
1

Network Coding for Large Scale
Content Distribution

Christos Gkantsidis and Pablo Rodriguez Rodriguez
Microsoft Research

Cambridge, CB3 0FD, UK
Email: gantsich@cc.gatech.edu, pablo@microsoft.com

Abstract— We propose a new scheme for content dis-
tribution of large files that is based on network coding.
With network coding, each node of the distribution net-
work is able to generate and transmit encoded blocks
of information. The randomization introduced by the
coding process eases the scheduling of block propagation,
and, thus, makes the distribution more efficient. This
is particularly important in large unstructured overlay
networks, where the nodes need to make decisions based
on local information only. We compare network coding
to other schemes that transmit unencoded information
(i.e. blocks of the original file) and, also, to schemes in
which only the source is allowed to generate and transmit
encoded packets.

We study the performance of network coding in het-
erogeneous networks with dynamic node arrival and de-
parture patterns, clustered topologies, and when incentive
mechanisms to discourage free-riding are in place. We
demonstrate through simulations of scenarios of practical
interest that the expected file download time improves
by more than 20-30% with network coding compared to
coding at the server only and, by more than 2-3 times
compared to sending unencoded information. Moreover,
we show that network coding improves the robustness
of the system and is able to smoothly handle extreme
situations where the server and nodes departure the
system.

Keywords: System design, simulations, content distri-
bution networks, collaborative networks, network coding.

I. I NTRODUCTION

Up until recently, content distribution solutions relied
on placing dedicated equipment at certain places inside
or at the edge of the Internet. The best example of
such solutions is Akamai [4], which runs several tens of
thousands of servers all over the world. However, in re-
cent years, a new paradigm for Content Distribution has
emerged based on a fully distributed architecture where
commodity PCs are used to form a cooperative network
and share their resources (storage, CPU, bandwidth).

By capitalizing the bandwidth of end-systems, coop-
erative architectures offer great potential for addressing
some of the most challenging issue of today’s Inter-
net: the cost-effective distribution of bandwidth-intensive
content to thousands of simultaneous users both Internet-
wide and in private networks, and the resilience to “flash
crowds”- a huge and sudden surge of traffic that usually
leads to the collapse of the affected server.

Content distribution solutions based on end-system
cooperation are inherently self scalable, in that the
bandwidth capacity of the system increases as more
nodes arrive: each new node requests service from, but
also provides service to, the other nodes. The network
can thus spontaneously adapt to the demand by taking
advantage of the resources provided by every end-node.
The system’s capacity grows at the same rate as the
demand, creating limitless scalability for a fixed cost.
As such, end-system cooperative solutions can be used to
efficiently and quickly deliver software updates, critical
patches, videos, and other large files to a very large
number of users.

The best example of an end-system cooperative ar-
chitecture is the BitTorrent system. BitTorrent became
extremely popular as a way of delivering the Linux
distributions. To enable multiple end-systems to cooper-
ate, BitTorrent splits large files into small blocks, which
allows users to download multiple blocks in parallel from
different nodes. Once a user has downloaded a given
block, that person’s computer can immediately behave
as a server for that particular block and serve anyone
else looking for the file. For a detailed description of the
BitTorrent system see [16].

Despite their enormous potential and popularity, exist-
ing end-system cooperative schemes such as BitTorrent,
suffer from a number of inefficiencies which decrease
their overall performance. Such inefficiencies are more
pronounced for large and heterogeneous populations,
during flash crowds, in environments with high churn,
or when cooperative incentive mechanisms are in place.
In this paper we propose a new end-system cooperative

2

solution that usesnetwork coding, i.e. encoding at the
interior nodes of the network, to overcome most of these
problems.

A. Network Coding

Network coding is a novel mechanism proposed in the
last years to improve the throughput utilization of a
given network topology [8]. The principle behind net-
work coding is to allow intermediate nodes to encode
packets. Compared to other traditional approaches (e.g.
building multicast trees), network coding makes optimal
use of the available network resources and computing
a scheduling scheme that achieves such rate is compu-
tationally easy. An overview of network coding and a
discussion of possible Internet applications was given
in [3].

Using network coding as a building block, we provide
an end-system content distribution solution which opti-
mally uses the resources of the network. Every time a
client needs to send a packet to another client, the source
client generates and sends a linear combination of all the
information available to it (similarly to XORing multiple
packets). After clients receive enough linearly indepen-
dent combinations of packets, they can reconstruct the
original information.

In a big scale distributed cooperative system such as
BitTorrent, finding the proper scheduling of information
across the overlay topology so that nodes do not have
to wait unnecessarily for new content to arrive is very
difficult. This is especially the case in practical systems
that cannot rely on a central scheduler and are based on
local node decisions. The scheduling problem becomes
increasingly difficult as the number of nodes in the
overlay increases, when nodes are at different stages
in their downloads, and when incentive mechanisms are
introduced to prevent leeching clients. As we will see in
this paper, network coding makes efficient propagation
of information in a large scale distributed system with no
central scheduler easier, even in the scenarios described
above.

To illustrate how network coding improves the prop-
agation of information without a global coordinated
scheduler we consider the following (simple) example.
In Figure 1 assume that Node A has received from
the source packets 1 and 2. If network coding is not
used, then, Node B can download either packet 1 or
packet 2 from A with the same probability. At the same
time that Node B downloads a packet from A, Node C
independently downloads packet 1. If Node B decides to
retrieve packet 1 from A, then both Nodes B and C will
have the same packet 1 and, the link between them can
not be used.

Node A Node B

Packet 1

Packet 2

Node C

Packet 1

Packet 1, or 2, or 1⊕2?

Source

Fig. 1. Network Coding benefits when nodes only have local
information.

If network coding is used, Node B will download a
linear combination of packets 1 and 2 from A, which
in turn can be used with Node C. Obviously, Node
B could have downloaded packet 2 from A and then
use efficiently the link with C, however, without any
knowledge of the transfers in the rest of the network
(which is difficult to achieve in a large, complex, and dis-
tributed environment), Node B cannot determine which
is the right packet to download. On the other hand,
such a task becomes trivial using network coding. It is
important to note that the decision on which packets to
generate and send at given node does not require for
nodes to keep information about what the other nodes
in the network are doing, or how the information should
propagate in the network, thus, greatly simplifying the
content distribution effort.

