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Associative Hierarchical Random Fields
L’ubor Ladický1, Chris Russell1, Pushmeet Kohli, Philip H. S. Torr

Abstract—This paper makes two contributions: the first is the proposal of a new model – the associative hierarchical random
field (AHRF), and a novel algorithm for its optimisation; the second is the application of this model to the problem of semantic
segmentation.
Most methods for semantic segmentation are formulated as a labelling problem for variables that might correspond to either
pixels or segments such as super-pixels. It is well known that the generation of super pixel segmentations is not unique. This has
motivated many researchers to use multiple super pixel segmentations for problems such as semantic segmentation or single
view reconstruction. These super-pixels have not yet been combined in a principled manner, this is a difficult problem, as they
may overlap, or be nested in such a way that the segmentations form a segmentation tree. Our new hierarchical random field
model allows information from all of the multiple segmentations to contribute to a global energy. MAP inference in this model can
be performed efficiently using powerful graph cut based move making algorithms.
Our framework generalises much of the previous work based on pixels or segments, and the resulting labellings can be viewed
both as a detailed segmentation at the pixel level, or at the other extreme, as a segment selector that pieces together a solution
like a jigsaw, selecting the best segments from different segmentations as pieces. We evaluate its performance on some of
the most challenging data sets for object class segmentation, and show that this ability to perform inference using multiple
overlapping segmentations leads to state-of-the-art results.

Index Terms—Conditional Random Fields, Discrete Energy Minimisation, Object Recognition and Segmentation.
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1 INTRODUCTION

Semantic segmentation involves the assignment of a
‘semantic class’ label – such as person, or road, to every
pixel in the image. Until recently, image labelling
problems have been formulated using pairwise ran-
dom fields. However, these pairwise fields are unable
to capture the higher-order statistics of natural images
which can be used to enforce the coherence of regions
in the image or to encourage particular regions to
belong to a certain class. Despite these limitations, the
use of pairwise models is prevalent in vision. This can
largely be attributed to the pragmatism of computer
vision researchers; although such models do not fully
capture image statistics, they serve as an effective
discriminative model that prevents individual pixels
from being mislabelled.

Many approaches to multi-scale vision have been
proposed where either inference is performed in a
‘top-down’ approach, i.e. an initial scene based esti-
mates is made, followed by the successive labelling
of smaller regions that must be consistent with the
initial labelling; or they take a bottom-up approach
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where starting from the labelling of small regions
they progressively assign larger regions a labelling
consistent with the small regions.

In this work we propose a novel formulation for
multi-scale vision, as captured by a hierarchy of seg-
mentations. This allows for the integration of cues
defined at any scale, or over any arbitrary region of
the image, and provides a generalisation of many of
the segmentation methods prevalent in vision. Our
approach provides a unification of the ‘top-down’ and
‘bottom-up’ approaches to common to many prob-
lems of computer vision. To do this, we propose a
new model: the associative hierarchical random field
(AHRF) and show how it can be solved efficiently
using graph-cut based move-making algorithms.

If two AHRFs are added together to produce a
new cost, the resulting cost is also an AHRF, and the
sum can also be solved effectively. This allows many
different potentials and cues to be incorporated within
the model, and for inference to remain practical. This
flexibility contributes substantially to the success of
our method, and allows us to obtain state of the
art results on most existing segmentation data sets.
Thus this work contributes both to the general area
of random fields, and in its application to computer
vision. Next, we shall give some background to the
problem of semantic segmentation in computer vision.

1.1 Semantic Segmentation

Over the last few years many different methods have
been proposed for semantic segmentation i.e. the
problem of assigning a set of given object labels such



as person, car, or road to each pixel of a given image,
in a manner consistent with human annotations.

Most methods for semantic segmentation are for-
mulated in terms of pixels (Shotton et al, 2006),
other methods used segments (Batra et al, 2008;
Galleguillos et al, 2008; Yang et al, 2007), groups of
segments (Rabinovich et al, 2007), or the intersections
of multiple segmentations (Pantofaru et al, 2008),
while some have gone to the extreme of looking
at the whole image in order to reason about object
segmentation (Larlus and Jurie, 2008).

Each choice of image representation comes with its
share of advantages and disadvantages. Pixels might
be considered the most obvious choice of segmenta-
tion. However, pixels by themselves contain a limited
amount of information. The colour and intensity of a
lone pixel is often not enough to determine its correct
object label. Ren and Malik (2003)’s remark that ‘pixels
are not natural entities; they are merely a consequence of
the discrete representation of images’ captures some of
the problems of pixel-based representations.

The last few years have seen a proliferation
of super-pixel (Comaniciu and Meer, 2002;
Felzenszwalb and Huttenlocher, 2004; Shi and Malik,
2000) based methods, that perform an initial a
priori segmentation of the image, applied to object
segmentation (Batra et al, 2008; Galleguillos et al,
2008; He et al, 2006; Russell et al, 2006; Yang et al,
2007), and elsewhere (Hoiem et al, 2005; Tao et al,
2001). These rely upon an initial partitioning of
the image, typically based upon a segmentation of
pixels based upon spatial location and colour/texture
distribution. This clustering of the image allows the
computation of powerful region-based features which
are partially invariant to scale (Wang et al, 2005).

Super-pixel based methods work under the as-
sumption that some segments share boundaries with
objects in an image. This is not always the case, and
this assumption may result in dramatic errors in the
labelling (see figure 1). A number of techniques have
been proposed to overcome errors in super-pixels.
Rabinovich et al (2007) suggested finding the most
stable segmentation from a large collection of multiple
segmentations in the hope that these would be more
consistent with object boundaries. Larlus and Jurie
(2008) proposed an approach to the problem driven
by object detection. In their algorithm, rectangular re-
gions are detected using a bag-of-words model based
upon affine invariant features. These rectangles are re-
fined using graph cuts to extract boundaries in a man-
ner similar to (Rother et al, 2004). Such approaches
face difficulties in dealing with cluttered images, in
which multiple object classes intersect. Pantofaru et al
(2008) observed that although segments may not be
consistent with object boundaries, the segmentation
map formed by taking the intersections of multiple
segmentations often is. They proposed finding the
most probable labelling of intersections of segments

based upon the features of their parent segments. This
scheme effectively reduces the size of super-pixels. It
results in more consistent segments but with a loss
in the information content and discriminative power
associated with each segment.

We shall show that each of these models are AHRFs,
and that we are free to combine them additively and
solve the resulting AHRF.

