us begin by reviewing the results for unicasting
from a source node s to a destination node t. We are interested in the unicast capacity,
which refers to the maximum rate at which s can communicate information to t.

An upper bound of the unicast capacity can be obtained by examining the s–t cuts.
Given two nodes s, t ∈ V , an s–t cut (U,U) refers to a partition of the nodes V = U + U
with s ∈ U , t ∈ U . The capacity of the cut refers to the sum of the edge capacities
for edges going from U to U . An s–t cut with minimum capacity is called a minimum
s–t cut. Let ρs,t(c) denote the capacity of a minimum s–t cut for graph (V, E) with
link capacities c. The significance of an s–t cut comes from the fact that it exhibits a
bottleneck for communication from s to t. It is intuitively clear that all information t can
get from s must be derived from the information flowing across the cut. Consequently,
the maximum rate at which s can transfer information to t cannot exceed the minimum
s–t cut capacity ρs,t(c).

A fundamental theorem in graph theory, the Max-Flow-Min-Cut Theorem, shows
that the cut bound ρs,t(c) is achievable by routing along parallel paths. To explain the
Max-Flow-Min-Cut Theorem, we now review the notion of flow.

An s–t flow is a nonnegative vector f of length |E| satisfying the flow conservation
constraint:

excessv(f) = 0, ∀v ∈ V − {s, t}. (4)

where

excessv(f) ≡
∑

e∈Out(v)

fe −
∑

e∈In(v)

fe, (5)

is the flow excess of v, viz., the amount of incoming traffic less the amount of outgoing
traffic for node v. The flow excess is not required to be zero at s and t. The flow excess
excesst(f) at the destination node t is called the value of the flow.

A flow from a source to a destination can be decomposed into a sum of several path-
flows and cycle-flows. It turns out that the cycle-flows can be eliminated without affecting
the value of the flow. Each path-flow corresponds to a path from the source with the
destination with an associated rate. The value of the flow is the sum of the rates carried
by the individual path-flows. Thus, a flow prescribes a way for information to be routed
from the source to the destination along parallel paths; the communication rate achieved
by such a routing scheme is the value of the flow. For an illustration of a flow, please see
Figure 6(a).

Let Fs,t(r) denote the set of s–t flows, each with its flow value equal to r. Then

7

f ∈ Fs,t(r) if and only if

f ≥ 0,

excesss(f) = −r,

excesst(f) = r,

excessv(f) = 0, ∀v ∈ V − {s, t}

Note that the above inequalities are linear in f and r; for this reason, Fs,t(r) is called
the s–t flow polyhedron. A useful property of Fs,t(r) is its linearity in r, i.e.,

Fs,t(r) = rFs,t(1) ≡ {rf |f ∈ Fs,t(1)}. (6)

In order for a flow to correspond to a feasible routing arrangement, we often need to
enforce that the assigned flow on an edge fits in the available bit-rate resource, i.e., f ≤ c
(in the element-wise sense). The Max-Flow-Min-Cut Theorem says that the minimum
cut capacity ρs,t(c) is equal to the maximum value of an s–t flow within G = (V, E, c).
It follows then

r ≤ ρs,t(c) ⇐⇒ ∃f t ∈ Fs,t(r), f t ≤ c. (7)

2.3.2 Multicasting and Edge-Wise Maximum of Flows

Given G = (V,E, c), a source node s, and a set of destination nodes T , the multicast
capacity refers to the maximum multicast throughput. Since the capacity of any s–
t cut is an upper bound on the rate at which information can be transmitted from
s to t, mint∈T ρs,t(c) is an upper bound of the multicast capacity. Ahlswede et al. [1]
showed that mint∈T ρs,t(c) can be achieved by performing network coding. Hence it is the
multicast capacity. Now we have arrived at a characterization of the achievable multicast
throughput in a graph (V,E, c): End-to-end throughput r can be achieved if and only if:

r ≤ min
t∈T

ρs,t(c). (8)

From (7), we obtain an equivalent formulation of (8): End-to-end throughput r can
be achieved in (V, E, c) if and only if:

∃f t ∈ Fs,t(r), c ≥ max
t∈T

f t. (9)

We call maxt∈T f t in (9) an (edge-wise) max of flows. Just as a flow is the critical
structure for unicasting from a source to a destination, a max of flows plays a fundamental
role for multicasting using network coding. Figure 6 illustrates the structure of a max of
flows, using the classical example of network coding introduced in [1]. Figure 6(a) shows
an s–t1 flow, which prescribes two parallel paths from s to t1; similarly, Figure 6(b)
shows an s–t2 flow. Figure 6(c) shows the edge-wise maximum of these two flows, which
is sufficient to provide a multicast rate of 2.

The “(edge-wise) max of flows” formulation (9) is especially important because it
can be written as a set of linear inequalities, and integrated with other constraints in an
optimization formulation. We will see some concrete examples in the next subsection.

8

a b

c

u

s

t1 t2

1

1 1

1

1

1

0

0

0

(a):

a b

c

u

s

t1 t2

1

0 1

1

0

0

1

1

1

(b):

a b

c

u

s

t1 t2

1

1 1

1

1

1

1

1

1

(c):

Figure 6: (a) An s–t1 flow f 1 on graph (V, E). (b) An s–t2 flow f 2 on graph (V,E). (c)
The edge-wise max of flows max{f 1, f 2}, which can provide a multicast rate of 2 from s
to {t1, t2}. (From [3].)

2.3.3 Optimization Formulations

Having characterized the supply and the demand sides of wireless networks, we are now
ready to formulate various optimizations for network coding–based multicasting in wire-
less networks. For instance, if we want to find the maximum throughput, we can use the
following linear optimization:

maximize r, (10)

subject to: c ≥ f t, ∀t ∈ T, (11)

f t ∈ Fs,t(r), ∀t ∈ T, (12)

c =
∑

k

λkck, (13)

∑

k

λk ≤ 1, (14)

λk ≥ 0, ∀k. (15)

Here we use a finite collection of elementary graphs {Gk = (Vk, Ek, ck)}.
As another example, we can minimize the energy-per-bit for multicasting using the

following optimization, where r, c′, λ′k, are treated as variables

E∗ = min

∑
k:Gk∈B λ′kp(Gk)

r
subject to: c′ ≥ f t, ∀t ∈ T, (16)

f t ∈ Fs,t(r),∀t ∈ T, (17)

c′ =
∑

k

λ′kck, (18)

∑

k

λ′k ≤ 1, λ′k ≥ 0,∀k, (19)

r > 0. (20)

Note that here we only need to include a polynomial number of elementary graphs, each

9

containing a single transmitter operating at a certain power level (see the discussion in
subsection 2.2).

