

VIRTUAL MIXER: REAL-TIME AUDIO MIXING ACROSS CLIENTS AND THE CLOUD

FOR MULTIPARTY CONFERENCING

Jun Liao, Chun Yuan, Wenwu Zhu*, Philip A. Chou**

Department of Computer Science and Technology, Tsinghua University, Beijing, China

*Microsoft Research Asia, Beijing, China

**Microsoft Research, Redmond, USA

ABSTRACT

Traditional multiparty audio or video conferencing uses a

single node, sometimes called a multipoint control unit, or

MCU, to mix audio data for the conference. We introduce

a novel mixer, called a Virtual Mixer, which performs

mixing in a distributed way over the network. The Virtual

Mixer topology is optimized over Steiner trees using a

metric of either average pairwise delay (APD) or maximum

pairwise delay (MPD). Since the topology is adapted to the

particular set of clients and servers available in the cloud,

optimization speed is important. In order to solve this NP-

hard Steiner tree optimization, we propose heuristic

algorithms for finding the Pairwise-delay-optimal Tree

(PT) for both APD and MPD, which are orders of

magnitude faster than exhaustive search, yet find trees with

delays that are minimal or within a few percent of minimal.

We show through experiments both on a corporate intranet

and on up to 12 PlanetLab nodes that Virtual Mixing can

reduce both the APD and the MPD between clients by

upwards of 50%, compared with the existing MCU-based

and P2P-based mixing approaches.

Keywords—Audio Mixing, Video Mixing, Multiparty

Conferencing, Telepresence

1. INTRODUCTION

The rapid development of the Internet has enabled more

and more forms of interactive multimedia applications,

among them audio and video teleconferencing across

multiple sites. A fundamental feature of such multiparty

conferencing is the need for each endpoint in a conference

to present to its user a mixture of the audio from the other

endpoints in the conference.

In pure peer-to-peer (P2P) systems, the endpoints

communicate directly with each other, and therefore mixing

is done at the endpoints. In an -way conference, each of

the endpoints encodes and sends its audio stream to the

 other endpoints, receives and decodes audio

streams from the other endpoints, and mixes the decoded

audio streams for rendering. As grows without any

particular bound, the burden on every endpoint, in terms of

decoder computation as well as outbound and inbound

bandwidth, increases linearly for quadratic use of resources

in the overall system.

Mixing services are therefore frequently used in multiparty

conferencing. A mixer is a service that receives and

decodes streams from a collection of endpoints, creates a

unique mixture for each endpoint by leaving the endpoint’s

own stream out of the mixture, and encodes and sends the

corresponding mixture back to the endpoint. This relieves

the endpoint of the computational and bandwidth burden of

doing the mixing itself. Each endpoint needs to encode and

send only its own stream, and to receive and decode only

the mixed stream. Though we have described this here for

audio, it is also possible to have video mixers that, for

example, combine multiple H.264 video streams into a

single H.264 video stream, for decoding by a single H.264

decoder.

A mixer is typically hosted on a server in a dedicated

content delivery infrastructure. A server that hosts a mixer

is known as a Multipoint Control Unit, or MCU, in

telecommunications terminology. Classically, in the

telephone network, all of the endpoints (or “terminals”)

participating in a multipoint conference are handled by a

single MCU. This single-MCU structure is also commonly

employed by multipoint conferencing systems operating

over the Internet [2]. Although there is only a single MCU

per conference, it is not uncommon for a system to offer

multiple geographically distributed MCUs from which to

choose.

A mixer can also be hosted on one of the better endowed

endpoints in a conference, as in Skype [4]. In this case, the

mixer mixes the data from its own endpoint into each

outgoing stream. Placing the mixers at end hosts is

convenient in P2P systems. However, in many P2P

conferences, there may be no particularly well-endowed

peer to perform the mixing. A mixing scheme that rotates

the mixing responsibility evenly through the peers at a

packet level, known as MutualCast, is proposed in [3].

In this paper, we show that having not a single mixer, but a

network of mixers, which acts as a single Virtual Mixer as

shown in Figure 1, can significantly reduce the average

delay or the maximum delay between endpoints in a

conference. The reduction in delay is particularly striking

when there are multiple clusters of endpoints engaged in a

conference. This is sometimes known as the “branch

office” scenario, since participants spread across two or

more branch offices will frequently be clustered into

geographically separated groups. But the scenario also

occurs, for example, in multiparty conferences over the

Internet spanning multiple geographic regions. In this

paper, we demonstrate both in a branch office example over

a corporate intranet and in a cross-region example over the

Internet using PlanetLab that upwards of 50% reduction in

both average and maximum delay can be achieved.