1.2 Choosing the Correct Segmentation
An earlier approach to dealing with the difficultly of
choosing good super-pixels is to delay their choice un-
til much later, and picking super-pixels that are consis-
tent with a ‘good’ labelling of the image. Gould et al
(2009a) proposed an approach in which the choice
of super-pixels was integrated with the labelling of
the image with object instances. Under their inter-
pretation, super-pixels should physically exist and
represent either the entirety of an object or a planar
facet if the object class is amorphous and can not
be decomposed into individual objects (this includes
classes such as grass, building, or sky). Consequently,
in their final labelling each pixel belongs to exactly
one super-pixel chosen to represent a single instance
of an object.

This process of shaping super-pixels to match object
outlines is computationally challenging. As discussed
in Gould et al (2009b), the optimisation techniques
proposed frequently fail to recognise individual in-
stances. Their algorithm is often unable to merge the
super-pixels contained within a single instance, even
if the super-pixels are correctly labelled by class. The
recent work by Kumar and Koller (2010) goes some
way to addressing these issues. By using sophisticated
LP-relaxations they are able to trade computation time
against the quality of the solution found.

Another method to overcome these issues was
proposed by (Kohli et al, 2008). By formulating the
labelling problem as a higher-order random field
defined over pixels, they were able to recover from
misleading segments which spanned multiple object
classes. Further, they were able to encourage individ-
ual pixels within a single segment to share the same
label by defining higher-order potentials (functions
defined over cliques of size greater than 2) that pe-
nalised inhomogeneous labellings of segments. Their
method can be understood as a relaxation of the
hard constraint of previous methods, that the image
labelling must follow super-pixel boundaries, to a
softer constraint in which a penalty is paid for non-
conformance.

1.3 Overview of our Model
In this paper we propose a novel associative hierar-
chical random field formulation of semantic segmen-
tation that allows us to combine models defined over
different choices of super-pixel, avoiding the need



Fig. 1. Multiple unsupervised image segmentations. (a) Original image. (b)-(d) Unsupervised image segmentations with different size super-
pixels. (b), (c) and (d) use three different unsupervised segmentations of the image, in this case mean-shift, with different choices of kernel,
to divide the image into segments. Each segment is assigned the label of the dominant object present in it. It can be seen that segmentation
(b) is the best for tree, road, and car. However, segmentation (d) is better for the left person and the sign board.

to make a decision of which is most appropriate. It
allows for the integration of features derived from
different image scales (pixel, segment, and segment
union/intersection). We will demonstrate how many
of the state-of-the-art methods based on different fixed
super-pixels can be seen as special cases of our model.

Inferring the Maximum a Posteriori solution in this
framework involves the minimisation of an energy
function that contain higher-order potentials defined
over several thousand random variables. We show
that the solutions of these difficult problems can be ef-
ficiently computed using graph-cut based algorithms
similar to the pairwise methods of Boykov et al
(2001). The contribution of our work not limited to the
problem of inference, and its application of the novel
associative hierarchical random field framework to
object class segmentation. We propose new sophis-
ticated potentials defined over the different levels
of the hierarchy. Evaluating the performance of our
framework on some of the most challenging data sets
for object class segmentation, we show that it out-
performs state-of-the-art methods based on a single
choice of scale. We believe this is because:

1) Our methods generalises these previous meth-
ods allowing them to be represented as particu-
lar parameter choices of our hierarchical model.

2) We go beyond these models by being able to use
multiple hierarchies of segmentation simultane-
ously.

3) The optimisation problem can be minimised ef-
fectively.

1.4 Hierarchical Models and Image Context

The use of image context has been well documented
for object recognition and segmentation. It is partic-
ularly useful in overcoming ambiguities caused by
limited evidence; this often occurs in object recogni-
tion where we frequently encounter objects at small
scales or low resolution images (Hoiem et al, 2006).
Classical Random Field models exploit context in
a local manner by encouraging adjacent pixels or

segments to take the same label. To encode con-
text at different scales Zhu et al (2008) introduced
the hierarchical image model (HIM) built of rectan-
gular regions with parent-child dependencies. This
model captures large-distance dependencies and can
be solved efficiently using dynamic programming.
However, it supports neither multiple hierarchies, nor
dependencies between variables at the same level. To
encode semantic context and to combine top-down
and bottom-up approaches Tu et al (2003) proposed
a framework in which they showed that the use of
object specific knowledge helps to disambiguate low-
level segmentation cues.

Our hierarchical random field model uses a novel
formulation that allows context to be incorporated at
multiple levels of multiple quantization, something
not previously possible. As we show in section 6 it
leads to state of the art segmentation results.

2 RANDOM FIELD FORMULATIONS FOR SE-
MANTIC SEGMENTATION
Consider an ordered set of variables
X = [X1, X2, . . . , Xn], where each variable Xi

takes a label from a set L corresponding to object
classes. We write x ∈ Ln for a labelling of X, and
use xi to refer to the labelling of the variable Xi.
At times we will refer to the labelling of a subset of
variables, corresponding to a clique c, for this we use
the notation xc. We use V = {1, 2, . . . , n} to refer to
the set of valid vertices (or indexes) of X, and make
use of the common mathematical short hand of ∨, ∧
to represent ‘or’ and ‘and’ respectively. We use ∆ as
an indicator function, i.e.

∆(·) =

{
1 if · is true
0 otherwise.

(1)

We formulate the general problem of inference, as
finding x the minimiser of an arbitrary cost function

argmin
x
E(x). (2)

Finding x may correspond to finding the maximum
a posteriori (MAP) labelling. Labelling problems in



vision are typically formulated as a pairwise random
field whose energy can be written as a sum of unary
and pairwise potentials:

E(x) =
∑
i∈V

ψi(xi) +
∑

i∈V,j∈Ni

ψp
ij(xi, xj), (3)

where Ni is the set of neighbours of vertex i.
The pairwise random field formulation suffers from

a number of problems stemming from its inability
to express high-level dependencies between pixels,
for example, the use of only pairwise smoothing
constraints can result in a shrinkage bias (Kohli et al,
2008). Despite these limitations, it is widely used
and highly effective. Shotton et al (2006) applied the
pairwise random field to the object class segmentation
problem. They defined unary likelihood potentials
using the result of a boosted classifier over a region
about each pixel, that they called TextonBoost, which
provided a substantial increase in performance of
existing methods at the time.