At first glance, the objective function of the above optimization is nonlinear in the
variables. However, we can re-normalize the above optimization to arrive at a linear
program. Specifically, by a variable change λk = λ′k/r, c = c′/r, we have the following
linear program:

E∗ = min
∑

k: Gk∈B
λkp(Gk)

subject to: c ≥ f t, ∀t ∈ T, (21)

f t ∈ Fs,t(1),∀t ∈ T, (22)

c =
∑

k

λkck, (23)

λk ≥ 0, ∀k. (24)

2.4 Practice

In this subsection we examine how to practically apply network coding for multicas-
ting in multi-hop wireless networks. Recently, several practical protocols have been
proposed [6–9]. There protocols can be understood using a single framework, which
contains four pillar ideas: random linear coding, packet tagging, buffering, and output
pacing. Random linear coding allows the encoding to proceed in a distributed manner.
Tagging each packet with the corresponding coding vector allows the decoding to proceed
in a distributed manner. Buffering allows for asynchronous packet arrivals and departures
with arbitrarily varying rates, delay, and loss. A proper output pacing mechanism judi-
ciously decides when to generate an output packet, to ensure efficient use of the network
resource and coordinate the nodes in moving the information towards the destinations.
We now describe them one by one.

Random linear coding: While Ahlswede et al.’s work showed that the multicast
capacity can be achieved using network coding, their result is mainly an existence proof,
established via information theoretical techniques. Hence the first problem is to find a
practical way of assigning network codes. The work by Li, Yeung and Cai [10] showed
that the maximum multicast capacity can be achieved by using linear encoding functions
at each node. With linear encoding, decoding at a receiver amounts to solving linear
equations. Linear encoding and decoding represents an important step towards making
network coding practical. However, determining the proper coefficients in a distributed
manner is another practical challenge. The studies by Ho et al. [11] and Sanders et
al. [12] addressed this challenge, by showing that random linear network coding over a
sufficiently large finite field can (asymptotically) achieve the multicast capacity. This
leads to a simple and distributed encoding scheme, where each node chooses its own
encoding coefficients at random for each output packet, without any coordination with
other nodes. Random linear coding is the first key idea for making network coding
practical for multicasting.

We now explain the idea of random linear coding in the context of a packet network.
For concreteness, suppose F = GF (28) and each packet contains 1000 bytes. Each packet
can thus be viewed as a row vector of length 1000, with elements in GF (28). Taking
Figure 1 as an example, with random linear coding, f1(y1, y2, y3) = α1y1 + α2y2 + α3y3,
and f2(y1, y2, y3) = β1y1 + β2y2 + β3y3, where α1, α2, α3, β1, β2, β3 are randomly and

10

Random
mixture

Transmission opportunity: generate packet

buffer

node

arriving packets (jitter, loss, variable rate)

asynchronous transmissionasynchronous reception

l i n k

linklink

lin k

Figure 7: Illustration of the random linear network coding scheme with buffering.

buffer

Random
mixture

Randomly
generated

[5, 9, 6]

Figure 8: Illustration of the random mixing of packets in the buffer. Suppose h = 3
and F = GF (11). The two packets residing in the current buffer are linear combined
with randomly generated coefficients, 2 and 1, respectively. The global coding vector is
recorded within each packet to describe how the packet relates to the original packets.

independently drawn from the field GF (28). Note that all (1000) symbols within one
packet are mixed in the same way.

Packet tagging: Suppose there are h source packets, denoted by x1, . . . ,xh. Linear
coding is applied throughout the network so that each packet flowing in the network is a
linear combination of the source packets. For example,

y =
h∑

i=1

qixi, (25)

where q = [q1, . . . , qh] is the global coding vector that shows how this packet y relates to
the source packets.

A critical practical issue is to inform the destinations how the coding is done so that
they can decode the original packets. To address this issue, Chou et al. [13] and Ho
et al. [11] propose to explicitly record the global coding vector in the packet header.
The cost of this scheme is the overhead of transmitting h extra symbols in each packet;
note that this is amortized over the number of data symbols in the packet (e.g., 1000).
On the other hand, the benefits of the scheme are significant. It allows the system
to be completely decentralized: Destinations can decode without knowing the network
topology or the encoding rules; destinations can decode even if nodes or links are added
or removed in an ad hoc fashion.

Buffering and generations: In many practical networks, synchronization among
nodes is difficult and expensive, if not impossible. To make network coding practical, we
must handle the asynchronous arrivals of packets and other dynamics. Another important

11

idea is the use of buffering to eliminate the need for distributed synchronization [13]. As
illustrated by Figure 7, each node in the system maintains a buffer. Whenever a node
receives a packet from one of its incoming links, it stores the packet into its buffer if
the packet is “innovative”. A mixture packet is said to be innovative if it is not a linear
combination of the packets in the buffer. Non-innovative packets do not provide any
new information to the node and hence are immediately discarded. To efficiently test
whether a packet is innovative, we can maintain the packets in the buffer in the standard
row echelon form. Notice that the testing can be done by using only the global coding
vectors of the packets in the buffer, not involving the payloads.

Whenever a transmission opportunity arises on one of its outgoing links, a node
generates an output packet by linearly mixing the packets in the buffer using random
coefficients in F, as illustrated in Figure 8.

Output pacing: With random linear coding, generating an output packet is easy:
Simply combine the buffered packets using a set of randomly generated coefficients. But
when should we generate an output packet? This is what we call the “output pacing
problem.” We now review two example approaches to output pacing.

