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ABSTRACT 

Traditional multiparty audio or video conferencing uses a 

single node, sometimes called a multipoint control unit, or 

MCU, to mix audio data for the conference.  We introduce 

a novel mixer, called a Virtual Mixer, which performs 

mixing in a distributed way over the network.  The Virtual 

Mixer topology is optimized over Steiner trees using a 

metric of either average pairwise delay (APD) or maximum 

pairwise delay (MPD). Since the topology is adapted to the 

particular set of clients and servers available in the cloud, 

optimization speed is important. In order to solve this NP-

hard Steiner tree optimization, we propose heuristic 

algorithms for finding the Pairwise-delay-optimal Tree 

(PT) for both APD and MPD, which are orders of 

magnitude faster than exhaustive search, yet find trees with 

delays that are minimal or within a few percent of minimal. 

We show through experiments both on a corporate intranet 

and on up to 12 PlanetLab nodes that Virtual Mixing can 

reduce both the APD and the MPD between clients by 

upwards of 50%, compared with the existing MCU-based 

and P2P-based mixing approaches.   
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1. INTRODUCTION 

The rapid development of the Internet has enabled more 

and more forms of interactive multimedia applications, 

among them audio and video teleconferencing across 

multiple sites.  A fundamental feature of such multiparty 

conferencing is the need for each endpoint in a conference 

to present to its user a mixture of the audio from the other 

endpoints in the conference. 

In pure peer-to-peer (P2P) systems, the endpoints 

communicate directly with each other, and therefore mixing 

is done at the endpoints.  In an  -way conference, each of 

the   endpoints encodes and sends its audio stream to the 

    other endpoints, receives and decodes     audio 

streams from the other endpoints, and mixes the decoded 

audio streams for rendering.  As   grows without any 

particular bound, the burden on every endpoint, in terms of 

decoder computation as well as outbound and inbound 

bandwidth, increases linearly for quadratic use of resources 

in the overall system. 

Mixing services are therefore frequently used in multiparty 

conferencing. A mixer is a service that receives and 

decodes streams from a collection of endpoints, creates a 

unique mixture for each endpoint by leaving the endpoint’s 

own stream out of the mixture, and encodes and sends the 

corresponding mixture back to the endpoint.  This relieves 

the endpoint of the computational and bandwidth burden of 

doing the mixing itself.  Each endpoint needs to encode and 

send only its own stream, and to receive and decode only 

the mixed stream. Though we have described this here for 

audio, it is also possible to have video mixers that, for 

example, combine multiple H.264 video streams into a 

single H.264 video stream, for decoding by a single H.264 

decoder. 

A mixer is typically hosted on a server in a dedicated 

content delivery infrastructure. A server that hosts a mixer 

is known as a Multipoint Control Unit, or MCU, in 

telecommunications terminology.  Classically, in the 

telephone network, all of the endpoints (or “terminals”) 

participating in a multipoint conference are handled by a 

single MCU.  This single-MCU structure is also commonly 

employed by multipoint conferencing systems operating 

over the Internet [2].  Although there is only a single MCU 

per conference, it is not uncommon for a system to offer 

multiple geographically distributed MCUs from which to 

choose. 

A mixer can also be hosted on one of the better endowed 

endpoints in a conference, as in Skype [4].  In this case, the 

mixer mixes the data from its own endpoint into each 

outgoing stream. Placing the mixers at end hosts is 

convenient in P2P systems.  However, in many P2P 

conferences, there may be no particularly well-endowed 

peer to perform the mixing.  A mixing scheme that rotates 

the mixing responsibility evenly through the peers at a 

packet level, known as MutualCast, is proposed in [3]. 

In this paper, we show that having not a single mixer, but a 

network of mixers, which acts as a single Virtual Mixer as 

shown in Figure 1, can significantly reduce the average 

delay or the maximum delay between endpoints in a 

conference.  The reduction in delay is particularly striking 

when there are multiple clusters of endpoints engaged in a 

conference.  This is sometimes known as the “branch 

office” scenario, since participants spread across two or 

more branch offices will frequently be clustered into 

geographically separated groups.  But the scenario also 

occurs, for example, in multiparty conferences over the 

Internet spanning multiple geographic regions.  In this 

paper, we demonstrate both in a branch office example over 

a corporate intranet and in a cross-region example over the 

Internet using PlanetLab that upwards of 50% reduction in 

both average and maximum delay can be achieved. 