This random field (RF) model has several distinct
interpretations: As a probabilistic model (Besag, 1986;
Lafferty et al, 2001), the unary potentials ψi(xi) of
the random field can be interpreted as the nega-
tive log likelihood of variable Xi taking label xi,
while the pairwise potential encodes a smoothness
prior over neighbouring variables. Under this for-
mulation the maximum a posteriori (MAP) estimate
corresponds to the minimal cost labelling of cost
(3). These cost can also be interpreted as defining a
structured discriminative classifier (Nowozin et al, 2010;
Tsochantaridis et al, 2005), i.e. a classifier whose
costs do not characterise the log marginal distribu-
tion of images, but whose minimum cost labelling
is likely to correctly label most of the image. These
classifiers can be efficiently learnt in a max-margin
framework Alahari et al (2010); Nowozin et al (2010);
Szummer et al (2008); Taskar et al (2004a).

The primary contribution of this work is in the
proposal of a framework that allows a principled
contribution of arbitrary cues from many different
cues and models. Therefore, we use the more general
discriminative interpretation of our work. The learn-
ing method discussed in section 7 is discriminative
rather than probabilistic.

2.1 The Robust PN model
The pairwise random field formulation
of (Shotton et al, 2006) was extended by (Kohli et al,
2008) with the incorporation of robust higher-order
potentials defined over segments. Their formulation
was based upon the observation that pixels lying
within the same segment are more likely to take the
same label. The energy of the higher-order random
field proposed by (Kohli et al, 2008) was of the form:

E(x) =
∑
i∈V

ψi(xi) +
∑

i∈V,j∈Nl

ψp
ij(xi, xj) +

∑
c∈S

ψh
c (xc),

(4)

where S is a set of cliques (or segments), given by one
or more super-pixel algorithms as shown in figure 1,
and ψh

c are higher-order potentials defined over the
cliques. The higher order potentials took the form of
a Robust PN model defined as:

ψh
c (xc) = min

l∈L

(
γmax
c , γlc +

∑
i∈c

wik
l
c∆(xi ̸= l)

)
, (5)

where wi is the weight of the variable xi, and the
variables γ satisfy

γlc ≤ γmax
c , ∀l ∈ L. (6)

The potential has a cost of γlc if all pixels in the
segment take the label l. Each pixel not taking the
label l is penalised with an additional cost of wik

l
c,

and the maximum cost of the potential is truncated
to γmax

c . This framework enabled the integration of
multiple segmentations of the image space in a prin-
cipled manner.

2.2 Hierarchical Random Fields

To formulate Hierarchical Random Fields, we first
show how the higher-order PN potentials of (5) are
equivalent to the cost of a minimal labelling of a set
of pairwise potentials defined over the same clique
variables xc and a single auxiliary variable x(1)

c that
takes values from an extended label set2

LE = L ∪ {LF } (7)

and generalise it to a Hierarchical model formed of
nested PN like potentials.

In a minimal cost solution, x(1)
c taking a value l will

correspond to the clique xc having a dominant label
l, i.e. the majority of pixels within c must take label
l. If it takes the free label LF , it means that there is
no dominant label in the clique, and that segment is
unassigned. The cost function over xc ∪ {x(1)

c } takes
the form:

ψc(xc, x
(1)

c ) = ϕc(x
(1)

c ) +
∑
i∈c

ϕc(xi, x
(1)

c ). (8)

where the unary potential over x(1)
c , ϕc(x(1)

c ) associates
the cost γlc with x(1)

c taking a label in L, and γmax
c with

x(1)
c taking the free label LF . The pairwise potentials
ϕc(x

(1)
c , xi) are defined as:

ϕc(x
(1)

c , xi) =

{
0 if x(1)

c = LF ∨ x(1)
c = xi

wik
x(1)
c

c otherwise.
(9)

Then:
ψh
c (xc) = min

x
(1)
c

ψc(xc, x
(1)

c ). (10)

2. The index (1) refers to the fact that the variable x(1)
c lies in the

first layer above the pixel variables xi (see figure 2).



Fig. 2. Existing models as special cases of our hierarchical model. The lowest layer of the image represents the pixel layer, the middle layer
potentials defined over super-pixels or segments, and the third layer represents our hierarchical terms. (a) shows the relationships permitted
in a pixel-based random field with Robust PN potentials. (b) shows relationships contained within a super-pixel-based random field (the
directed edges indicate the one way dependence between the labellings of pixels and super-pixels). (c) Our hierarchical random field. See
section 3.

By ensuring that the pairwise edges between the aux-
iliary variable and individual variables of the clique
satisfy the constraint:∑

i∈c

wik
l
c ≥ 2(ϕc(LF )− ϕc(l)),∀l ∈ L, (11)

(see section 4.4.1) we can guarantee that the labels
of these auxiliary variables carry a clear semantic
meaning. If this constraint is satisfied an auxiliary
variable may take state l ∈ L in a minimal cost
labelling, if and only if, the weighted majority of
its child variables (i.e. the original xc ) take state l.
The label LF indicates a heterogeneous labelling of a
segment in which no label holds a significant majority.

We now extend the framework to include pairwise
dependencies between auxiliary variables 3:

E(x) =
∑
i∈V

ψi(xi) +
∑

i∈V,j∈Ni

ψp
ij(xi, xj) (12)

+min
x(1)

∑
c∈S

ψc(xc, x
(1)

c ) +
∑
c,d∈S

ψp
cd(x

(1)

c , x(1)

d )

 .

These pairwise terms can be understood as encour-
aging consistency between neighbouring cliques. This
framework can be further generalised to a hierarchical
model where the connection between layers takes the
form of (8) and the weights for each child node in
ϕc(·) are proportional to the sum of the weights in
the “base layer” belonging to the clique c.

The energy of our new hierarchical model is of the
form:

E(x) =
∑
i∈V

ψi(xi) +
∑

i∈V,j∈Ni

ψp
ij(xi, xj) (13)

+min
x(1)

E(1)(x,x(1)),

3. When considering multiple cliques, by happenstance, the same
clique could occur twice in two different sets of super-pixels. To
keep our notation compact, we assume c uniquely specifies both
the clique, and the set of super-pixels that gave rise to it. This is
purely a notational convenience.

where E(1)(x,x(1)) is recursively defined as:

E(n)(x(n−1),x(n)) =
∑

c∈S(n)

ψp
c (x

(n-1), x(n)

c ) (14)

+
∑

c,d∈S(n)

ψp
cd(x

(n)

c , x(n)

d ) + min
x(n+1)

E(n+1)(x(n),x(n+1)).