To achieve the maximum reduction in delay, the topology

of the network of mixers in the Virtual Mixer must be

optimized for each multiparty conferencing session. We

define a class of topologies based on Steiner trees, which

include all the endpoints (or clients) in the multiparty

conferencing session. The Steiner trees may also include

any number of optional helper MCUs (or servers) made

available for mixing. Any node in the interior of the

Steiner tree, whether it is a server or a client node, becomes

a mixer. Hence our approach is a hybrid of the

infrastructure-based and P2P-based mixing approaches in

previous works. We optimize over Steiner trees using as a

metric either average pairwise delay (APD) or maximum

pairwise delay (MPD) between clients. Since finding the

minimum weighted Steiner tree is an NP-hard problem, we

propose a heuristic algorithm called the Pairwise-delay-

optimal Tree (PT) algorithm. We compare PT’s APD and

MPD to the minimum APD and MPD as determined by

exhaustive search in networks containing up to 12 nodes.

For these networks, the trees found by PT have delays that

are minimal or within a few percent of minimal.

Because we are able to search quickly over trees containing

any number of optional servers, it is possible for a

multiparty conferencing system to offer a large number of

helper MCUs in many possible locations around the world.

Helper MCUs may be deployed a priori in global data

centers, in content distribution networks, on university or

corporate networks, in buildings or even in rooms that

support multiparty conferencing. When combined with the

client nodes in a particular session, these servers form a

highly effective content delivery network. However,

servers are only included if they are part of the minimum

delay topology. Thus, our Virtual Mixer suits situations

where users are clustered in a local region as well as where

users are in multiple clusters across regions. Our algorithm

optimizes the distribution topology according to the

locations of users in each session. From the clients’

perspective, as Figure 1 shows, there is only one “virtual”

mixer available to them, and they can easily access the data

streams given to them from the virtual mixer with the least

cross-region delay.

Our work is related to the MixNStream work of Yuen and

Chan [1], in which an overlay network of servers is

constructed and continually updated to support video

distribution with a small worst-case delay. In other works

on mixing, [5] presents a mixing algorithm that minimizes

the difference between generation times of the media

packets in the absence of globally synchronized clocks and

in the presence of jitter in transmission delays, [6]

investigates different types of mixing algorithms and

proposes objective methods for evaluating their

performance, and [7] proposes a simpler MCU using

algorithms for echo cancelation.

2. VIRTUAL MIXER

In this section we first introduce the graph model of the

network and the tree model of the Virtual Mixer. Then we

define the APD and MPD delay metrics. Finally, we show

how the metrics are optimized over the trees, and how trees

are dynamically chosen.

2.1 Graph Model

We define an undirected graph to model the

network of clients and all possible servers in the Virtual

Mixer. Let each node in be either a client node labeled

 or a server node labeled
 . We have . We assume the graph is fully

connected, since each node can reach any other node

through a direct network connection without going through

a third node.

Not all server nodes need to be part of the Virtual Mixer.

For a graph , we define subgraphs ,
{ } , where each subgraph includes all

clients plus the th unique subset of the servers.

2.2 Mixing Model

For each subgraph , a spanning tree on

 is a tree connecting all vertices of . has two types

of nodes: clients in a set and servers in a set ,

so .

Each spanning tree defines a Virtual Mixer as follows. If

a node in is an interior node (i.e., not a leaf), it acts as an

MCU, as follows. When the interior node is a server with a

set of neighbors , it sends to each neighbor a

mixture of the streams from all other neighbors { }.
When the interior node is a client, it sends to each neighbor

 a mixture of the stream originating from itself and

from all other neighbors { }. When a client is a leaf, it

simply sends its own stream to its neighbor. When a server

is a leaf, it is discarded as it performs no function. No

client or server forwards more than one copy of the same

data to different nodes.

2.3 Delay Metrics

Every spanning tree , as a Virtual Mixer, can be

evaluated by a set of metrics. For any pair of client

nodes , let the pairwise delay () be the

sum of the delays along the unique path in the spanning

tree from to .

We define the average pairwise delay (APD) of a spanning

tree to be the average of the pairwise delays between

clients to ,

 (), (1)

where (). Similarly, we define the maximum

pairwise delay (MPD) of a tree to be the maximum of all

pairwise delays between clients to ,

Figure 1: Virtualize mixing resources into one virtual mixer

to conference parties.