B. Contributions

We now summarize the main contributions of this paper:

1) We describe a practical system based on network cod-
ing for file distribution to a large number of cooperative
users. Our approach does not require knowledge of the
underlying network topology. Moreover, the nodes make
decisions of how to propagate packets based on local
information only. By using network coding, the problem
of scheduling the block propagation across a large scale
distributed setting becomes much easier.

2) We provide experimental evidence in many situations
of practical interest that suggests that network coding
performs better than transmitting unencoded blocks or
using techniques that are based on erasure codes, which
can be thought as coding but only at the server. Net-
work coding performs better by almost a factor of two
compared to performing encoding at the server and by
a factor of three compared to not coding at all when
the topology is clustered. Similarly, network coding

3

improves the download rates by almost 20% compared
to source coding and by more than 30% compared to
no coding in an heterogeneous network. During the
early stages of a flash crowd, network coding outper-
forms source coding and no coding by 40% and 200%
respectively. Even when the system reaches a steady-
state, network coding still provides significant benefits
compared to using other techniques. Moreover, when tit-
for-tat incentives are used the performance of network
coding is bearly impacted, while, other schemes suffer
significantly.

3) We also show that our network coding system is
very robust to extreme situations with sudden server and
node departures. Network coding nodes are able to make
progress and finish a download even if the server leaves
shortly after uploading only one copy of the file to the
system and nodes depart immediately after they finish
their download. Without network coding, if both the
server and the peers suddenly depart the system, some
blocks of the original file or of the source-encoded file
will disappear and nodes will not be able to finish their
downloads. This demonstrates that network coding nodes
require very little support from the origin server and are
able to efficiently feed information to each other even
under extreme circumstances.

The rest of the paper is organized as follows. In
Section II we provide an overview of related work.
In Section III we describe our model for end-system
cooperative content distribution and discuss how network
coding can be used as a building block of such a system.
In Section IV we provide experimental evidence of the
benefits of using network coding over sending blocks of
the original file and over source coding. We summarize
in Section V and discuss some open problems.

II. RELATED WORK

Implementing large scale content distribution using end-
system cooperation techniques has been the focus of
multiple research efforts during the recent years.

a) Tree-Based Cooperative Systems:Two of the
first proposals to use end-systems for content distribution
were Yoid and EndSystem multicast, which provided
an end-system overlay multicast architecture for the
delivery of video and audio content [13] [14]. Following
a similar concept, SplitStream [9] builds multiple overlay
multicast trees to enable a more robust and fair system
where all nodes contribute roughly the same to the
distribution effort and the departure of a node causes
minor disruptions. Similarly, Coopnet [10] forms either
random or deterministic node-disjoint trees, and it in-
cludes a Multiple Description Coding layer (MDC) [15]

to maximize the streaming quality experienced by the
users.

Creating and maintaining shortest-path multicast trees
provides an optimized architecture for the delivery of
real-time streaming content. However, architectures that
employ tree topologies are bandwidth-limited in that the
transfer rate to a client will only be as fast as the through-
put of the bottleneck link on the path from the server,
and moreover, “perpendicular” connections among nodes
are often hard to exploit. For file downloads, optimizing
bandwidth is often more critical than optimizing delay,
and therefore, tree-based architectures may not always
be the best approach.

b) Mesh Cooperative Architectures:As an alterna-
tive to tree-based systems, a number of mesh architec-
tures have also been suggested. Mesh cooperative archi-
tectures can substantially benefit from additional connec-
tions between end-systems, thus, maximizing download
rates. The improvement is possible due to intelligent
collaboration among peers, which efficiently use of the
extra available bandwidth. Assuming that a given pair of
end systems has not received exactly the same content,
“perpendicular” bandwidth can be used to fill in the
differences in received content, thus reducing the total
transfer time. By harnessing the power ofparallel-
downloadsresulting from connection to multiple nodes
concurrently [18][19], cooperative architectures provide
drastic performance benefits by taking advantage of
nodes whose working sets are complementary.

However, one major drawback of mesh cooperative
architectures is that since no trees are constructed, there
is no pre-determined distribution path for the content
and the mesh topology may include multiple cycles
and out-of-order content delivery. In addition, nodes in
the cooperative architecture often need to make local
decisions which result in a non-optimal scheduling. The
end result is that nodes need to wait unnecessarily for
new data to arrive.

The most popular of such cooperative architectures is
BitTorrent [16]. A detailed analysis of BitTorrent’s per-
formance can be found in [20] [21]. BitTorrent provides
an end-system cooperative architecture to facilitate fast
downloads of popular files.

To improve the efficient propagation of content among
nodes, BitTorrent uses a rarest-first block download
policy. Such policy attempts a uniform distribution of
pieces among the nodes to prevent users who have
all but a few of the pieces from waiting too long to
finish their download. However, when nodes are close to
finishing their download, nodes may attempt to obtain it
from the server, causing unnecessary server overloading.
To overcome such problem, Slurpie [17] proposes a

4

randomized back off strategy combined with an effective
group size estimator that precisely controls the load on
the server.

c) Erasure Codes:A number of cooperative ar-
chitectures [12] [11] have proposed the use of Erasure
Codes1 [22][23] (e.g. Digital Fountain) to efficiently
transfer bulk data. The digital fountain approach enables
end-hosts to efficiently reconstruct the original content
of sizen from roughly a subset of anyn symbols from
a large universe of encoded symbols. However, since
the sets of symbols acquired by nodes are likely to
overlap substantially, care must be taken to enable them
to collaborate effectively. This makes cooperation and
reconciliation among nodes more difficult than when no
content is encoded. To overcome such problem [11]
proposes techniques to efficiently reconciliate encoded
content among different nodes using sketches, bloom
filters, etc.