Where x(0) = x refers to the state of the base level,
and x(n) for n ≥ 1 the state of auxiliary variables. The
structure of the graph is chosen beforehand and for
all layers n beyond the maximal layer in the hierarchy
m i.e. n ≥ m,

E(n)(x(n−1),x(n)) = 0. (15)

The inter-layer potential between between two lay-
ers of auxiliary variables takes the form of a weighted
Robust PN potential with the unary term ϕc(x

(n)
c ) and

pairwise term:

ϕc(x
(n-1)

d , x(n)

c ) =

{
0 if x(n)

c = LF ∨ x(n)
c = x(n-1)

d

wdk
x(n)
c

c otherwise,
(16)

where the weights are summed up over the base layer
as:

wd =
∑
j∈d

wj . (17)

Note that (16) encourages x(n)
c to take label LF if either

most of its children take label LF , or if its children
take an inhomogeneous set of labels.

For the remainder of this paper, we assume that
the neighbours of auxiliary variables corresponding to
super-pixels, will be those variables that correspond
to adjacent super-pixels found by the same run of
the clustering algorithm. This decision is arbitrary,
and the neighbours could equally cross-level of the
hierarchy, or connect different clustering algorithms.

3 RELATION TO PREVIOUS MODELS

In this section, we draw comparisons with the
current state-of-the-art models for object segmenta-
tion (Galleguillos et al, 2008; Pantofaru et al, 2008;
Rabinovich et al, 2007; Yang et al, 2007) and show
that at certain choices of the parameters of our model,



these methods fall out as special cases (illustrated
in figure 2). Thus, our method not only generalises
the standard pairwise random field formulation over
pixels, but also the previous work based on super-
pixels and (as we shall see) provides a global optimi-
sation framework allowing us to combine features at
different quantization levels.

We will now show that our model is not only
a generalisation of random fields over pixels, but
also of two classes of preexisting model: (i) random
fields based upon disjoint segments (Batra et al, 2008;
Galleguillos et al, 2008; Yang et al, 2007) (see figure
2(b)), and (ii) random fields based upon the intersec-
tion of segments (Pantofaru et al, 2008).

3.1 Equivalence to random fields based on Seg-
ments
Consider a hierarchy composed of only pixels, and
cliques corresponding to one super-pixel based seg-
mentation of the image. In this case, all the seg-
ments are disjoint (non-overlapping). In this case,
our model becomes equivalent to the pairwise ran-
dom field models defined over segments (Batra et al,
2008; Galleguillos et al, 2008; Rabinovich et al, 2007;
Yang et al, 2007).

To ensure that no segment takes the label LF , we
assign a high value to γmax

c → ∞, ∀c ∈ S(1). In this
case, the optimal labelling will always be segment
consistent (i.e. all pixels within the segment will take
the same label) and the potential ψc(xc, x

(1)
c ) can now

be considered as a unary potential over the auxiliary
(segment) variable x(1)

c . This allows us to rewrite (12)
as:

E(x(1)) =
∑

c∈S(1)

ψc(x
(1)

c ) +
∑

c,d∈S(1)

ψp
cd(x

(1)

c , x(1)

d ) (18)

which is exactly the same as the cost associated with
the pairwise random field defined over segments with
ψc(x

(1)
c = l) = γlc as the unary cost and ψp

cd(·) as the
pairwise cost for each segment.

3.2 Equivalence to Models of Segment Intersec-
tions
We now consider the case with multiple overlapping
segmentations and unary and pairwise potentials de-
fined only upon these segments; this is analogous to
the construct of Pantofaru et al (2008). If we set:

wik
l
c = γmax

c , ∀i ∈ V, l ∈ L, c ∈ S, (19)

then:
x(1)

c ̸= LF only if xi = x(1)

c , ∀i ∈ c. (20)

In this case, only the potentials
∑

c∋i ψc(xc, x
(1)
c ) act

on xi.
Consider a pair of pixels i, j that lie in the same

intersection of segments i.e. :

{c ∈ S : c ∋ i} = {c ∈ S : c ∋ j}. (21)

Then, in a minimal labelling, either ∃x(1)
c = xi, and

hence xj = x(1)
c = xi, or ∀c ∋ i : x(1)

c = LF . In the
second degenerate case there are no constraints acting
on xi or xj , and a minimal cost labelling can be chosen
such that xi = xj .

Consequently, there is always a minimal cost la-
belling consistent with respect to the intersection of
segments, in this sense our model is equivalent to that
proposed in Pantofaru et al (2008).

3.3 Equivalence to tree structured associative
models
Tree structured hierarchies such as (Lim et al, 2009;
Nowozin et al, 2010; Reynolds and Murphy, 2007;
Zhu and Yuille, 2005) have been proposed for seman-
tic segmentation. The structure of these models is
clearly a strict subset of ours, as it does not support
pairwise connections between variables in the same
level, and each variable may only be attached to one
variable in the layer above. In the restricted case, in
which the label space and edge costs between parent
and child are of the same form as those we consider,
these models can also be contained in our approach,
although this need not hold in general.

3.4 The Relationship with Directed Models
A hierarchical, two-layer, directed model was pro-
posed in (Kumar and Hebert, 2005). This is a hybrid
model relatively similar to ours, with unary and pair-
wise potentials defined over both super-pixels and
pixels and pairwise connections between the layers,
enforcing consistency. It principally differs from ours
in the use of directed edges between layers. These
directed edges mean that max-marginals can be com-
puted in a piecewise manner, and propagated from
one layer to the other. This makes it more suitable for
inference with message passing algorithms than our
framework (see section 8.1).

This directed approach does not propagate informa-
tion through-out the structure. In order to arrive at a
consistent hypothesis, that takes account conflicting
clues from all levels of the hierarchy, there are two
desirable criteria for the propagation of information.

1) We wish for information to be transmitted from
the pixel to the segment level and from there
back to the pixel level. That is, the labelling of
one pixel should affect the label of the segment
potential and, from this, the label of other pixels
in the same segment.

2) Information should also be transmitted from
a segment to the pixel level and back to the
segment level. This means that if two segments
overlap, the optimal label of one segment should
indirectly depend on the labelling of the other.

At most one of the above-mentioned conditions can
hold if the connections between layers of the hierar-
chical model form a directed acyclic graph (DAG). This
is the case in the model of Kumar and Hebert (2005).