PT Algorithm

Input: A non-empty fully connected weighted graph

𝐺𝑃𝑇 𝑉𝑃𝑇 𝐸𝑃𝑇 , a server set 𝑆

Initialize:

Vnew = {x}, where x is an arbitrary node (starting point)

from 𝑉𝑃𝑇, Enew = {}

Repeat until Vnew = 𝑉𝑃𝑇

Choose an edge (u, v) with minimal APD/MPD

increase such that u is in Vnew and v is not (if there are

multiple edges with the same APD/MPD increase, any

of them may be selected)

Add v to Vnew, and (u, v) to Enew

For all v in Vnew

If degree of v is one and v is in server set 𝑆, remove v

from Vnew and remove the edge connecting the leaf

from Enew

 () (2)

Among all the spanning trees in , let be a spanning

tree that has the minimum APD (or MPD). Then, among all

trees in graph , let be a tree that has the

minimum APD (or MPD). We call a pairwise delay

minimum Steiner tree in graph , with respect to APD (or

MPD).

2.4 Pairwise-delay-optimal Tree

Note that is not in general a minimum weight spanning

tree in , where the weight of a tree is defined as the sum

of the delays (or other quantities) on the edges of the tree.

Thus finding cannot be done with any of the efficient

minimum spanning tree (MST) algorithms, which rely on

the modularity of the tree weight. Unfortunately the APD

and MPD metrics, which are more relevant than tree weight

to end users, do not admit efficient minimization

algorithms. Here we propose a simple heuristic algorithm

to find the tree with minimum APD or minimum MPD,

called the Pairwise-delay-optimal Tree (PT) algorithm. The

PT algorithm actually is an algorithm suite that has two

versions, PT-APD and PT-MPD, depending on the metric

(APD or MPD) adopted, but their procedures are similar.

Here we explain how the PT algorithm finds the minimum

APD or MPD spanning tree. The output of the PT

algorithm is a spanning tree, i.e. PT. The PT algorithm

works as follows. To initialize, it builds an empty set

with zero edges. For a graph with nodes, a PT has

 edges. So the algorithm iteratively adds a new edge

to the set, by selecting the edge that yields a partial tree

with the minimum APD or MPD. That is, it selects the edge

that causes the least APD/MPD increase and adds it to the

set .

The algorithm is shown in Table 1. Note that if a Server

becomes a leaf, indicating that the server is far away from

any client node in the graph, we remove the server from the

tree. We run the PT algorithm on all possible

configurations of the servers to find , the pairwise

delay minimum Steiner tree with respect to APD (or MPD).

This is tractable since the number of servers available to

perform mixing for an audio conference is typically small.

2.5 Dynamic Group Forming

When client nodes join and leave, the tree is updated

towards a smaller APD/MPD.

3. EXPERIMENTS

3.1 Experimental Setup

To evaluate the effectiveness of our solutions, we

performed two sets of experiments. The first set is

performed over a corporate intranet in two cities across

continents, and the second is over the Internet on

PlanetLab. In both setups, we compare our PT-APD and

PT-MPD algorithms with the single mixer approach, the

MutualCast approach, and the Steiner tree with minimum

APD or minimum MPD obtained by exhaustive search.

Since exhaustive search becomes intractable as the problem

scales up, we first present how we conduct exhaust search

and pruning to reduce the search cost as much as possible.

3.1.1 Exhaustive search and tree pruning

First we calculate the number of all possible spanning trees

on a graph. Cayley's formula states that the number of

spanning trees in a complete graph with labeled vertices

is . Indeed, there is a 1-1 mapping between the set of

spanning trees and sequences over letters of length ,

known as Prüfer sequences (or Prüfer codes). Each Prüfer

sequence can be converted into a spanning tree. So a brute

force approach is to enumerate all the Prüfer sequences,

calculate the APD/MPD of the corresponding spanning

tree, and find the one that has the minimum APD/MPD.

The complexity of enumerating all Prüfer sequences is

clearly exponential. Therefore finding an optimal solution

through straightforward enumeration becomes intractable

as increases. We adopt a branch-and-bound approach in

traversing the solution space.

The exhaustive search of all possible solutions is done in a

depth-first-search way. For a given Prüfer sequence, a

corresponding spanning tree is generated node by node. In

each step, when a node is added to the tree, we evaluate its

APD or MPD. If it exceeds a pruning bound, we stop the

generating process and go to the next Prüfer sequence. The

bound is dynamically updated towards optimal during the

enumeration.

3.2 Experimental Results

3.2.1 Corporate intranet experiment

In this experiment, we have six machines: three in Asia and

three in North America. We compare the single mixer

approach, the MutualCast approach, the Virtual Mixer (PT-

MPD and PT-APD) we proposed, and exhaustive search.

Results are listed in Table 2. All delays in the table in this

paper are measured as Round Trip Delay. Figure 2 shows

the topology of the Virtual Mixer solution.

 In Table 2, each row represents the topology generated by

different approaches. The last two rows are optimal

topologies obtained by enumerating all possible

configurations of spanning trees and finding the tree with

Table 1. PT algorithm to find the minimum APD/MPD

Figure 2: Virtual Mixer solution in corporate intranet.