Widmer, Fragouli, and Le Boudec [6] studied broadcasting in a multi-hop wireless
network. In their output pacing protocol, each node maintains a send counter, which is
initialized to 0. A new source packet is always broadcast once in the original form (i.e.,
without mixing with other packets). Each time a node receives an innovative packet,
the send counter is incremented by a value called the “forwarding factor” d. A node
broadcasts a mixture packet when its send counter is positive. Each time it broadcasts
a packet, its send counter is decremented by one. A subsequent paper by the authors [7]
extends this scheme by allowing the nodes to have different forwarding factors. Let dv

denote the forwarding factor of v. Here the forwarding factor dv is adjusted heuristically
based on the local (2-hop) density information. A specific rule for setting dv that works
well in the simulations is to set the forwarding factor to be inversely proportional to the
number of 1-hop neighbors of v’s 1-hop neighbors:

dv =
k

minv′∈N(v) |N(v′)| , (26)

where k is a network-wide constant parameter, and N(v) is the direct neighbors of node
v. The intuition is that if v has a neighbor whose only neighbor is v, then v must forward
it, regardless of how many neighbors v has.

Chachulski et al. [8] proposed a multicasting protocol called MORE. A unique feature
of MORE is its use of distance information. Each node is labelled with the distances
to the destinations. Only nodes that are closer to at least one destination than the
source are involved in the distribution of the session data. Intuitively, this ensures that
information is not flowing in the opposite direction.

Similar to the broadcast protocol discussed above, in MORE, each node performs
output pacing by making use of a credit counter. When the MAC allows to transmit a
packet, the node generates a mixture when the credit counter is positive, broadcast it,
and decrement the credit counter by one. However, a different rule is used for increasing
the credit when receiving an innovative packet. When receiving an innovative packet
from an upstream node, a node increases its credit by TX credit. The TX credit values
are determined based on the link loss probabilities in the entire network; for the exact
expression, please refer to [8].

Applications: Using network coding, the linear mixture packets can automatically
weave its way to the destination if there exists one. Hence network coding is as distrib-

12

uted, robust, and adaptive as flooding. As a result, network coding–based solutions are
attractive candidates for multicasting protocols in multi-hop wireless networks.

Furthermore, the robustness offered by network coding makes it particularly attractive
for networks with mobility (e.g., vehicular networks), sensor networks where nodes sleep
most of the time to conserve energy, and other scenarios where connectivity is sparse.
For these related applications of network coding–based multicasting, please refer to e.g.,
[14–16].

3 Network Coding in the Link Layer

In Figure 4 we have seen how network coding can be used to reduce the number of trans-
missions for packet exchanges between two nodes via an intermediate node, leveraging
the broadcast medium. The gist of the packet exchange example in Figure 4 is as follows:
At certain moment, the left node has a; the right node has b; the middle node has a and
b. Thus a mixture packet a ⊕ b can be decoded into a and b respectively at the right
and left nodes.2 This packet exchange example bears some similarities with the use of
network coding for end-to-end multicasting. Indeed, we can interpret this packet ex-
change scenario as a virtual multicast session where initially a virtual source node sends
packet a to the left node and sends packet b to the right node. Furthermore, the network
coding–based information exchange constitutes the critical step in the minimum energy
multicast solution, shown in Figure 3(b).

Despite the similarities, this example also has a distinctive feature: the mixture packet
can be immediately decoded by the neighbors. The fact mixing and demixing are both
done locally brings in many advantages. For instance, a node can mix two packets
passing through it, which may belong to different communication sessions; in contrast,
in the random linear coding used for end-to-end multicasting, only packets belonging to
the same end-to-end session can be mixed together. In fact, the mixing can be done in
a way transparent to the communication sessions: They need not know that somewhere
in the network, their packets are mixed and then quickly demixed. In addition, a node
need not buffer any mixture packet, resulting in a cleaner design that fits the existing
networking framework better. To highlight this feature and differentiate with the use
of random linear coding for end-to-end multicasting, we use the name “local mixing” to
refer to the use of network coding exemplified by Figure 4, where original packets are
mixed locally at a node and then demixed immediately at the receivers.

Indeed, this technique has been generalized and developed into a link layer enhance-
ment scheme for multi-hop wireless networks by Katti et al. [17]. As illustrated in Fig-
ure 9(a), the local mixing engine sits above the MAC layer (e.g., 802.11) and below the
network layer. The network layer passes to the local mixing engine a list of packets with
their respective next-hops determined according to a certain routing scheme. The local
mixing engine maintains information about the packets each neighbor has, and identifies
opportunities to mix the outgoing packets to reduce the transmissions in the air. More
specifically, each node snoops on the medium and buffers packets it heard. A node also
informs its neighbors which packets it has overheard. This allows nodes to know roughly
what packets are available at each neighbor (i.e., “who has what?”). Knowing “who has
what” in the neighborhood, a node examines its pending outgoing packets and forms

2In the following we use the name source packet to refer to a packet such as a which was originally
generated by a source node, and the name mixture packet to refer to a packet such as a⊕ b.

13

MAC (e.g., 802.11)

Network (Routing)

Local Mixing

(a)

MAC (e.g., 802.11)

Network (Routing)

Local Mixing

Selecting routes to
maximize the benefit
of local mixing

(b)

Figure 9: (a) The local mixing engine sits between the network layer and the MAC layer
and thus presents an enhanced link layer to the network layer. (b) Local mixing–aware
routing schemes can better take advantage of the local mixing engine by generating traffic
patterns that have more mixing opportunities.

output mixture packets if possible. In subsection 3.1, we explain the local mixing engine
in details.

The local mixing engine, on its own, can improve the link layer efficiency. The gain
of this technique, however, critically depends on the traffic pattern in the network. For
instance, if we have two flows travelling in opposite directions along a chain, then asymp-
totically the gain over conventional routing can approach 2:1. In addition, the results
of [17] show that the throughput increase can be up to 4x in a multi-hop wireless test-bed
for many UDP flows among randomly chosen sources and destinations. The throughput
gain is smaller in other traffic patterns (e.g., all traffic are to and from some Internet gate-
ways). This motivates the following question: Can we make intelligent routing decisions
that maximize the benefits offered by the local mixing engine? Figure 9(b) illustrates
this concept. In subsection 3.2, we review a local mixing–aware routing scheme, proposed
in [18].