3.5 Equivalence to the Pylon Model
The recent work by Lempitsky et al (2011) proposed
a new approach to segmentation in which, given a
tree-structured hierarchy of super-pixels S, they seek
a labelling x where xi ∈ L ∪ {LF } that minimise a
sum of positive costs over super-pixels and a pairwise
regulariser over pairs of pixels:

E′(x) =
∑
c∈S

ψ′
c(xc) +

∑
i∈V,j∈Ni

ψp
ij(xi, xj) (22)

here V denotes the set of pixels in the image. This is a
restricted case of our work, in that the pairwise costs
ψ′ are only defined over pixels, and not super-pixels,
while unary potentials are not defined over individual
pixels. Unlike our work, they impose the constraint
that

ψ′
c(LF ) = 0, ∀c ∈ S, (23)

and that for every pixel i in the image V there exists
at least one segment c ∈ S such that:

xc ̸= LF ∧ i ∈ c (24)

or equivalently, every pixel belongs to at least one
‘active’ segment not taking label LF . In this formula-
tion, assigning the label LF to a segment c associates
no cost with it, and is analogous to discarding it.
In a minimum cost labelling, only one super-pixel
containing any pixel will take a state other than LF ,
and this objective function is similar to those proposed
by Gould et al (2009a). Note that every pixel i always
has a label xi ̸= LF associated with it, and this label
is shared by any super-pixel that contains it, and does
not take label LF .

We show that the inference of Lempitsky et al
(2011), can be performed using the inference tech-
niques we discuss in this paper. We will now show
how this is the case by constructing an equivalent cost
function of the form described in section 2.2.

We replace the implicit constraint of
Lempitsky et al (2011), that if a super-pixel c ∈ S
takes label l ∈ L, all its children (pixels or super-
pixels it consists of) i.e. j ∈ S : j ⊂ c take the label
LF , with the constraint that:

xj = xc = l, ∀j ⊂ c (25)

∀xc ̸= LF (26)

i.e. that a child’s labelling must agree with its parent.
This can be enforced by setting the weights wik

l
c of

equation (9) to be sufficiently high. We take the same
tree of super-pixels S as our hierarchy, and writing
C(c) for the children of c, we set unary potentials to
be:

ψc(xc) = ψ′
c(xc)−

∑
j∈C(c)

ψ′
j(xc) ∀c, xc ∈ L, (27)

and
ψc(LF ) = 0. (28)

Taking the pairwise potentials ψp
ij to be the same as

the pylon model, we consider the cost:

E(x) =
∑
c∈S

ψc(xc) +
∑

i∈I,j∈Ni

ψp
ij(xi, xj) (29)

Now, given any labelling x, we can create a new label
x′ by the following transform:

x′C(i) =

{
LF if xC(i) = LF ∧ xC(i) = xi

xC(i) otherwise.
(30)

Then E(x) = E′(x′)4, and any minimal x labelling of
E(x), must induce a minimal labelling x′of E(x′), and
every pylon model is equivalent to an AHRF.

3.6 Co-occurrence, Harmony and Stack Poten-
tials
Hierarchical models allow the modelling of contex-
tual relationships. The use of context has been well
documented by various researchers, for example, the
harmony potentials of Boix et al (2011), the contextual
potentials of Lim et al (2009) or the stack parameters
of Munoz et al (2010). These works proposed the use
of potentials that penalise the labelling of a subset of
the image if they do not naturally occur together in an
image. For example, the combination of cow, aeroplane
and sky would be penalised, while cow, grass, and sky
would not. This is in contrast to our potentials which
penalises inhomogeneous labellings of a region.

Although these works do not formally characterise
the potentials they can solve, they all appear to be
monotonic increasing i.e. their cost never decreases
when a new label is added to a subset of an image. As
such, these potentials can be understood as local co-
occurrence costs (or co-occurrence costs defined over a
subset of the image) and integrated in our framework
using the work (Ladicky et al, 2010).

This use of local co-occurrence rather than Pn like
potentials, is useful in tree-structured hierarchies that
can not make use of pairwise potentials to encourage
neighbouring regions to take the same label. In our
framework, a region containing a large amount of
both grass and cow would be marked as inhomo-
geneous and take label LF , while using local co-
occurrence the region could be considered as a cow-
field, and further regions could be merged with it,
without modification, only if they take label cow or
grass. This is particularly desirable if no pairwise
smoothing exists between adjacent regions in the im-
age. While, in common with Boix et al (2011), we have
found global co-occurrence potentials useful, we have
been unable to find a use for local co-occurrence, in
our framework, that could not be better handled by
pairwise potentials (see Galleguillos et al (2008) for an
example of how pairwise potentials can be used to
capture local co-occurrence).

4. Proof follows by induction over the hierarchy from fine to
coarse.



3.7 Robustness to Misleading Segmentations
The quantization of image space obtained using unsu-
pervised segmentation algorithms may be misleading
since segments may contain multiple object classes.
Assigning the same label to all pixels of such segments
will result in an incorrect labelling. This problem can
be overcome by using the segment quality measures
proposed by (Rabinovich et al, 2007; Ren and Malik,
2003) which can be used to distinguish the good
segments from misleading ones. These measures can
be seamlessly integrated in our hierarchical frame-
work by modulating the strength of the potentials
defined over segments. Formally, this is achieved by
weighting the potentials ψh

c (xc, x
(1)
c ) according to a

quality sensitive measure Q(c) for any segment c, as
in Kohli et al (2008).

4 INFERENCE FOR HIERARCHICAL RANDOM
FIELDS
The preceding sections introduced the AHRF model
and explained how it can be used for semantic seg-
mentation. However, a model is of little use without
an efficient and practical method for optimisation.
As the associative hierarchical random field can be
transformed into a pairwise model over |L|+1 labels,
any method designed for solving general pairwise
models could be used. In this section we analyse
the suitability of various inference methods for AHRF
and propose a novel move making algorithm, that
outperforms general pairwise methods for this task.

4.1 Inference in Pairwise Random Fields
Although the problem of MAP inference is NP-hard for
most associative pairwise functions defined over more
than two labels, in real world problems many con-
ventional algorithms provide near optimal solutions
over grid connected random fields (Szeliski et al,
2006). However, the dense structure of hierar-
chical random fields makes traditional message
passing algorithms such as loopy belief propaga-
tion (Weiss and Freeman, 2001) and tree-reweighted
message passing (Kolmogorov, 2006) converge slowly
to high cost solutions (Kolmogorov and Rother, 2006).
The difficulties faced by these message passing algo-
rithms can be attributed to the presence of frustrated
cycles (Sontag et al, 2008; Werner, 2009) that can be
eliminated via the use of cycle inequalities, but only
by significantly increasing run time.