While encoded content can efficiently handle losses,
asynchronous arrivals, and churn, locating missing data
items may still be a challenge. To address the issue of
efficiently locating useful encoded blocks within the sys-
tem, Bullet [12] proposes a mechanism that periodically
disseminates summaries of data sets uniformly sampled
over a random subset of global participants.

d) Network Coding:Network coding was first con-
sidered in the pioneering work by Alswede et al. [8],
where they showed that a sender can communicate
information to a set of receivers at the broadcast capacity
of the network provided one allows network coding.

High utilization of a given topology can also be
achieved using multiple edge-disjoint distribution trees
(specially in the case where all nodes are receivers). In
fact, several schemes (e.g. SplitStream, CoopNet) have
proposed to utilize multiple multicast trees (forest) to
deliver striped data from the source to all receivers.
These proposals can indeed improve end-to-end through-
put beyond that of a single tree, however, computing the
strategies to achieve optimal throughput using multiple
trees has been shown to be NP-complete and APX-hard
[24][25][26]. Instead, recent studies have shown that
network coding can significantly facilitate the design of
efficient algorithms to compute and achieve such optimal
throughput [7] [2].

Most of the previous work on network coding is
largely based on theoretical calculations that assume
a detailed knowledge of the topology, and a central-
ized knowledge point for computing the distribution
scheme. However, little effort has been made to study

1we use the terms Erasure Codes, FEC, and Source Coding
interchangeably across the paper

the practical aspects of implementing network coding
on a real distributed setting. In this regard [5] consid-
ers the feasibility of applying the theoretical insights
in network coding to increasing throughput in actual
multicast systems over wide-area networks. In [6], Chou
et al. propose a practical network coding system for
streaming content. Similarly, in [2], K. Jain et al. provide
(contemporaneously with this work) analytical evidence
that supports the use of network coding in peer-to-peer
networks. Based on the work presented in [6] and [2], we
propose a practical end-system cooperative architecture
that uses network coding to enable efficient large scale
content distribution.

Network coding can be seen as an extension or gen-
eralization of the Digital Fountain approach since both
the server and the end-system nodes perform information
encoding. Note, however, that restricting erasure codes
only to the origin server implies that intermediate nodes
can only copy and forward packets. This results inthe
sameerasure code being copied over from one node to
another. Since mesh architectures contain cycles, it is
possible that multiple copies of the same block arrive at
a given receiver through different paths, thus, decreasing
the effective capacity of the system. With Network
Coding, on the other hand, a given block is combined
with other informative blocks as it propagates through
the network, thus, significantly reducing the probability
of duplicate information arriving at the same receiver
from different paths.

When the total number of different erasure codes in
the system is very high, then, the probability of dupli-
cate information arriving at the same receiver can also
become quite small. However, for flash crowd arrivals
where no node has the content, when nodes leave the
system soon after they finish the download, or when
the server leaves the system after serving few copies of
the file, using erasure codes has far less clear benefits
compared to not performing encoding at all.

III. M ODEL

In this section, we describe our model for end-system
cooperative content distribution. This model can be used
to either distribute blocks of the original file, or blocks
of encoded information, where the encoding can happen
either only at the source, or both at the source and
at the network. We will outline the basic operation of
this system, emphasizing some algorithmic parameters
that affect its performance. However, a detailed protocol
implementation is outside of the scope of this paper.
These algorithmic parameters and their impact will be
studied in Section IV.

5

A. Model of a collaborative content distribution network

We assume a population of users2 that are interested in
retrieving a file, which originally exists in a single server.
The capacity of the server is limited (a server could be
an end-user) and, thus, users contribute their bandwidth
resources to help other users. Since the server does not
have the capacity to serve all users simultaneously, it
divides the file intok blocks and uploads blocks at
random to different clients. The clients collaborate with
each other to assemble all thek blocks to reconstruct
the original file. This is very similar to how current end-
cooperative systems, especially BitTorrent, work.

We assume that users do not know the identities of
all other users; they only know the identities of a small
subset of them, which we call the neighborhood. We
assume that the neighboring relation is symmetric, i.e.
if node A is in the neighborhood ofB, then, also,B
is in the neighborhood ofA. Each node can exchange
information, which includes blocks of the file and other
protocol messages, only with its neighbors. The size of
this subset is normally a small value (e.g. 4-6).

The way nodes join the network is as follows. Upon
arrival, each user will contact a centralized server that
will provide a random subset of other users already in
the system (similar to the tracker concept in [16]). The
new user will then connect to each of them to construct
its neighborhood. The end results is a mesh overlay
topology where information flows along the edge-nodes
in that topology. Rather than using a centralized server,
other mechanisms for providing random subsets of nodes
can be used like the ones proposed in [28] and [1].

In the case that some nodes loose some of their
neighbors (because they left the system), or when a
node needs to use more neighbors to improve its parallel
download rate, the node can request additional neighbors
at any time. Thus, allowing the topology to reconfigure
when needed.

In this work, we assume that the major bottleneck in
the system is the capacity of the access link of each
user (and of the server). The total rate by which a
user can receive information from all its neighbors is
limited by the download capacity of the user; similarly,
the total rate by which the user can upload information
to all its neighbors is limited by the upload capacity
of the user. For the purpose of this paper we assume
symmetric links, where the download capacity is equal
to the upload capacity of a node and both capacities
are independent. We have experimented with asymmetric
access capacities and observed very similar results and
thus we omit the details of this case.

2we use the terms nodes and users interchangeably across the paper

B. Content propagation of uncoded and source-encoded
information

Each time there is a transfer of a block from the server or
a user to another user, a decision process is involved as to
which block will be downloaded. We assume that neither
the server, nor any user have a complete information
about the blocks that each user in the system has. Instead,
each user only knows about the blocks it has downloaded
and the blocks that exist in its neighbors and, thus,
the algorithm for deciding which block to transfer is
based on local information only. In our system, we have
experimented with the following heuristics, which are
commonly used in current systems:

• Random block.The block to be transfered is decided
at random among the blocks that exist in the source
(if the source is the server, then a random block
among all blocks).

• Local Rarest.The block to be transfered is picked
among the rarest block in the neighborhood. If there
are multiple rarest blocks, a block at random is
picked among them.