3.1 Local Mixing

Consider the situation illustrated by Figure 10. A wireless router knows the source
packets each neighbor has (i.e., “who has what”). It also knows “who wants what”
because these are the packets in its output queue that it is supposed to forward to the
neighbors. Then it can decide locally how to optimize the formation of mixture packets.
A heuristical approach for generating the mixture packets is used in [17], which takes the
packet at the head of the output packet queue, and steps through the packet queue to
greedily add packets to the mixture, while ensuring the neighbors can successfully demix.
For example, in Figure 10, there are five packets in the output queue, x1, . . . , x5; assume
a lower indexed packet is an earlier packet. Then the greedy procedure will use three
transmissions: x1 ⊕ x2, x3 ⊕ x4, x5. However, there is a better solution: x1 ⊕ x3 ⊕ x4,
x2⊕x5. A mathematical abstraction of the optimized formation of the mixture packets –
the local mixing problem – is studied by Wu et al. [19] from an information theoretic point
of view. Under the assumption that each neighbor discards the received packets that are
polluted by sources it does not have or want, the optimal mixing is characterized.

Why would a node have packets meant for others? In Figure 4, node v1 has packet x1

because it is the previous hop of x1. More generally, due to the broadcast nature of the
wireless medium, neighboring nodes may overhear packets. For example, in Figure 10,
packet x1 may follow a path . . . v4 → v0 → v3 . . .; v1 and v2 may have overheard x1 when
v4 sent it to v0.

How does a node get to know “who has what”? First, note that a node can obtain

14

v0

v4

v2
v1

v3

v0

v4

v2
v1

v3

Has: x1 , x3
Wants: x4

Has: x1 , x4
Wants: x3

Has: x2, x3, x4
Wants: x1, x5

Has: x1 , x5
Wants: x2

Figure 10: Knowing “who has what” and “who wants what” in a neighborhood, the local
mixing engine identifies opportunities to mix the outgoing packets to reduce the resource
consumption.

some partial information about its neighbors’ data availability in a passive fashion. For
example, node v2 may infer that node v1 holds packet x1 if v1 recently received packet
x1 or a mixture packet involving x1 from v1, or if v2 recently heard v1 acknowledging the
receipt of packet x1. This suffices for packet exchanges such as Figure 4.

Passive inference does not incur any additional overhead. However, using passive in-
ference alone, a node may only obtain a limited view of the neighbors’ data availability.
Katti et al. [17] extended this by proposing two techniques to obtain more information
about local data availability: (i) Let each node explicitly announce the packets it cur-
rently has to its neighbors; (ii) let a node guess whether a neighbor has overheard a
packet using information about the channel reception. In the former, each node can
periodically compose reception reports to announce the packets it has overheard. The re-
ception reports may also be piggybacked with ordinary packets. To implement guessing,
nodes conduct measurement about the packet success probabilities to its neighbors and
exchange the measurement results in the neighborhood. Such measurement and report
functionality may already be needed by a routing protocol based on the expected trans-
mission count (ETX) [20]. The guessing technique of [17] can be explained via Figure 10.
Suppose v4 sends a source packet x1 to v0 without mixing; suppose v0 knows that v1 can
receive a packet from v4 with probability 0.8. When v0 received x1 sent by v4, v0 can
infer that v1 has overheard the packet with probability 0.8. Guessing may result in a
more up-to-date knowledge about “who has what”; however, if the guess is wrong, the
neighbor may fail to demix a packet intended for it. To compensate for the mistakes in
guessing “who has what”, explicit ACKs can be used. Specifically, nodes can keep track
of the packets that were sent but have not yet been acknowledged and retransmit packets
after time-out.

3.1.1 Some Implementation Issues

In this subsection, we briefly review the key data structures and operations in a possible
implementation.

Each packet has a variable length header that includes: (i) the IDs of the source
packets being mixed and their respective receivers, (ii) some piggybacked ACKs, (iii) some
piggybacked reception reports. If no data packets were sent after a certain amount of
time, then a dedicated control packet containing ACKs and reception reports is broadcast.

Each node maintains three separate buffers, OverheardBuffer, ReceivedBuffer,

15

����������	�
�
���������
����	����

A

B

C

D

Figure 11: An example mesh networking scenario. Assume currently there is a long-term
background flow, C → B → A. We want to find a good route for a flow from A to C.

SentBuffer, holding respectively the source packets that the node overheard, received,
or sent. Upon receiving a packet, the packets in these three buffers are used for demixing.
Reception reports describe new content in the OverheardBuffer. ACKs describe new
content in the ReceivedBuffer.

Each node maintains a WhoHasWhatTable whose entries are of the form “node vi has
source packet xj with probability p”. Upon receiving a packet, the WhoHasWhatTable is
updated according to the local mixing header. If the received packet is a source packet,
guessing is also performed based on the measured channel reception probabilities.

A mixture packet may be intended for more than one receiver. However, the 802.11
protocol has a limited support for MAC-layer broadcast (e.g., broadcast packets are
not ACKed). To address this practical issue, Katti et al. [17] proposed to use “pseudo
broadcast”. Specifically, the mixture packet is sent as a unicast packet addressed to one
of the receivers. Nodes run in the promiscuous mode to overhear packets; upon receiving
a packet, a node inspects the local mixing header to decide whether it is an intended
receiver of the packet. A consequence of the pseudo broadcast approach is that the sender
cannot be sure whether the other intended receivers received the packet reliably. Such
an issue can be addressed by using explicit ACKs, in addition to the ACK in 802.11
MAC [17].

After a packet is sent, the ingredient source packets are moved from the output queue
into the SentBuffer. In addition, timer events are inserted so that the sent packets will
be moved back to the output queue for retransmission if the ACKs does not arrive after
a certain time threshold.