Graph cut based move making algorithms do not
suffer from this problem and have been successfully
used for minimising pairwise functions defined over
densely connected networks encountered in vision.

Examples of move making algorithms include α-
expansion, αβ-swap (Boykov et al, 2001), and range
moves (Kumar et al, 2011; Veksler, 2007) for truncated
convex potentials. In case of αβ-swap, a sufficient con-
dition for every possible move to be submodular is the

semi-metricity of pairwise potentials (Boykov et al,
2001). In the case of α-expansion a sufficient condition
is the metricity of pairwise potentials (Boykov et al,
2001). For symmetric potentials this is also the neces-
sary condition; otherwise one can always construct a
state from which the expansion move is not submod-
ular.

These moves differ in the size of the space searched
for the optimal move. While expansion and swap
search a space of size at most 2n while minimising a
function of n variables, range moves explores a much
larger space of Kn where K > 2 (see Kumar et al
(2011); Veksler (2007) for more details). Of these move
making approaches, only αβ-swap can be directly
applied to associative hierarchical random fields –
other methods require that the inter-layer cost either
form a metric, or are truncated convex with respect
to some ordering of the labels.

Move-making algorithms start from an arbitrary
initial solution of the problem and proceed by making
a series of changes each of which leads to a solution of
the same or lower energy (Boykov et al, 2001). At each
step, the algorithms project a set of candidate moves
into a Boolean space, along with their energy func-
tion. If the resulting projected energy function (also
called the move energy) is both submodular and pair-
wise, it can be exactly minimised in polynomial time
by solving an equivalent st-mincut problem. These
optima can then be mapped back into the original
space, returning the optimal move within the move
set. The move algorithms run this procedure until
convergence, iteratively picking the best candidate as
different choices of range are cycled through.

4.1.1 Minimising Higher-Order Functions
A number of researchers have worked on the prob-
lem of MAP inference in higher-order random fields.
Lan et al (2006) proposed approximation methods for
BP to make efficient inference possible in higher-
order MRFs. This was followed by the recent works
of Potetz and Lee (2008); Tarlow et al (2008, 2010)
in which they showed how belief propagation can
be efficiently performed in random fields containing
moderately large cliques. However, as these methods
were based on BP, they were quite slow and took
minutes or hours to converge.

In the graph-cut based literature, there have
been several related works on transforming gen-
eral higher-order binary functions into pairwise
methods Fix et al (2011); Ishikawa (2009, 2011);
Ramalingam et al (2011). These methods address
more general potentials than we consider here, how-
ever, they explicitly target potentials defined over
small cliques and do not scale efficiently to the large
problems we consider.

To perform inference in the Pn models, Kohli et al
(2007, 2008), first showed that certain projection of
the higher-order Pn model can be transformed into



x . . . β γ α γ γ . . .

Proposed Moves . . . α α α α α . . .

Move choice t . . . 0 1 1 1 0 . . .

x′ . . . α γ α γ α . . .

Fig. 3. An illustration of move encoding in α-expansion. Starting
from an initial model x a new move t is proposed which causes two
variables to change their label to α. This results in the new labelling
x′.

submodular pairwise functions containing auxiliary
variables. This was used to formulate higher-order
expansion and swap move making algorithms.

4.2 Pairwise Inference with α-Expansion

The algorithm α-expansion makes a sequence of pro-
gressive decisions to replace the labels of a subset of
the random field with label α. At each step in the
sequence, for a given choice of α, the optimal subset
which results in the lowest possible cost is found via
graph-cuts (see figure 3). The steps proposed by α-
expansion, can be can be encoded as a transforma-
tion vector of binary variables t = {ti, ∀i ∈ V }. Each
component ti of t encodes a partial decision, about
what the state of the variable xi should change to.
In α-expansion, ti = 1 encodes the decision that xi
should remain constant, while ti = 0 indicates that it
should transition to a new label α. See figure 3 for an
illustration.

The use of these transformation vectors makes
the problem of finding the optimal move equiv-
alent to minimising a pseudo-Boolean cost func-
tion from 2n → R. Consequently, it follows from
Kolmogorov and Zabih (2004), that if these cost func-
tions can be shown to be pairwise submodular, the
optimal move can be efficiently found using graph-
cut.

The inter-layer pairwise potentials associated with
our hierarchy (see (8)) are not metric, so it is not clear
whether every possible expansion move is submod-
ular. While variants of α-expansion can be applied
to arbitrary pairwise potentials Rother et al (2005),
the moves are not guaranteed to be optimal, unless
the cost of making all such moves is known to be
submodular.

Now we show that the form of the inter-layer pair-
wise potentials allows optimal alpha-expansion move
to be computed. A sufficient condition to guarantee
this is to find a transformation, that maps all pairwise
cost into the metric representation of (Boykov et al,
2001). Note that this transformation is not necessary
in the actual implementation of the inference method;
it only serves as a proof, that each expansion move
energy is submodular.

First, we assume that all variables in the hierarchy
take values from the same label set LE defined in
equation (7). Where this is not true, for example,

original variables x(0) at the base of the hierarchy
never take label LF , we augment the label set with the
label LF and associate a prohibitively large unary cost
with it. Secondly, we make the inter-layer pairwise
potentials symmetric5 and metric by performing a local
reparameterisation operation.

Lemma 1: The inter-layer pairwise functions

ϕ
(n)
ic (x

(n−1)
i , x(n)c ) =



0 if x(n)c = LF

∨ x(n)c = x
(n−1)
i

wik
l
c if x(n)c = l ̸= LF

∧ x(n−1)
i ̸= x

(n)
c

(31)

of (13) can be written as:

ϕ
(n)
ic (x

(n−1)
i , x(n)c ) = ψ

(n−1)
i (x

(n−1)
i ) + ψ(n)

c (x(n)c )

+ Φ
(n)
ic (x

(n−1)
i , x(n)c ), (32)

where

Φ
(n)
ic (x

(n−1)
i , x(n)c ) =



0 if x(n−1)
i = x

(n)
c

wik
l
c/2 if x(n−1)

i = LF ∧ x
(n)
c = l

∨ x(n−1)
i = l ∧ x

(n)
c = LF

wi(k
l1
c + kl2c )/2 if x(n−1)

i = l1 ̸= LF

∧ x(n)c = l2 ̸= LF

(33)

and

ψ(n)
c (x(n)c ) =

wik
l
c/2 if x(n)c = l ∈ L

0 otherwise,
(34)

ψ
(n−1)
i (x

(n−1)
i ) =

−wik
l
c/2 if x(n−1)

i = l ∈ L
0 otherwise.