Figure 3: Virtual Mixer solution on PlanetLab.

Table 2. Comparing mixing approaches in corporate intranet.

Metric
(millisecond)

Maximum

Pairwise Delay

(MPD)

Average

Pairwise

Delay (APD)

Running Time

Single Mixing 444.021 222.043 N/A

MutualCast 443.896 166.510 N/A

Virtual Mixer
(PT-MPD)

222.109 133.272 24.23

Virtual Mixer

(PT-APD)
222.109 133.272 21.07

Minimum MPD
Tree

222.109 133.272 1877.63

Minimum APD

Tree
222.109 133.272 1889.48

Table 3. Comparing mixing approaches on PlanetLab.

Metric

(millisecond)

Maximum

Pairwise Delay
(MPD)

Average

Pairwise
Delay (APD)

Running

Time

Single Mixing 471.525 207.406 N/A

MutualCast 523.766 240.033 N/A

Virtual Mixer
(PT-MPD)

262.461 138.089 797.75

Virtual Mixer

(PT-APD)
273.268 133.387 783.60

Minimum MPD
Tree

262.461 135.747 4972683.09

Minimum APD

Tree
273.268 131.046 4894240.12

the minimum APD or MPD. In each column is the

performance of the various approaches under the two

metrics, APD and MPD. We also log the running time of

PT algorithm and exhaustive search in the last column.

From Table 2 we can see that, in the Virtual Mixer scheme,

both the APD and MPD have been reduced almost by a

factor of two compared with the other schemes. Since the

six-node case has a small enumeration space, it does not

take much time to exhaust all the possibilities. In this case,

the MPD and APD metric achieve their optima with the

same tree, but we will show in the next experiment that

they are not always so coherent.

3.2.2 PlanetLab experiment

In this experiment, we have twelve nodes spread across

Hong Kong, Taiwan, United States and Canada. We run the

same test as in Section 3.1.1, with the results shown in

Table 3. Figure 3 shows the topology of the Virtual Mixer

solution determined by PT-MPD.

In this case, there is no single tree that minimizes both APD

and MPD. However, the minimum APD tree has an MPD

only 4% larger than that of the minimum MPD tree. The

former is the tree found by PT-APD, in almost four orders

of magnitude less time.

4. CONCLUSIONS

In this paper we propose a novel Virtual Mixer that can

achieve substantial latency reduction among parties in a

conference. In order to achieve the maximum reduction in

latency, the proposed Virtual Mixer is optimized over

Steiner trees using a metric of either average pairwise delay

(APD) or maximum pairwise delay (MPD). In lieu of an

NP-hard Steiner tree optimization, we propose the greedy

Pairwise-delay-optimal Tree (PT) algorithm, which uses

either MPD or APD as the objective, respectively called

PT-MPD and PT-APD. We compare the performance of

PT-MPD and PT-APD to the minimum MPD and minimum

APD as determined by exhaustive search both in a

corporate intranet and in a Planet Lab network with up to

12 nodes. The experimental results show that the Virtual

Mixer using the trees generated by our proposed algorithms

can achieve delays that are minimal or within a few percent

of minimal. This is about half of the delay of the

traditional approaches.

5. REFERENCES
[1] Yuen, P. and Chan, G. MixNStream: multi-source video

distribution with stream mixers.In Proceedings of the 2010 ACM

workshop on Advanced video streaming techniques for peer-to-

peer networks and social networking, pages 77-82, ACM, 2010.

[2] TANDBERG MCU and IP. http://www.tandberg.com/col

lateral/white_papers/whitepaper_TANDBERG_MCU_and_IP.pdf.

[3] Li, J. MutualCast: A Serverless Peer-to-Peer Multiparty Real-

Time Audio Conferencing System., In Multimedia and Expo,

IEEE International Conference on, pages 602-605 2005.

[4] Ahson, S. and Ilyas, M. VoIP handbook: applications,

technologies, reliability, and security, pages 162-163 CRC, 2008.

[5] Rangan, P. V., Vin, H. M. and Ramanathan, S.

Communication architectures and algorithms for media mixing in

multimedia conferences. IEEE/ACM Transactions on Networking

(TON), 1, 1 1993), pages 20-30.

[6] Chandra, S. P., Senthil, K. M. and Bala, M. P. P. Audio mixer

for multi-party conferencing in VoIP., In Internet Multimedia

Services Architecture and Applications (IMSAA), pages 1-6. 2009.

[7] Junlin, L., Li-wei, H. and Florencio, D. Multi-Party Audio

Conferencing Based on a Simpler MCU and Client-Side ECHO

Cancellation. In Multimedia and Expo, 2007 IEEE International

Conference on, pages 84-87. 2007.