 

 

To achieve the maximum reduction in delay, the topology 

of the network of mixers in the Virtual Mixer must be 

optimized for each multiparty conferencing session. We 

define a class of topologies based on Steiner trees, which 

include all the endpoints (or clients) in the multiparty 

conferencing session.  The Steiner trees may also include 

any number of optional helper MCUs (or servers) made 

available for mixing.  Any node in the interior of the 

Steiner tree, whether it is a server or a client node, becomes 

a mixer.  Hence our approach is a hybrid of the 

infrastructure-based and P2P-based mixing approaches in 

previous works. We optimize over Steiner trees using as a 

metric either average pairwise delay (APD) or maximum 

pairwise delay (MPD) between clients.  Since finding the 

minimum weighted Steiner tree is an NP-hard problem, we 

propose a heuristic algorithm called the Pairwise-delay-

optimal Tree (PT) algorithm.  We compare PT’s APD and 

MPD to the minimum APD and MPD as determined by 

exhaustive search in networks containing up to 12 nodes.  

For these networks, the trees found by PT have delays that 

are minimal or within a few percent of minimal. 

Because we are able to search quickly over trees containing 

any number of optional servers, it is possible for a 

multiparty conferencing system to offer a large number of 

helper MCUs in many possible locations around the world.  

Helper MCUs may be deployed a priori in global data 

centers, in content distribution networks, on university or 

corporate networks, in buildings or even in rooms that 

support multiparty conferencing.  When combined with the 

client nodes in a particular session, these servers form a 

highly effective content delivery network.  However, 

servers are only included if they are part of the minimum 

delay topology.  Thus, our Virtual Mixer suits situations 

where users are clustered in a local region as well as where 

users are in multiple clusters across regions.  Our algorithm 

optimizes the distribution topology according to the 

locations of users in each session.  From the clients’ 

perspective, as Figure 1 shows, there is only one “virtual” 

mixer available to them, and they can easily access the data 

streams given to them from the virtual mixer with the least 

cross-region delay. 

Our work is related to the MixNStream work of Yuen and 

Chan [1], in which an overlay network of servers is 

constructed and continually updated to support video 

distribution with a small worst-case delay.  In other works 

on mixing, [5] presents a mixing algorithm that minimizes 

the difference between generation times of the media 

packets in the absence of globally synchronized clocks and 

in the presence of jitter in transmission delays, [6] 

investigates different types of mixing algorithms and 

proposes objective methods for evaluating their 

performance, and [7] proposes a simpler MCU using 

algorithms for echo cancelation. 

2. VIRTUAL MIXER 

In this section we first introduce the graph model of the 

network and the tree model of the Virtual Mixer.  Then we 

define the APD and MPD delay metrics.  Finally, we show 

how the metrics are optimized over the trees, and how trees 

are dynamically chosen. 

2.1 Graph Model 

We define an undirected graph         to model the 

network of clients and all possible servers in the Virtual 

Mixer. Let each node in   be either a client node   labeled 

         or a server node   labeled            
  . We have         . We assume the graph is fully 

connected, since each node can reach any other node 

through a direct network connection without going through 

a third node.  

Not all server nodes need to be part of the Virtual Mixer. 

For a graph  , we define subgraphs   ,      
{        }  , where each subgraph    includes all   

clients plus the  th unique subset of the   servers. 

2.2 Mixing Model 

For each subgraph   ,  a spanning tree           on 

   is a tree connecting all vertices of   .    has two types 

of nodes: clients in a set     and servers in a set     , 

so            . 

Each spanning tree   defines a Virtual Mixer as follows.  If 

a node in   is an interior node (i.e., not a leaf), it acts as an 

MCU, as follows. When the interior node is a server with a 

set of neighbors   , it sends to each neighbor     a 

mixture of the streams from all other neighbors   { }. 
When the interior node is a client, it sends to each neighbor 

    a mixture of the stream originating from itself and 

from all other neighbors   { }. When a client is a leaf, it 

simply sends its own stream to its neighbor. When a server 

is a leaf, it is discarded as it performs no function.  No 

client or server forwards more than one copy of the same 

data to different nodes. 

2.3 Delay Metrics 

Every spanning tree   , as a Virtual Mixer, can be 

evaluated by a set of metrics.  For any pair of client 

nodes         , let the pairwise delay    (  )  be the 

sum of the delays along the unique path in the spanning 

tree from   to  . 

We define the average pairwise delay (APD) of a spanning 

tree   to be the average of the pairwise delays between 

clients   to  , 
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where    (   ). Similarly, we define the maximum 

pairwise delay (MPD) of a tree   to be the maximum of all 

pairwise delays between clients    to  , 

 

Figure 1: Virtualize mixing resources into one virtual mixer 

to conference parties. 