• Global Rarest.This is a baseline scheme which
is not practical in large networks. The block to
be transfered is the system-global rarest block that
exists in the neighborhood. This is a heuristic that
gives priority to very rare blocks in the hope of
improving the performance of the system.

The BitTorrent system uses a combination of the
Randomand Local Rarestschemes. In the beginning
each nodes usesRandomand after a few blocks have
been downloaded it switches toLocal Rarest.

When server coding is used, the system works very
similar to the description above. However, the server
gives blocks of encoded information and not of the
original file. If the server uses forward error correction
codes, then it generatesk · e blocks, wherek is the
number of blocks in the unencoded file ande > 1 is the
expansion factor, a parameter decided by the server. If
the server uses rateless codes, then each time the server
needs to upload a block to a user, a new encoded block
is generated.

C. Content propagation with network coding.

In the case of network coding, both the server and the
users perform encoding operations. Whenever a node or
the server needs to forward a block to another node,
it produces a linear combination of all the blocks it
currently stores. The operation of the system is best
described in the example of Figure 2.

Assume that initially all users are empty and that user
A contacts the server to get a block. The server will

6

Server
File

B1 B2 Bn

c1 c2

cn

c'1

c'2 c'n

E1 E2

Client A

Client B E3

c''1 c''2

Coefficient vector: (c’’1 c1+c’’2c’1, c’’1 c2+c’’2c’2, …)

Fig. 2. Sample description of our network coding system.

combine all the blocks of the file to create an encoded
block E1 as follows. First, it will pick some random
coefficients c1, c2, . . . , cn, then multiply each element
of block i with ci, and finally add the results of the
multiplications together. All these operations take place
in a finite field. Observe that the probability that two
independent nodes with the same set of blocks pick the
same set of coefficients and construct the same block
depends on the size of the field. If the field is very small
such “collisions” may happen and they will reduce the
performance of the system. In most practical cases a field
size of216 should be enough. (For a related discussion
of the size of the field and the probability of decoding
in a randomized setting see [27].)

The server will then transmit to userA the result of
the addition and thecoefficient vector~c = (ci). Assume
now that userA has also another block of encoded
informationE2, either directly from the server or from
another peer, with its associated vector of coefficients.
If user A needs to transmit an encoded blockE3 to
user B, A generates a linear combination of its two
blocksE1 andE2 as follows. UserA picks two random
coefficientsc′′

1
andc′′

2
, multiplies each element of block

E1 with the coefficientc′′
1

and similarly for the second
block E2, and adds the results of the multiplication. The
block transmitted to userB will be the addition of the
multiplicationsc′′

1
·E1 andc′′

2
·E2. The coefficient vector

~c′′ associated with the new block is equal toc′′
1
·~c+c′′

2
·
~c′.

Observe that a node can recover the original file after
receivingk blocks for which the associated coefficient
vectors are linearly independentto each other. The
reconstruction process is similar to solving a system of
linear equations.

The benefit we expect to get by using network cod-
ing is due to the randomization introduced each time
we generate a new encoded block. Recall that without
network coding, each user needs to decide which block

to receive based on a local decision. This may be a
suboptimal decision since such block may be already
well represented in other areas of the network. On the
other hand, with network coding, we perform a linear
combination of all available blocks at a given node. Both
popular as well as unpopular blocks are combined into a
single block without having to estimate their popularity.
If at least one of the combined blocks is of use to other
nodes down the path, then the linear combination will
also be useful. The only way that a generated encoded
block is not useful is if the same block was generated
independently elsewhere in the system (or from the
same node in a previous transmission). However, as
blocks traverse the network they get combined with other
blocks in different nodes, making the probability of that
happening particularly small.

Observe that in the case of network coding we do
not have to worry about how to pick the block to
transmit to the other node; we combine all the available
blocks. However, deciding whether a neighboring node
can send aninnovative packet is more difficult since
the coefficient vectors of the sender can be different
to the vectors of the receiver, but, still, span the same
space. A simple approach is to ensure that each node
knows the coefficient vectors of its neighbors. By using
the neighbors’ coefficients and its own coefficients, a
given node can easily calculate the rank of the combined
matrices and determine which nodes can provide new
blocks and moreover how many blocks they can provide.

An alternative and cheaper approach is to have the
sender generate a linear combination with random coef-
ficients of the coefficient vectors available to it and send
the resulting coefficient vector. If the receiver determines
that the received vector is a linear combination of the
vectors already available at the receiver, then it assumes
that the sender does not have innovative blocks to send
and waits for future updates from the sender. Observe
that an unlucky choice of the random coefficients may
lead the receiver to conclude that the server does not
have innovative information, when in reality it does; such
unlucky events should be very rare.

Note that the overhead of transmitting the coefficient
vectors is quite small. In most practical scenarios, the
size of each block is normally in the order of several
hundreds of KBytes [18] whereas the size of a coefficient
vector is smaller than one packet.

D. Incentive Mechanisms

An important problem of current collaborative content
distribution networks is free-riding; many users take
advantage of the resources offered to the network by

7

other users without contributing their own resources.
Free-riding can seriously degrade the performance of
the content distribution [30], and, as a result, many
collaborative networks have introduced mechanisms to
discourage free-riding.

In our system we use two mechanisms to discourage
free riding. The first is that we give priority to exchanges
over free uploading to other nodes. In other words, when
there is contention for the upload capacity of a user,
the user will preferentially upload blocks of information
to neighbors from which it is also downloading blocks.
Thus, the nodes allocate their capacity preferentially to
mutual exchanges and then use the remaining upload
capacity for free downloads.

The second incentive mechanism that we use is in-
spired by the tit-for-tat approach used in the BitTorrent
network [16]. A user does not upload content to another
user unless it has also received enough content from
that user; more specifically, the absolute difference of
uploading minus downloading from one user to another
is bounded.

The introduction of such an incentive mechanism
makes scheduling of information across a large dis-
tributed setting even more challenging. Given that nodes
make decisions based on local information, a node may
end-up downloading blocks that are already popular
across the system and cannot be traded easily with
other users. This effect gets amplified when the network
frequently reconfigures. With network coding almost
every block is unique and thus has higher chances of
being useful to other users and being traded easily.