3.2 Local Mixing–Aware Routing

Consider the example setting illustrated in Figure 11. There is an existing long-term flow
in the network, C → B → A. We want to find a good route for a flow from A to C. Due
to the existence of the local mixing engine, the route A → B → C is a good solution
because the packets belonging to this new flow can be mixed with the packets belonging
to the opposite flow C → B → A, resulting in improved resource efficiency. But how do
we realize that A → B → C is a better route than A → D → C?

Before explaining the local mixing–aware routing solution, we first review how rout-
ing is commonly done in wireless mesh networks. Conventionally, routing protocols in
wireless mesh networks have been based on finding shortest paths. Here the cost of a
path is modelled as the sum of the costs on the constituting links, and the cost of a link

16

typically reflects the link quality in one way or another. Hence a natural first thought is
to modify the link metrics to take into account the effect of the local mixing engine in
reducing the transmissions in the air. For instance, can link B → C announce a lower
cost? There are some issues in doing so, because a packet from D that traverses B → C
may not share a ride with a packet from C that traverses C → B, although a packet from
A that traverses B → C can. We see from this example that in the presence of the local
mixing engine, assessing the channel resource incurred by a packet transmission requires
some context information about where the packet arrives from. For example, we can say
that giving the current traffic condition, the cost of sending a packet from B to C that
previously arrive from A is smaller, because it can be mixed with the background flow.
This observation can be modelled by a conditional link cost. Let cost(B → C|A → B)
denote the cost of sending a packet from B to C, conditioned on that the packet arrived
from A.

Wu et al. [18] proposed to use a specific conditional link metric called the ERC
(expected resource consumption) to model the resource saving due to local mixing. With
the local mixing engine, several packets may share a ride in the air. Naturally, the
passengers can share the airfare. In effect, each participating source packet is getting a
discount. The ERC metric models the resource consumption while taking such discount
into account. Consider a packet sent in the air. If it is a mixture of k source packets,
then the ERC metric “charges” each ingredient source packet 1/k the resource consumed
by the packet transmission. Here the resource consumed by the transmission could be
measured in terms of, e.g., air time, or consumed energy. Consider Figure 11. Suppose
that the link B → C has a normal cost of 1. Node B may announce a lower conditional
link cost, cost(B → C|A → B) = 0.5, to reflect that a new packet from B can enjoy a
50% discount since it can be mixed with the background flow.

Using a set of conditional link costs, the cost of path can be evaluated with a Markov-
ian metric [18]. Consider a path P = v0 → v1 → . . . → vk. A Markovian metric models
the cost of a path as the sum of the conditional costs on the links:

cost(P)
∆
=cost(v0 → v1) + cost(v1 → v2|v0 → v1) + . . . + cost(vk−1 → vk|vk−2 → vk−1).

(27)

The conventional routing metric can be viewed as a special case of the Markovian metric
where all the conditional link costs are equal to their unconditional counterparts. The
decomposition relation (27) is reminiscent of the decomposition of the joint probability
distribution of random variables forming a Markov chain into a product of the conditional
probabilities. Thus, a Markovian metric to an unconditional metric is like a Markov chain
to a memoryless sequence of random variables. Due to this decomposition structure, the
dynamic programming principle still applies and thus finding the shortest path with a
Markovian metric can still be done in polynomial time. In a practical network, support
for the Markovian metric can be added easily into an existing routing framework that
uses a conventional routing metric.

Let us now see some performance results from [18]. The simulation topology is the
9-node grid network scenario shown in Figure 12. Three UDP flows, v9 Ã v1, v1 Ã v9,
and v3 Ã v1, are simulated. Each flow begins randomly between 50–60 seconds into the
simulation. The results are depicted in Figure 13(a). Three systems, LQSR, LQSR+LM,
and MMSR, are compared. LQSR is a link state routing system using a link quality
routing metric, which is used as a baseline. LQSR+LM is obtained by adding local
mixing support in the link layer. MMSR uses local mixing in the link layer and a local

17

v1 v2 v3

v4 v5 v6

v7 v8 v9

Figure 12: A 9-node grid network.

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

3821 4585 5731 6550 7642 9170 11463

Offered traffic load (Kbps)

T
h

ro
u

g
h

p
u

t (
K

b
p

s)

LQSR

LQSR-LM

MMSR

(a)

3000

13000

23000

33000

43000

53000

63000

3821 4585 5731 6550 7642 9170 11463

Offered traffic load (Kbps)
T

ra
n

sm
is

si
o

n
s

sa
ve

d
 (P

ac
ke

ts
)

LQSR-LM

MMSR

(b)

Figure 13: (a) Throughput comparison of MMSR, LQSR+LM and LQSR.
(b)Transmissions saved through mixing in MMSR and LQSR+LM.

mixing–aware routing system based on Markovian metric. The x-axis stands for the input
traffic load. It is observed that LQSR cannot sustain the throughput imposed by the
input flows to the network as the load increases. MMSR provides significant throughput
gains compared to LQSR (up to 47%) and LQSR+LM (up to 15%). This is because not
only does MMSR allow subsequent flows to mix with existing flows, it explicitly tries
to maximize mixing. In the example, the flow 1-2-3-6-9 is mixed with 9-6-3-2-1 with
MMSR, due to the mutually beneficial discounts enjoyed by both flows. Figure 13(b)
gives the amount of resource saved by using MMSR; the y-axis is the number of original
source packets minus the number of actual transmissions. MMSR consistently provides
reduction of packet transmissions of over 10,000 packets across a wide variety of traffic
demands.

In summary, the local mixing engine, on its own, can improve the link layer efficiency;
it identifies mixing opportunities on the fly and takes advantage of them if they are
present. Routing with a Markovian metric makes local mixing more useful as it creates
more mixing opprotunities. This can translate to notable resource saving and throughput
gain, as confirmed by simulations. For a theoretical (flow-based) analysis of local mixing–
aware routing, please see the recent work by Sengupta et al. [21].

18

3Mbps 2Mbps

v1 v2v0

W1

W2

(a)

41R1

R2

3Mbps

2Mbps

Today’s radio

(b)

Figure 14: (a) The basic broadcasting scenario, where the node in the middle wants to
send a packet a to v2 and a packet b to v1. (b) The capacity region of the additive white
Gaussian broadcast channel is the upper curve.