 

 

PT Algorithm 

Input: A non-empty fully connected weighted graph 

𝐺𝑃𝑇     𝑉𝑃𝑇   𝐸𝑃𝑇  , a server set 𝑆 

Initialize:  

Vnew = {x}, where x is an arbitrary node (starting point) 

from 𝑉𝑃𝑇, Enew = {} 

Repeat until Vnew = 𝑉𝑃𝑇 

Choose an edge (u, v) with minimal APD/MPD 

increase such that u is in Vnew and v is not (if there are 

multiple edges with the same APD/MPD increase, any 

of them may be selected) 

Add v to Vnew, and (u, v) to Enew 

For all v in Vnew  

If degree of v is one and v is in server set 𝑆, remove v 

from Vnew and remove the edge connecting the leaf 

from Enew 

                                    
   

   (  ) (2) 

Among all the spanning trees   in   , let    be a spanning 

tree that has the minimum APD (or MPD). Then, among all 

trees     in graph  , let      be a tree that has the 

minimum APD (or MPD). We call      a pairwise delay 

minimum Steiner tree in graph  , with respect to APD (or 

MPD).  

2.4 Pairwise-delay-optimal  Tree 

Note that    is not in general a minimum weight spanning 

tree in   , where the weight of a tree is defined as the sum 

of the delays (or other quantities) on the edges of the tree. 

Thus finding    cannot be done with any of the efficient 

minimum spanning tree (MST) algorithms, which rely on 

the modularity of the tree weight. Unfortunately the APD 

and MPD metrics, which are more relevant than tree weight 

to end users, do not admit efficient minimization 

algorithms.  Here we propose a simple heuristic algorithm 

to find the tree with minimum APD or minimum MPD, 

called the Pairwise-delay-optimal Tree (PT) algorithm. The 

PT algorithm actually is an algorithm suite that has two 

versions, PT-APD and PT-MPD, depending on the metric 

(APD or MPD) adopted, but their procedures are similar. 

Here we explain how the PT algorithm finds the minimum 

APD or MPD spanning tree. The output of the PT 

algorithm is a spanning tree, i.e. PT. The PT algorithm 

works as follows. To initialize, it builds an empty set   

with zero edges. For a graph   with   nodes, a PT has 

    edges. So the algorithm iteratively adds a new edge 

to the set, by selecting the edge that yields a partial tree   

with the minimum APD or MPD. That is, it selects the edge 

that causes the least APD/MPD increase and adds it to the 

set   . 

The algorithm is shown in Table 1. Note that if a Server 

becomes a leaf, indicating that the server is far away from 

any client node in the graph, we remove the server from the 

tree.  We run the PT algorithm on all    possible 

configurations of the   servers to find     , the pairwise 

delay minimum Steiner tree with respect to APD (or MPD). 

This is tractable since the number of servers   available to 

perform mixing for an audio conference is typically small. 

2.5 Dynamic Group Forming 

When client nodes join and leave, the tree is updated 

towards a smaller APD/MPD. 

3. EXPERIMENTS 

3.1 Experimental Setup 

To evaluate the effectiveness of our solutions, we 

performed two sets of experiments. The first set is 

performed over a corporate intranet in two cities across 

continents, and the second is over the Internet on 

PlanetLab. In both setups, we compare our PT-APD and 

PT-MPD algorithms with the single mixer approach, the 

MutualCast approach, and the Steiner tree with minimum 

APD or minimum MPD obtained by exhaustive search. 

Since exhaustive search becomes intractable as the problem 

scales up, we first present how we conduct exhaust search 

and pruning to reduce the search cost as much as possible. 

3.1.1 Exhaustive search and tree pruning 

First we calculate the number of all possible spanning trees 

on a graph. Cayley's formula states that the number of 

spanning trees in a complete graph with   labeled vertices 

is     . Indeed, there is a 1-1 mapping between the set of 

spanning trees and sequences over   letters of length    , 

known as Prüfer sequences (or Prüfer codes). Each Prüfer 

sequence can be converted into a spanning tree. So a brute 

force approach is to enumerate all the Prüfer sequences, 

calculate the APD/MPD of the corresponding spanning 

tree, and find the one that has the minimum APD/MPD.  

The complexity of enumerating all Prüfer sequences is 

clearly exponential. Therefore finding an optimal solution 

through straightforward enumeration becomes intractable 

as   increases. We adopt a branch-and-bound approach in 

traversing the solution space.  