IV. EXPERIMENTAL EVALUATION

In this section we study the performance of an end-
system cooperative architecture that uses network coding
and compare it with other existing approaches. In partic-
ular we study the performance of end-system cooperative
architectures for a) different types of topologies, b) het-
erogeneous client populations, c) dynamic node arrivals,
d) sudden node and server departures, and d) incentive
mechanisms.

To evaluate the performance of each scheme, we cal-
culate the time it takes for each user to download the file.
We are both concerned with the average download time,
as well as the maximum, and the standard deviation of
the waiting times among all clients. Another performance
metric, is the overall utilization of the network, or, in
other words, how fast the network can push information
to the users. We measure network throughput as the total
number of blocks transfered in a unit of time. This metric
is also related to how much load is taken away from
the server. The higher the throughput in the cooperative

network, the more efficiently nodes are contributing to
the download, and the lower the load in the server.

To study the performance of potentially large number
of users under various settings and scenarios, we have
implemented a simulator of an end-cooperative system
that uses different algorithms for content distribution.
Our purpose was not to construct a perfectly realistic
simulation, but to demonstrate the advantages of network
coding in some specific scenarios, which, we believe, are
of practical importance.

Our simulator is used to compare the performance of
content propagation using network coding, not coding
at all, and coding only at the server. The input to the
simulator is a set of nodes with constraints in their up-
load and download capacities, an initial overlay topology
that connects these nodes, the size of the file to be
distributed to the nodes, and the capacity of the single
server in the system. The capacities are measured as the
number of blocks that can be downloaded/uploaded in a
single round. The number of blocks of the file transfered
between two users is always an integral number. We have
experimented with finer granularities and observed very
similar results.

Whenever a user joins the system it picks four nodes
at random and makes them its neighbors (provided that
they have not exceeded the maximum number of neigh-
bors, which is set to six in most of our experiments).
The simulator supports dynamic user populations with
nodes joining and leaving the system, and topology
reconfigurations. In fact, at the end of each round, if
a node determines that the utilization of its download
capacity in the most recent rounds drops below a certain
threshold (10% in most of our experiments), then it tries
to discover and connect to new neighbors. Similarly, if
the user has exceeded its maximum number of neighbors,
then it will drop some of the old neighbors at random.

The simulator is round based. At the beginning of
each round, each peer contacts its neighbors to discover
whether there are new blocks that can be downloaded.
For unencoded content and for source coding we assume
that the each node knows the blocks available at its
neighbors; for network coding we use the techniques
described in Section III-C. Then, the simulator decides
which blocks will be exchanged so that the upload and
download capacities are not violated and that exchanges
take priority as explained in Section III-D. Nodes with
free download capacity contact the server. However, the
number of nodes that can be satisfied by the server is
bounded by the server’s capacity. The block transfers,
either from a peer or from the server, take place at the
same round and, then, the system moves to the next
round.

8

During each simulation all the nodes in the system
use the same encoding scheme, either network coding,
source coding, or propagating of original blocks. To
simulate rateless codes we set the expansion factore

to be very large.
To simulate a tit-for-tat scenario, the simulator keeps

track of the difference between uploaded blocks minus
downloaded blocks from a user S (source) to a user
D (destination). If the difference is larger than the pre-
configured value (typically 2 when we study tit-for-tat),
then the source S will not send any block to D even if
there is spare upload capacity at S and spare download
capacity at D.

Obviously, there are important parameters that we do
not simulate such network delays, locality properties in
constructing the overlay, cross-traffic impact, or mali-
cious users. However, we believe that the simulator is
able to capture some of the most important properties of
an end-cooperative architecture.

Next we present the experimental results based on the
simulator described above.

A. Homogeneous topologies

We start by comparing the performance of network
coding (NC) to source coding (FEC) and unencoded
information using a local rarest policy (LR) in a well-
connected network of 200 nodes3, where all nodes have
the same access capacity equal to one block per round
(homogeneous capacities). The upload capacity of the
server is also 1 block/round. In this simulation we give
priority to mutual exchanges, as described in Section III-
D, but do not use the tit-for-tat mechanism.

In Figure 3, we plot the finish times of each node
and the progress per round for that configuration. We
measure the finish times as the number of rounds re-
quired to complete the download. We observe that in
this baseline scenario all schemes perform equally well.
The performance with network coding was slightly better
compared to the other schemes, but, still, in all schemes
the average finish time was close to the minimum finish
time possible, which is rounds since the original file is
equal to 100 blocks.

In the following sections we deviate from that baseline
scenario and observe that with small changes in the
configuration network coding performs better.

B. Topologies with clusters

Network coding has been shown to perform well in
topologies with bad cuts. In this section we examine such

3We have performed limited experimentation with larger topologies
of sizes up to 2000 nodes showing similar results

0 50 100 150 200
100

105

110

115

120

125

130

135

140

Nodes (sorted)

F
in

is
h

T
im

e

LR
LR+FEC
NC

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

160

180

200

Time

P
ro

g
re

s
s
 p

e
r

ro
u
n
d

LR
LR+FEC
NC

Fig. 3. Finish times and progress per round for a well-connected
topology of 200 nodes. Size of the file is 100 blocks.

a topology with two clusters of 100 nodes each. There
is good connectivity and ample bandwidth between the
nodes in each cluster (equal to 8 blocks per round in both
directions and for all nodes). However there is limited
bandwidth between the nodes of the different clusters;
in every round only 4 blocks can propagate from one
cluster to the other. The capacity of the server is also
4 blocks per round and moreover the server departs at
round 30 and, thus, the nodes need to use the capacity
between the clusters in the optimal way to retrieve the
blocks of the file as fast as possible.