4 Network Coding in the Physical Layer

In Sections 2 and 3, the network coding techniques mix the information packets and each
packet is either lost or received free of error. In this section we discuss some physical
layer mixing techniques that lead to further performance improvement. These techniques
share some similarities with the use of mixing at the packet level; these techniques may
also be used in conjunction with mixing at the packet level. We loosely classify these
mixing techniques as “network coding in the physical layer”.

4.1 Mixing at the Modulator/Channel Coder

Consider the basic broadcasting scenario illustrated by Figure 14(a), where node v0 wants
to send a message W2 to v2 and a message W1 to v1. Suppose v0 can communicate at a
maximum rate of 3Mbps with v1 and at a maximum rate of 2Mbps. Let R1 and R2 denote
the long-term rates at which v0 can send distinct messages to v1 and v2, respectively.
Hence the pairs (R1, R2) = (3, 0) and (R1, R2) = (0, 2) (Mbps) are achievable. In today’s
radio transceivers, node v0 alternates between transmitting data to v1 and transmitting
data to v2. Hence, as shown in Figure 14(b), the straight line connecting (R1, R2) = (3, 0)
and (R1, R2) = (0, 2) is achievable by timesharing. Timesharing, however, is not the
best possible scheme. For this scenario, it is known in information theory that a larger
rate region is achievable. If the v0 is related to v1 and v2 by additive white Gaussian
noise (AWGN) channels, then the capacity region, i.e., the set of all achievable rate
pairs,is [22–24]:

{
(R1, R2) | R1 ≤ C

(
αP

N1

)
, R2 ≤ C

(
(1− α)P

αP + N2

)}
, (28)

where P is the transmission power at v0, N1, N2 are the noise levels at v1 and v2, respec-
tively, C(SNR) = 1

2
log2(1 + SNR), and α is an arbitrary constant in [0, 1]. The capacity

region is illustrated by the upper curve in Figure 14(b). To achieve any rate pair in the
capacity region, the super-position coding technique proposed by Cover [22] can be used.
The transmitter generates two codebooks, one with 2nR1 entries and power αP , and the
other with 2nR2 entries and power (1 − α)P . To send messages W1 ∈ {1, . . . , 2nR1} and

19

3Mbps 2Mbps

v1 v2v0

W1

W2

W1

(a)

R1

R2

3Mbps

2Mbps

Today’s radio
450

(b)

Figure 15: (a) Broadcasting when v2 knows W1 a priori (b) The capacity region is enlarged
with the side knowledge.

W2 ∈ {1, . . . , 2nR2} to v1 and v2, respectively, v0 sends x1(W1)+x2(W2), where x1(W1) is
the codeword indexed by W1 in the first codebook and x2(W2) is the codeword indexed
by W2 in the second codebook. Receiver v2 decodes W2 by treating x1(W1) as noise.
Receiver v1 decodes W2 first, then subtracts x2(W2) and finally decodes W1. By varying
α, different points in the region can be achieved.

In a practical wireless network, sometimes a receiver may have prior knowledge about
some messages destined to other nodes. For example, as illustrated by Figure 15(a),
receiver v2 may know the message W1 a priori. Such a situation could arise because
W1 originates at v2 and is then relayed by v0 to v1, or v2 happens to overhear W1

when some other nodes was sending W1 to v0. Interestingly, the presence of the prior
knowledge can enlarge the rate region. As illustrated in Figure 15(b), if v2 knows W1

a priori, then the capacity region is given by the interior of the uppermost curve, i.e.,
{(R1, R2)|R2 ≤ 2, R1 +R2 ≤ 3} [25–27]. This means when v0 is sending at the maximum
rate (2Mbps) to v2, it can still pack information to v1 at 1Mbps for free!

The key constructive technique for achieving the enlarged rate regions in Figure 15 is
nested coding. Let us first see an informal explanation of this technique. We show how
to achieve the point (R1, R2) = (1, 2). As illustrated by Figure 16, every microsecond,
we encode 3 bits for every symbol via 8-PSK uncoded modulation, where the first two
bits are from W2 and the last bit is from W1. In this case, receiver v1 has a good channel
with rate 3Mbps; hence it can differentiate the 8 possible constellations and recover all
three bits. Receiver v2 only has a channel with rate 2Mbps, but it knows the last bit
of the symbol from its prior knowledge about W1. Hence to receiver v2, the transmitted
symbol appears to be from a 4-point constellation. Thus it can resolve the ambiguity
and receive 2 bits about W2 every microsecond.

The above is an informal explanation of nested coding. More formally, consider coding
over a block of n symbols; in nested coding, the transmitter uses a codebook that can
be viewed as 2nR1 sub-codebooks, each having 2nR2 entries. The 2nR1 sub-codebooks
are indexed by W1. To a receiver without prior knowledge, the transmitted codeword
appears to be from a codebook of size 2n(R1+R2). To a receiver that knows W1 a priori, the
transmitted codeword appears tob e from a codebook of size 2nR2 . Such nested coding
has been used, for example, by Yang and Høst-Madsen [27], as an efficient scheme for
cooperative relaying.

20

000

001
010

011

100

101 111

m1=W21;
m2=W22;
m3=W11;

Figure 16: Illustration of the nested coding.

Regarding practical design, Xiao et al. [26] recently proposed a practical way of im-
plementing nested coding. The scheme separately encodes multiple information packets
via linear channel codes and then computes the XOR of the encoded packets at the phys-
ical layer prior to transmission. Specifically, consider mixing several information packets
i1, . . . , iN together at the channel encoder. The resulting codeword is:

c = i1G1 ⊕ i2G2 ⊕ . . .⊕ iNGN , (29)

here G1, . . . , GN are different generator matrices. The mixture codeword is then mod-
ulated and sent for transmission. When decoding, a receiver that knows some packets
can employ the a priori knowledge of some packets to reduce the effective code rate. The
contribution of the known packets can be treated as a known scrambling bit pattern;
channel decoding can then be modified to account for the scrambling bit pattern. For
details about hard- and soft-decision decoding methods for such nested codes, please refer
to [26].