The exhaustive search of all possible solutions is done in a 

depth-first-search way. For a given Prüfer sequence, a 

corresponding spanning tree is generated node by node. In 

each step, when a node is added to the tree, we evaluate its 

APD or MPD. If it exceeds a pruning bound, we stop the 

generating process and go to the next Prüfer sequence. The 

bound is dynamically updated towards optimal during the 

enumeration. 

3.2 Experimental Results 

3.2.1 Corporate intranet experiment 

In this experiment, we have six machines: three in Asia and 

three in North America. We compare the single mixer 

approach, the MutualCast approach, the Virtual Mixer (PT-

MPD and PT-APD) we proposed, and exhaustive search. 

Results are listed in Table 2. All delays in the table in this 

paper are measured as Round Trip Delay. Figure 2 shows 

the topology of the Virtual Mixer solution.  

 In Table 2, each row represents the topology generated by 

different approaches. The last two rows are optimal 

topologies obtained by enumerating all possible 

configurations of spanning trees and finding the tree with 

Table 1. PT algorithm to find the minimum APD/MPD 



 

 

 
Figure 2: Virtual Mixer solution in corporate intranet. 

 

Figure 3: Virtual Mixer solution on PlanetLab. 

Table 2. Comparing mixing approaches in corporate intranet. 

Metric 
(millisecond) 

Maximum 

Pairwise Delay 

(MPD) 

Average 

Pairwise 

Delay (APD) 

Running Time 

Single Mixing 444.021 222.043 N/A 

MutualCast 443.896 166.510 N/A 

Virtual Mixer 
(PT-MPD) 

222.109 133.272 24.23 

Virtual Mixer 

(PT-APD) 
222.109 133.272 21.07 

Minimum MPD 
Tree 

222.109 133.272 1877.63 

Minimum APD 

Tree 
222.109 133.272 1889.48 

 

Table 3. Comparing mixing approaches on PlanetLab. 

Metric 

(millisecond) 

Maximum 

Pairwise Delay 
(MPD) 

Average 

Pairwise 
Delay (APD) 

Running 

Time 

Single Mixing 471.525 207.406 N/A 

MutualCast 523.766 240.033 N/A 

Virtual Mixer 
(PT-MPD) 

262.461 138.089  797.75 

Virtual Mixer 

(PT-APD) 
273.268 133.387 783.60 

Minimum MPD 
Tree 

262.461 135.747 4972683.09 

Minimum APD 

Tree 
273.268 131.046 4894240.12 

 

the minimum APD or MPD. In each column is the 

performance of the various approaches under the two 

metrics, APD and MPD. We also log the running time of 

PT algorithm and exhaustive search in the last column. 

From Table 2 we can see that, in the Virtual Mixer scheme, 

both the APD and MPD have been reduced almost by a 

factor of two compared with the other schemes. Since the 

six-node case has a small enumeration space, it does not 

take much time to exhaust all the possibilities. In this case, 

the MPD and APD metric achieve their optima with the 

same tree, but we will show in the next experiment that 

they are not always so coherent. 

3.2.2 PlanetLab experiment 

In this experiment, we have twelve nodes spread across 

Hong Kong, Taiwan, United States and Canada. We run the 

same test as in Section 3.1.1, with the results shown in 

Table 3. Figure 3 shows the topology of the Virtual Mixer 

solution determined by PT-MPD.  

In this case, there is no single tree that minimizes both APD 

and MPD. However, the minimum APD tree has an MPD 

only 4% larger than that of the minimum MPD tree.  The 

former is the tree found by PT-APD, in almost four orders 

of magnitude less time. 

4. CONCLUSIONS 

In this paper we propose a novel Virtual Mixer that can 

achieve substantial latency reduction among parties in a 

conference.  In order to achieve the maximum reduction in 

latency, the proposed Virtual Mixer is optimized over 

Steiner trees using a metric of either average pairwise delay 

(APD) or maximum pairwise delay (MPD). In lieu of an 

NP-hard Steiner tree optimization, we propose the greedy 

Pairwise-delay-optimal Tree (PT) algorithm, which uses 

either MPD or APD as the objective, respectively called 

PT-MPD and PT-APD. We compare the performance of 

PT-MPD and PT-APD to the minimum MPD and minimum 

APD as determined by exhaustive search both in a 

corporate intranet and in a Planet Lab network with up to 

12 nodes. The experimental results show that the Virtual 

Mixer using the trees generated by our proposed algorithms 

can achieve delays that are minimal or within a few percent 

of minimal.  This is about half of the delay of the 

traditional approaches.    
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