(35)

Proof: There are five cases for the inconsistency
cost C = ψi(x

(n−1)
i ) + ψc(x

(n)
c ) + ψic(x

(n)
c , x

(n−1)
i ).

For each one of them the cost before and
after the reparameterisation stays the same.

Labelling Cost

x
(n)
c = LF , x(n−1)

i = LF C = 0

x
(n)
c = LF , x(n−1)

i = l ∈ L C = −wik
l
c/2 + wik

l
c/2 = 0

x
(n)
c = l ∈ L, x(n−1)

i = LF C = wik
l
c/2 + wik

l
c/2 =

wik
l
c

x
(n)
c = x

(n−1)
i = l ∈ L C = wik

l
c/2− wik

l
c/2 = 0

x
(n)
c = l1 ∈ L,
x
(n−1)
i = l2 ∈ L, l1 ̸= l2

C = wik
l1
c /2 − wik

l2
c /2 +

wi(k
l1
c + kl2c )/2 = wik

l1
c .

The potential (32) trivially satisfies the metricity
condition as ϕ(n)ic (α, β) + ϕ

(n)
ic (β, γ) ≥ ϕ(n)ic (α, γ) for all

possible cases of α, β, γ ∈ LE . Thus, every possible
α-expansion move is submodular.

5. A pairwise potential ψp
ij(xi, xj) is said to be symmetric if

ψp
ij(xi, xj) = ψp

ij(xj , xi) for all choices of xi and xj .



4.3 Range-move α-Expansion and αβ-Swap

Let us consider a generalisation of the swap and ex-
pansion moves proposed in Boykov et al (2001) over
our pairwise formulation. In a standard swap move,
the set of all moves considered is those in which a
subset of the variables currently taking label α or β
change labels to either β or α. In our range swap the
moves considered allow any variables taking labels α,
LF or β to change their state to any of α, LF or β.
Similarly, while a normal α-expansion move allows
any variable to change to some state α, our range
expansion allows any variable to change to states α
or LF .

This approach always considers a set of moves
that completely contains the moves considered by α-
expansion. As such any local optima of range-move
expansion is a local optima of α-expansion.

These moves can be seen as a variant on the ordered
range moves proposed in Kumar et al (2011). How-
ever, Kumar et al (2011) required that there exists an
ordering of the labels {l1, l2, . . . , ln} such that the cost
function is convex over the range {li, li+1 . . . li+j} for
some j ≥ 2, and our range moves require no such
ordering.

4.4 Transformational Optimality

Consider an energy function E(x) defined over the
variables x = {x(h), h ∈ {1, 2, . . . ,H}} of a hierarchy
with H levels. We call a move making algorithm trans-
formationally optimal if and only if any move (x∗,xa)
proposed by the algorithm satisfies the property:

Ea(x∗,xa) = min
x′

Ea(x∗,x′) (36)

i.e. xa is a minimiser of Ea(x∗, ·). Inserting this into
equation (13) we have:

E(x∗) = E′(x∗) + Ea(x∗,xa). (37)

This implies that the partial move x∗ proposed by a
transformationally optimal algorithm over

E′(x(1)) + Ea(x(1),xa) (38)

must function as a move that directly minimise
the higher-order cost of equation (13). Experimen-
tally, our transformationally optimal algorithms con-
verge faster, and to better solutions than standard
approaches, such as α-expansion. Moreover, unlike
standard approaches, our transformationally optimal
algorithms are guaranteed to find the exact solution
for binary AHRFs.

We now show that when applied to hierarchi-
cal random fields, subject to two natural require-
ments, namely hierarchical consistency, and a re-
stricted choice of pairwise potentials, range moves are
transformationally optimal.

4.4.1 Hierarchical Consistency
To guarantee transformational optimality, for α-
expansion and αβ-swap, we must constrain the set
of higher order potentials further. To do this we
will introduce the notion of hierarchical consistency,
which simply says auxiliary variables should agree
with the state of their child variables in a minimal
cost labelling. This has two important properties:
first it restricts the space of possible labels taken
by an auxiliary variable, allowing us to guarantee
transformational optimality; more importantly it will
enforce agreement between the different layers of the
hierarchy and guarantee a consistent labelling across
the entire hierarchy.

Consider a clique c with an associated auxiliary
variable x(i)c . Let xl be a labelling such that x(i)c = l ∈ L
and xLF

be a labelling that differs from it only in
that the variable x(i)c takes label LF . We say a clique
potential is hierarchically consistent only if it satisfies
the constraint:

E(xl) ≥ E(xLF
) =⇒

∑
i∈c wik

l
c∆(xi = l)∑

i∈c wiklc
> 0.5.

(39)
The property of hierarchical consistency is also re-
quired in computer vision for the cost associated with
the hierarchy to remain meaningful. The labelling of
an auxiliary variable within the hierarchy should be
reflected in the state of the clique associated with it. If
an energy is not hierarchically consistent, it is possible
that the optimal labelling of regions of the hierarchy
will not reflect the labelling of the base layer.

To understand why this consistency is important,
we consider a case where this is violated. Consider
a simple energy function consisting of a base layer
of 10 pixels x(0) and only one clique, with associated
auxiliary variable xc, defined over the base layer. We
assume that unary potentials defined over individ-
ual pixels have a preference for the class cow while
the higher-order potential defined over the clique
expresses a preference for class sheep. More formally
we set:

ψi(xi) =

{
2 if xi = sheep
0 if xi = cow

∀xi ∈ x(0) (40)

ϕc(xc) =


0 if xc = sheep
20 if xc = cow
20 if xc = LF

(41)

And we define the pairwise terms between the clique
variables as

ϕc,i(xc, xi) =

{
1 if xc ̸= LF ∧ xc ̸= xi

0 otherwise.
(42)

For simplicity, we set all pairwise terms within the
base layer to 0, and disregard them. Then a mini-
mal labelling of the solution occurs when, xi = cow



∀xi ∈ x(0) and xc = sheep. This labelling is incoherent,
insomuch as we believe at the base scale that a region
is cow, and at a coarser scale that the same region
is sheep. Our requirement of hierarchical consistency
prohibits such solutions by insisting that the minimal
cost labelling of auxiliary variables correspond to
either the dominant label in base layer, or to the label
LF .