Note that the technique does not apply to the dual case where the better receiver v1

knows W2 a priori, but v2 has no side knowledge. Indeed, it has been shown [25] that in
such case, the capacity region remains equal to that of the classical broadcast channel.

What if both receiver v1 knows W2 a priori and receiver v2 knows W1 a priori? In-
terestingly, in this case, as illustrated by Figure 17, the capacity region is the entire
rectangle: {(R1, R2)|R2 ≤ 2, R1 ≤ 3}. So v0 can simultaneously communicate at the
maximum bit-rates to both v1 and v2, without raising the power! Let us see how we can
do this. As illustrated in Figure 18, we again use 8-PSK to send three bits, m1, m2, m3.
But now the first two bits are the XOR of the first two bits of W1 with the first two bits of
W2. The last bit is the third bit of W1. Again, node v1 can recover all three transmitted
bits. Then it can use its side knowledge about W2 to recover W1. Knowing W1 a priori,
node w2 can also recover the transmitted bits by resolving the QPSK ambiguity; it can
then recover W2 from the received bits m1, m2.

Note that if we apply local mixing at the packet level, we can achieve the point
(R1, R2) = (2, 2) by XORing the two messages and send them at 2Mbps. Hence by
making some changes at the physical layer (e.g., using software-defined radios), the com-
munication efficiency can be improved.

More generally, for two receivers, there could be five types of messages, as illustrated
by Figure 19. The 5-dimensional capacity region is characterized in [25]; the capacity
region can be achieved by a combination of superposition coding, nested coding, and
network coding.

21

3Mbps 2Mbps

v1 v2v0

W1

W2

W1

W2

(a)

R1

R2

3Mbps

2Mbps Today’s radio
+ Local mixing

450

2Mbps

(b)

Figure 17: (a) Broadcasting when v2 knows W1 a priori and v1 knows W2 a priori.(b)
The the capacity region is the entire rectangle: {(R1, R2)|R2 ≤ 2, R1 ≤ 3}.

000

001
010

011

100

101
110

111

m1=W11⊕W21;
m2=W12⊕W22;
m3=W13;

Figure 18: Joint network coding and nested coding.

HasWantsWantsWantsv2

WantsHasWantsWantsv1

W5W4W3W2W1Message
Receiver

HasWantsWantsWantsv2

WantsHasWantsWantsv1

W5W4W3W2W1Message
Receiver

Figure 19: For two receivers, there are five types of messages W1, . . . , W5.

a
b

Time 1
Time 2

1

Time 3

2 3

a⊕b

(a)

a bTime 1

Time 2

1 2 3

(b)

Figure 20: (a) With network coding, two packets can be exchanged in 3 steps. (b) With
“mixing in the air”, two packets can be exchanged in 2 steps.

1 2 3 4

Time n
Time n+1
Time n+2

(a)

1 2 3 4

Time n
Time n+1

(b)

Figure 21: (a) Conventionally, the three links on a path have to take turns. (b) In fact,
the first and third link can happen concurrently because node 3’s transmission is known
interference to node 2.

22

4.2 Mixing in the Air, Demixing by Cancelling Known Signals

Consider again the example in Figure 4. As shown in Figure 20(a), we can use three
transmissions to exchange two packets between node 1 and node 3 via network coding.
Recent work [28,29] noted that it is in fact possible to use two transmissions to exchange
two packets. As illustrated in Figure 20(b), in the first time-slot, let nodes 1 and 3
transmit simultaneously. Therefore, node 2 will receive a noisy superposition of the two
signals subject to channel distortion, e.g., delay, phase shift. Node 2 can amplify the
received noisy superposition and broadcast it. Then the received signal at nodes 1 will
be a different noisy superposition of the two signals subject to channel distortion. At a
receiver, say node 1, since it knows its original signal a, it should be able to cancel out
the contribution due to its own signal and then recover b.

Consider another scenario depicted in Figure 21 [28, 29]. Here we have a 3-hop flow
over a chain of 4 nodes. As illustrated in Figure 21(a) Conventionally, the three links
have to take turns in transmission. In particular, links 1 → 2 and 3 → 4 cannot be
simultaneously active because node 1 and node 3’s transmissions collide at node 2. Fig-
ure 21(b) shows that it is in fact possible to let node 1 and node 3 transmit concurrently.
The critical observation is that node 2 already knows what node 3 is transmitting because
it forwarded the packet earlier. Hence, it can cancel node 3’s transmission out before
decoding node 1’s transmission.

The above discussion left out many practical issues, such as compensation of the
channel distortion and the time shifts, and necessary changes in the higher layers to
work in concert with the advanced physical layer. For more information about how to
address them, please refer to [28,29].

5 Conclusion

An increasingly important application domain of network coding is wireless networks.
This paper provides an overview of the theory and practice of network coding in wireless
networks.

In Section 2, we started with network coding for multicasting. We showed how to ob-
tain convex optimization formulations for network coding based multicasting in wireless
networks. We then discussed the core components of random linear mixing–based mul-
ticasting protocols. By having random mixture packets self-orchestrate multiple paths,
network coding offers built-in error protection and adaptivity to topology changes due to
joins, leaves, node or link failures, congestion, etc; by employing a flooding-type delivery,
network coding can be implemented in a distributed fashion easily. These properties
render network coding particularly for unicasting and multicasting in mobile ad hoc
networks.

In Section 3, we discussed how network coding can be used as a generic technology
that improves the link layer efficiency by exploiting the broadcast nature of the wireless
medium. The local mixing engine buffers packets and opportunistically mixing packets
passing by, to reduce the number of transmissions. The benefit is further increased with
the recent development of local mixing–aware routing.

In Section 4, we discussed some recent physical layer techniques that are based on
the mixing and demixing of signals. By mixing at the modulator/channel coder and by
exploiting the inherent mixing offered by the wireless medium, further performance gains
can be achieved.

23

References

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network information flow,” IEEE
Trans. Inform. Theory, vol. 46, no. 4, pp. 1204–1216, July 2000.