In Figure 4 we plot the finish times for each node.
The minimum possible finish time in this experiment
is equal to 25 rounds. Observe that without coding
the average finish time is roughly three times longer
compared to using network coding. The reason is that
without coding some packets are transmitted multiple
times over the bad cut wasting precious capacity that
could have been used to transmit new blocks. For similar
reasons, network coding outperforms source coding in
this example by almost a factor of two. Given that nodes
stay in the system after the download is complete and the
server puts20% extra erasure codes in the system, with
source coding the chances of transmitting the same block
multiple times over the cut are reduced. Thus, source
coding performs much better than no coding, but still

9

Fig. 4. Finish times of a topology with two clusters (100 nodes
each).

worse than network coding.
In this example, for both source coding and transmit-

ting of original packets, we have assumed that nodes
use the local rarest heuristic to decide which blocks to
receive from their neighbors. Choosing random blocks
gave worse finish times.

C. Heterogeneous capacities

We expect that the nodes of a user collaborative distribu-
tion system will have non-homogeneous capabilities. The
majority of the users are connected behind slow access
links, including dialup connections and ADSL connec-
tions, and a small percentage are connected with very
fast links (e.g. corporate and university users). In this
regard, we wish to study the performance experienced
by fast users when they interact with other slower users
in such heterogeneous environments.

Since fast users have more capacity, they are allowed
to have more neighbors to fully utilize their extra capac-
ity. However, the higher the number of neighbors feeding
a fast node, the harder it is for the large set of neighbors
to efficiently provide useful data in an uncoordinated
fashion.

In Figure 5 we plot the finish times of the fast users
in a network with many slow users and few fast users.
In this example the fast users are 4 times faster than
the slow users. We observe that with network coding
the finish times of the fast nodes are on the average
20% better than source coding and around 30% better
than with no coding. Also, observe that with network
coding the difference in the observed finish time minus
the minimum finish time is very similar to the baseline
scenario of Figure 3, indicating that the heterogeneity
did not affect the fast nodes with network coding, but
had decreased the performance of the fast nodes with
both source coding and no coding.

1 2 3 4 5 6 7 8 9 10
100

110

120

130

140

150

160

170

Nodes

F
in

is
h

T
im

es

LR
LR+FEC
NC

Fig. 5. Finish times of the fast nodes in a network with 10 fast nodes
and 190 slow nodes. Size of the file is 400 blocks and capacity of
server and fast nodes is 4 blocks/round.

TABLE I

FINISH TIMES FOR A FAST NODE AS THE RATIO OF THE CAPACITY

OF THE FAST NODE OVER THE CAPACITY OF THE SLOW NODES

INCREASES.

Method x2 x4 x8
Random 107 166 281
Local Rarest 106 135 208
Source Coding Random 84 113 134
Source Coding LR 78 92 106
Global Rarest 75 92 98
Network Coding 69 72 73

Note: A ratio of x2 indicates that the capacity of the fast peer is two
times the capacity of a slow peer. Similarly for x4 and x8. The number
of slow peers is 50, 100, and 200 in the three cases respectively.

When network coding is not used, slow nodes may
pick blocks from the server that are not needed by the
fast nodes. Also slow nodes may use much of their
capacity to share blocks that came from the fast nodes in
the first place. The end result is that often the decisions
taken by the many slow nodes do not take into account
the interests of the fast nodes and fast nodes need to wait
for many rounds to obtain the appropriate blocks.

On the other hand, with network coding, the blocks
that propagate in the network are linear combinations
of many other blocks. Thus, the fast nodes have better
chances of making progress in each round.

We have also noticed that as the capacity difference
between fast nodes and slow nodes increases, fast nodes
experience even worse performance when network cod-
ing is not used; on the other hand, with network coding,
the performance degradation is minimal. In Table I we
show some results that validate it.

In this experiment we have only one fast peer and
many slow peers (50, 100, and 200 for the three cases),
which allows us to focus our discussion; similar results
exist for the case of a small subset of fast nodes. As the

10

ratio of the capacity of the fast peer increases from 2 to
4 and to 8, we also increase the number of neighbors of
the fast node (to give it the opportunity to use the extra
capacity). We also scale accordingly the capacity of the
server and the size of the file so that the minimum finish
time for the fast node is 50 rounds. If no network coding
is used, Table I shows a drastic increase in the finish
times of the fast node as the capacities ratio increases.
With network coding the finish time remains relatively
unchanged indicating that heterogeneity in the capacities
does not penalize the fast nodes. As a final note, the
performance of the slow nodes across these experiments
remain almost unchanged.

D. Dynamic arrivals and departures

Dynamic Arrivals
In this section we show the impact of dynamic arrivals
in the performance of the system. When nodes arrive
at different times, newly arriving nodes have different
download objectives than the nodes that have been in the
system for sometime. For instance, newly arriving nodes
can benefit from any block while older nodes require
a specific set of blocks to complement the blocks that
they already have. However, since newly arriving nodes
do not know about the exact needs of the other nodes
in the system, they will often make download decisions
that are of little use to existing nodes in the system. This
gets reflected in Figure 6.

In Figure 6 we simulated a scenario where 40 empty
nodes arrive every 20 rounds. The file size is 100 blocks.
We assume that nodes stay in the system 10 more rounds
after they finish the download and the server is always
available. As we can see from Figure 6, the first set of
nodes that arrived at time zero finish around time110. In
the ideal scenario where existing nodes are not delayed
by the arrival of new nodes,40 nodes should finish every
20 rounds. This is clearly the case with Network Coding.

However, when no encoding is used or when source
coding is used, newly arriving nodes unnecessarily delay
existing nodes. Existing nodes need to wait many extra
rounds to receive useful information since newly arriv-
ing nodes spend much of their bandwidth performing
download decisions that carry no information for existing
nodes. Such difference is amplified for the first set of
arriving nodes (e.g. a flash crowd). In this situation,
network coding provides an improvement of40% and
200% compared to source coding and no coding respec-
tively. However, as time progresses the number of nodes
that finish the download and stay around to help other
nodes increases. As a result, the performance differ-
ence between network coding and the other approaches

0 50 100 150 200 250 300 350 400

120

140

160

180

200

220

240

260

280

300

Random

NC

FEC

Nodes (sorted by their arrival time)

Fi
n

is
h

 T
im

e
s

Fig. 6. Finish times for Random, Network Coding, and Source
Coding (FEC) under dynamic arrivals. Nodes arrive in batches of 40
nodes every 20 rounds. Nodes stay in the system 10% extra rounds.
Server stays forever. File size is 100 blocks.

decreases roughly to30%. Note, however, that this
difference would increase substantially if nodes leave the
system right after they finish their download.

Robustness to node departures.
When nodes are allowed to leave the system at any
time and the server can also leave the system, then it is
possible that some blocks disappear and reconstructing
the original file is not possible (this is can be frequently
observed in current file sharing P2P networks). One
possible cause that can prevent full file completion is
if the block propagation does not happen efficiently and
there are some rare blocks that only exist in few nodes.
If the server and the few nodes holding the rarest blocks
leave the system, then no node can finish the download.
Such events can happen in dynamic environments. As
we will see next, the inherent redundancy of network
coding can help cope with such problems even in the
most extreme cases of node departures.

In Figure 7 we present the finish times of nodes using
network coding, with 40 nodes arriving every 20 rounds.
We assume that peers leave the system immediately
after downloading the complete file. We present the
finish times when a) the server stays always in the
system forever, and b) the server leaves immediately after
uploading each block once (observe, that source coding
is meaningless in this example).

From Figure 7 we can see that even in the extreme
scenario where the server leaves the system immediately
after distributing only one full copy of the file, network
coding is able to provide the same performance as if the

11

0 50 100 150 200
110

120

130

140

150

160

170

180

190

200

F
in

is
h

 T
im

e
s

Server stays forever
Server leaves after serving full file

Nodes (sorted by their arrival time)

Fig. 7. Finish times for 200 nodes using network coding when a)
the server stays for ever and b) when the server leaves after serving
the full file. Nodes arrive in batches of 40 nodes every 20 rounds.
Nodes leave immediately after downloading the file.

server stays in the system forever. Not only the finish
times are almost identical, but, also all nodes complete
the download. Similarly, if we compare Figure 7 with
Figure 6 where nodes stay in the system 10% extra
time, we can see that the performance of network coding
does not get significantly impacted even if nodes leave
the system immediately after they finish the download.
This results shows that nodes using network coding are
very robust and self-substained, relying very little on the
support of the origin server and efficiently feeding infor-
mation to each other even under extreme circumstances.

If we increase the number of extra rounds that the
server or the nodes stay in the system by a very small
amount (for both source coding and in the case of
no coding), then again we observe similar results. For
instance, leaving the server for an extra5% rounds4, only
40% of the nodes finished downloading when source
coding was used and only 10% of the nodes finished
downloading when no coding was used.

However, we have experimentally observed that if the
server and/or the peers stay in the system over a certain
threshold (10-15% extra rounds for source coding and
around 20%-30% for the case of no coding), then all
users are able to finish the download, although they still
may take a lot longer to receive the file.

E. Incentive mechanisms: Tit-for-tat

We have argued in Section III-D that the use of an
incentive mechanism like tit-for-tat (TFT) may reduce
the throughput of the system since blocks need to be
carefully picked to be easily traded.

4Rounds above the minimum possible time to download all the
blocks.

100 110 120 130 140 150 160 170 180 190
0

50

100

150

200

250

300

350

400

450

500

Time

#
 o

f
P

e
e

rs
 F

in
is

h
e

d

NC

FEC Free
FEC TFT

LR Free LR TFT

Free

NC TFT (dashed)

Fig. 8. Number of users finished by a given time (measured in
number of rounds) for Network Coding (NC), Source Coding (FEC)
and Local Rarest (LR) under a) no incentive schemes (Free) and b)
tit-for-tat (TFT). Network size is 500 users. File size is 100 blocks.

In Figure 8 we show the total number of peers
finished by time t with and without the use of tit-
for-tat to discourage free-riders. In this simulation the
maximum allowable difference between blocks uploaded
to a node minus the number of downloaded blocks from
the same node is 2. In the case of network coding,
the introduction of TFT has practically no observable
impact on the performance of the system. However, for
both source coding and no coding, the introduction of
TFT significantly affects the finish times by delaying the
upper tail of the distribution.

For instance, when transmitting unencoded blocks, the
last user finished at time 161 without TFT and at time
185 with TFT. Similarly, when source coding was used
the finish times were 159 and 182 respectively. The
decrease in performance happens because nodes may
end-up with blocks that are of little interest to their
neighbors. Recall, however, that nodes are allowed to
change neighbors if they are not able to receive enough
throughput.

We have also experimented with larger networks and
observed that increasing the size of the network amplifies
the penalty introduced by using tit-for-tat, specially for
a system where no-coding is used.

V. SUMMARY AND FURTHER DIRECTIONS

We propose a new content distribution system that uses
network coding. Unlike other systems based on network
coding, our approach targets the distribution of large files
in a dynamic environment where nodes cooperate. Our
system does not require any centralized knowledge of
the network topology and nodes make decisions of how

12

to propagate blocks of information based only on local
information.

The main advantage of using network coding for
distributing large files is that the scheduling of the con-
tent propagation in the overlay network is much easier.
Deciding on the correct block of information to transmit
to another node is difficult without global information;
the transmitted packet is useful to the receiving node,
but, may not be useful to other downstream nodes. With
network coding, each generated block is a combination
of all the blocks available to the transmitter and thus,
if any of them is useful downstream, then the generated
block will also be useful.

We have demonstrated through extensive simulations
the performance advantages of using network coding
over transmitting unencoded information and over cod-
ing at the source only in scenarios of practical interest.
Network coding performs better when the nodes have
heterogeneous access capacities, when the arrivals and
departures of the nodes are not synchronized, when
there are natural bottlenecks in the overlay topology
(that need to be utilized as best as possible), and when
incentive mechanisms are in place to discourage free-
riders. The performance benefits provided by network
coding in terms of throughput are more than 20-30%
compared to coding at the server, and can be more than
2-3 times better compared to transmitting unencoded
blocks. Moreover, we have observed that with network
coding the system is much more robust to server and
node departures.