[2] Y. Wu, P. A. Chou, and S.-Y. Kung, “Minimum-energy multicast in mobile ad hoc networks
using network coding,” IEEE Trans. Communications, vol. 53, no. 11, pp. 1906–1918, Nov.
2005, also presented at the Information Theory Workshop, San Antonio, TX, Oct., 2004.

[3] ——, “Information exchange in wireless networks with network coding and physical-layer
broadcast,” in Proc. 39th Annual Conf. Inform. Sci. and Systems (CISS), Baltimore,
MD, Mar. 2005, [Online] http://research.microsoft.com/∼yunnanwu. Also available as Mi-
crosoft Research Tech. Report, MSR-TR-2004-78, Aug. 2004.

[4] Y. Wu, P. A. Chou, Q. Zhang, K. Jain, W. Zhu, and S.-Y. Kung, “Network planning in
wireless ad hoc networks: a cross-layer approach,” IEEE J. Sel. Areas in Comm., vol. 23,
no. 1, pp. 136–150, Jan. 2005.

[5] Y. Wu, “Network coding for multicasting,” Ph.D. dissertation, Princeton University, Nov.
2005, http://research.microsoft.com/∼yunnanwu/.

[6] J. Widmer, C. Fragouli, and J.-Y. L. Boudec, “Low-complexity energy-efficient broadcast-
ing in wireless ad-hoc networks using network coding,” in Proc. 1st Workshop on Network
Coding, Theory, and Applications (NetCod), Riva del Garda, Italy, Apr. 2005.

[7] C. Fragouli, J. Widmer, and J.-Y. L. Boudec, “A network coding approach to energy
efficient broadcasting: from theory to practice,” in Proc. INFOCOM, Barcelona, Spain,
Apr. 2006.

[8] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading structure for randomness in
wireless opportunistic routing,” Massachusetts Institute of Technology, Cambridge, MA,
Tech. Rep. MIT-CSAIL-TR-2007-014, Feb. 2007.

[9] J.-S. Park, M. Gerla, D. S. Lun, Y. Yi, and M. Médard, “Codecast: A network-coding-
based ad hoc multicasting protocol,” IEEE Wireless Communications, pp. 76–81, Oct.
2006.

[10] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE Trans. Inform.
Theory, vol. IT-49, no. 2, pp. 371–381, Feb. 2003.

[11] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong, “A random
linear network coding approach to multicast,” IEEE Trans. Inform. Theory, vol. 52, no. 10,
pp. 4413–4430, Oct. 2006.

[12] P. Sander, S. Egner, and L. Tolhuizen, “Polynomial time algorithms for network informa-
tion flow,” in Symposium on Parallel Algorithms and Architectures (SPAA). San Diego,
CA: ACM, June 2003, pp. 286–294.

[13] P. A. Chou, Y. Wu, and K. Jain, “Practical network coding,” in Proc. 41st Allerton Conf.
Comm., Ctrl. and Comp., Monticello, IL, Oct. 2003.

[14] J. Widmer and J.-Y. L. Boudec, “Network coding for efficient communication in extreme
networks,” in Proc. ACM SIGCOMM’05 Workshops, Philadelphia, PA, Aug. 2005.

[15] G. Zhang, J. Neglia, J. Kurose, and D. Towsley, “On the benefits of random linear cod-
ing for unicast applications in disruption tolerant networks,” in Proc. 2nd Workshop on
Network Coding, Theory, and Applications, Boston, MA, Apr. 2005.

24

[16] U. Lee, J.-S. Park, J. Yeh, G. Pau, and M. Gerla, “Codetorrent: Content distribution
using network coding in vanets,” in 1st International Workshop on Decentralized Resource
Sharing in Mobile Computing and Networking (MobiShare’06), Los Angeles, CA, Sept.
2006.

[17] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft, “XORs in the air:
Practical wireless network coding,” in SIGCOMM. Pisa, Italy: ACM, Sept. 2006.

[18] Y. Wu, S. M. Das, and R. Chandra, “Routing with a markovian metric to promote local
mixing,” in Proc. IEEE INFOCOM 2007 Minisymposium. Anchorage, Alaska: IEEE,
May 2007.

[19] Y. Wu, J. Padhye, R. Chandra, V. Padmanabhan, and P. A. Chou, “The local mixing
problem,” in Proc. Information Theory and Applications Workshop. San Diego, CA:
Univ. of California, San Diego, Feb. 2006.

[20] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris, “High throughput path metric for
multi-hop wireless routing,” in MobiCom. ACM, 2003.

[21] S. Sengupta, S. Rayanchu, and S. Banerjee, “An analysis of wireless network coding for
unicast sessions: The case for coding-aware routing,” in Proc. INFOCOM. Anchorage,
AK: IEEE, May 2007.

[22] T. M. Cover, “Broadcast channels,” IEEE Trans. Inform. Theory, vol. 18, pp. 2–14, Jan.
1972.

[23] P. P. Bergmans, “A simple converse for broadcast channels with additive white gaussian
noise,” IEEE Trans. Inform. Theory, vol. 20, pp. 279–280, Mar. 1974.

[24] R. G. Gallager, “Capacity and coding for degraded broadcast channels,” Probl. Inform.
Transm., pp. 185–193, July 1974.

[25] Y. Wu, “Broadcasting when receivers know some messages a priori,” in Proc. Int’l Symp.
Information Theory. IEEE, June 2007.

[26] L. Xiao, T. E. Fuja, J. Kliewer, and D. J. Costello Jr., “Nested codes with multiple
interpretations,” in Proc. Conf. on Inform. Sci. and Systems (CISS), Princeton, NJ, Mar.
2006.

[27] Z. Yang and A. Høst-Madsen, “Cooperation efficiency in the low power regime,” in Proc.
Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 2005.

[28] S. Zhang, S.-C. Liew, and P. P. Lam, “Hot topic: Physical-layer network coding,” in
MobiCom. Los Angeles, CA: ACM, Sept. 2006.

[29] S. Katti, S. Gollakota, and D. Katabi, “Embracing wireless interference: Analog network
coding,” Massachusetts Institute of Technology, Cambridge, MA, Tech. Rep. MIT-CSAIL-
TR-2007-012, Feb. 2007.

25