A major concern in any content distribution scheme is
the protection against malicious nodes. A malicious node
can introduce arbitrary blocks in the system and make
the reconstruction of the original file impossible. When
the nodes do not perform coding, the server can digitally
sign the packets transmitted and, thus, protect against
malicious users. Digitally signing is more difficult when
rateless codes are used, but recently [29] demonstrated
how homomorphic collision-resistant hash functions can
be used to provide protection in that case. Similar
schemes can be used to provide protection when network
coding is in place. We are currently investigating the
applicability and the performance of using homomorphic
collision-resistant hash functions to provide protection
against malicious users in our system.

Despite the rich literature in network coding, we are
not aware of any operational content distribution network
that uses network coding. We are currently in the process
of building a prototype system and study the advantages
of network coding in more realistic settings. Building
this prototype will also help us understand better some
other practical issues with network coding, including the

speed of encoding and decoding. Preliminary implemen-
tation results show, however, that network coding can
be implemented with very low encoding and decoding
overheads (< 3%).

Acknowledgments

We would like to thank our collaborators Philip A.
Chou and Kamal Jain for their invaluable insights about
Network Coding which greatly inspired the design of our
system

REFERENCES

[1] R. Rejaie and S. Stafford, ”‘A Framework for Architecting Peer-to-Peer Receiver-driven Overlays”’,
Nossdav 04, Ireland, June 2004.

[2] K. Jain, L. Lovasz, and P. A. Chou, ”Building scalable and robust peer-to-peer overlay networks
for broadcasting using network coding”, Under Submission to ACM-SIAM (SODA 05).

[3] P. A. Chou, Y. Wu, and K. Jain, ”Network coding for the Internet”, IEEE Communication Theory
Workshop, Italy, May 2003.

[4] http://www.akamai.com
[5] Ying Zhu, Baochun Li, Jiang Guo, ”Multicast with Network Coding in Application-Layer Overlay

Networks,” IEEE Journal on Selected Areas in Communications, January 2004.
[6] P. A. Chou, Y. Wu, and K. Jain, ”Practical network coding”,Allerton Conference on Communi-

cation, Control, and Computing, Monticello, IL, October 2003.
[7] Zongpeng Li, Baochun Li, Dan Jiang, and Lap Chi Lau, ”On Achieving Optimal End-to-

End Throughput in Data Networks: Theoretical and EmpiricalStudies”,ECE Technical Report,
University of Toronto, February 2004.

[8] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, “Network Information Flow”, IEEE Transactions
on Information Theory, July 2000.

[9] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh, “SplitStream:
High-Bandwidth Multicast in Cooperative Environments”,Proc. of the 19th ACM Symposium on
Operating Systems Principles (SOSP), October 2003.

[10] V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai, “Distributing Streaming Media
Content Using Cooperative Networking”,Proc. of NOSSDAV 2002, May 2002.

[11] J. Byers and J. Considine, “Informed Content Delivery Across Adaptive Overlay Networks”,
Proc. of ACM SIGCOMM, August 2002.

[12] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High Bandwidth Data Dissemination
Using an Overlay Mesh”,Proc. of the 19th ACM Symposium on Operating Systems Principles
(SOSP 2003), 2003.

[13] Paul Francis, “Yoid: Extending the internet multicastarchitecture”,Unpublished paper, April
2000.

[14] Yang-hua Chu, Sanjay G. Rao, and Hui Zhang, ”A Case For End System Multicast”,Proceedings
of ACM SIGMETRICS, Santa Clara,CA, June 2000, pp 1-12.

[15] Vivek K Goyal, “Multiple Description Coding: Compression Meets the Network”,IEEE Signal
Processing Magazine, May 2001.

[16] B. Cohen, “Incentives build robustness in BitTorrent”,P2P Economics Workshop, 2003.
[17] Rob Sherwood, Ryan Braud, Bobby Bhattacharjee, “Slurpie: A Cooperative Bulk Data Transfer

Protocol”, IEEE Infocom, March 2004
[18] P. Rodriguez, E. Biersack, ”Dynamic Parallel-Access to Replicated Content in the Internet”,IEEE

Transactions on Networking, August 2002
[19] John Byers, Michael Luby, and Michael Mitzenmacher, ”Accessing Multiple Mirror Sites in

Parallel: Using Tornado Codes to Speed Up Downloads”,Infocom, 1999.
[20] M. Izal, G. Urvoy-Keller, E.W. Biersack, P. Felber, A. Al Hamra, and L. Garces-Erice, “Dissecting

BitTorrent: Five Months in a Torrent’s Lifetime”,Passive and Active Measurements 2004, April
2004.

[21] Dongyu Qiu, R. Srikant, “Modeling and Performance Analysis of BitTorrent-Like Peer-to-Peer
Networks”, To appear in Sigcomm 2004.

[22] John W. Byers, Michael Luby, Michael Mitzenmacher, and Ashutosh Rege, “A Digital Fountain
Approach to Reliable Distribution of Bulk Data”,SIGCOMM, 1998.

[23] Petar Maymounkov and David Mazires, “Rateless Codes and Big Downloads”, IPTPS’03,
February 2003.

[24] K. Jain, M. Mahdian, and M. R. Salavatipour, “Packing Steiner Trees”,Proceedings of the 10th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2003.

[25] G. Robins and A. Zelikovsky, “Improved Steiner Tree Approximation in Graphs”,Proceedings
of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2000.

[26] M. Thimm, “On The Approximability Of The Steiner Tree Problem”, Mathematical Foundations
of Computer Science 2001, Springer LNCS, 2001.

[27] T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros, “The Benefits of Coding over Routing
in a Randomized Setting”,ISIT, Yokohama, Japan, 2003.

[28] G. Pandurangan, P. Raghavan and E. Upfal, “Building Low-diameter P2P Networks”,42nd Annual
Symposium on Foundations of Computer Science (FOCS01), pp. 492-499, 2001.

[29] M. Krohn, M. FreedMan, D. Mazieres, “On-the-Fly Verification of Rateless Erasure Codes for
Efficient Content Distribution”,IEEE Symposium on Security and Privacy, Berkeley, CA, 2004.

[30] E. Adar, B. Huberman, “Free Riding on Gnutella”,First Monday, Available at:
http://www.firstmonday.dk/issues/issue510/adar/, 2000.