The constraint (39) is enforced by construction,
weighting the relative magnitude of ψi(l) and
ψp
ij(bj , x

(i)
c ) to guarantee that ∀l ∈ L:

ψi(l) +
∑

j∈Ni/c

max
bj∈L∪{LF }

ψp
ij(bj , x

(i)
c ) < 0.5

∑
i∈c

wik
l
c.

(43)
If this holds, in the degenerate case where there are
only two levels in the hierarchy, and no pairwise
connections between the auxiliary variables, our AHRF
is exactly equivalent to the Pn model.

At most one l ∈ L at a time can satisfy (39),
assuming the hierarchy is consistent. Given a labelling
for the base layer of the hierarchy x(1), an optimal
labelling for an auxiliary variable in x(2) associated
with some clique must be one of two labels: LF and
some l ∈ L. By induction, the choice of labelling of
any clique in x(j) : j ≥ 2 must also be a decision
between at most two labels: LF and some l ∈ L.

4.4.2 Transformational Optimality under Swap range
moves

Transformational optimality for αβ-swap based range
moves for AHRFs further requires that there are no
pairwise connections between variables in the same
level of the hierarchy, except in the base layer.

From (14), if an auxiliary variable xc may take label
γ or LF , and one of its children xi|i ∈ c take label
δ or LF , the cost associated with assigning label γ
or LF to xc is independent of the label of xi with
respect to a given move. This means that under a
swap move, a clique currently taking label δ ̸∈ {α, β}
will continue to do so. This follows from (5) as the
cost associated with taking label δ is only dependent
upon the weighted average of child variables taking
state δ, and this remains constant. Hence the only
clique variables that may have a new optimal labelling
under the swap are those currently taking state α,LF

or β, and these can only transform to one of the
states α,LF or β. As the range moves map exactly
this set of transformations, the move proposed must
be transformationally optimal, and consequently the
best possible αβ-swap over the energy (13).

4.4.3 Transformational Optimality under Expansion
Moves

Using range expansion moves, we can maintain trans-
formational optimality while incorporating pairwise

connections into the hierarchy — provided condi-
tion (39) holds, and the energy can be exactly rep-
resented in our submodular moves.

In order for this to be the case, the symmetric
pairwise connections must be both multi-label sub-
modular Schlesinger and Flach (2006) over any order-
ing α,LF , β and a metric. The only potentials that
satisfy these conditions are linear over the orderings
α,LF , β ∀α, β, hence must be of the form:

ψp
ij(xi, xj) =


0 if xi = xj

Kl if (xi = l ∧ xj = LF )

∨(xi = LF ∧ xj = l)

Kl1 +Kl2 if xi = l1 ∧ xj = l2

(44)

where Kl ∈ R+
0 .

A similar argument to that of the optimality of
αβ-swap can be made for α-expansion. As the label
α is ‘pushed’ out across the base layer, the optimal
labelling of some x(n) where n ≥ 2 must either
remain constant or transition to one of the labels
LF or α. Again, the range moves map exactly this
set of transforms and the suggested move is both
transformationally optimal, and the best expansion of
label α over the higher-order energy of (13).

5 GRAPH CONSTRUCTIONS FOR RANGE-
MOVE EXPANSION

In this section we show graph constructs we used
in our experiments. Alternatively, we could have
used graph construction of (Schlesinger and Flach,
2006) for multi-label submodular functions over the
ordering (α,LF , β) or (α,LF , old label) respectively.
We show the transformation of multi label problem
into a binary pairwise one in detail for the sake of
completeness.

The move energy will be encoded using one binary
variable ti for each variable xi in the base layer.
This captures the two possible states {α, xi} of the
base layer variables after the move. It will use two
binary variables a(n)

c , b(n)c for each variable x(n)
c in the

auxiliary layer to encoding their three possible states
{α,LF , x

(n)
c } under a move, where xi and x(n)

c are the
states of the corresponding variables before the move.

The transformation vector (see figure 3) for the base
layer variables is encoded the same way as standard
α-expansion:

Tα(xi, ti) =

{
α if ti = 0
xi if ti = 1.

(45)

While the transformation vector for the auxiliary vari-
ables is encoded as:

Tα(x
(n)

c , a(n)

c , b(n)c ) =

 α if a(n)
c = 0 ∧ b(n)c = 0

x(n)
c if a(n)

c = 1 ∧ b(n)c = 1
LF if a(n)

c = 1 ∧ b(n)c = 0.
(46)



Fig. 4. A graph construction for the α-expansion move of the inter-
layer connection between a) base layer and the first auxiliary layer,
b) between two auxiliary levels. The colour of variables ti and b(n)c

corresponds to the label before the move. Each variable a
(n)
c is

connected to each of the variables ti respectively a(n-1)

i in the clique
of the previous level, each variable b(n)c is connected to each of the
variables ti respectively b

(n-1)

i in the clique of the previous level.
Edges modelling corresponding inter-layer connection are bold.

To prohibit the combination a(n)
c = 0 and b(n)c = 1, we

add an edge K(1−a(n)
c )b(n)c with sufficiently large K →

∞. The energy is additive, thus we can find equivalent
graph constructions for each term separately.

5.1 Graph Construction for the Inter-layer Poten-
tial

Let us first assume none of the variables currently
takes a label α or LF and consider the inter-layer term
between the base layer xc and the first auxiliary layer:

ψp
c (xc, x

(1)

c ) = ϕc(x
(1)

c ) +
∑
i∈c

ϕc(x
(1)

c , xi), (47)

where

ϕc(x
(1)

c , xi) =

{
0 if x(1)

c = LF ∨ x(1)
c = xi

wik
x(1)
c

c otherwise.
(48)

Writing

K(n)

i,c = wik
x(n)
c

c ∆(xi = x(n)

c ) (49)

and

χc(x
(n)

c ) = ϕ(x(n)

c ) +
∑
i∈c

wik
x(n)
c

c ∆(xi ̸= x(n)

c ) (50)

The move energy of this potential is:
ψp
c (tc, a

(1)
c , b(1)c ) =

ϕc(α) +
∑
i∈c

wik
α
c ti if a(1)

c = 0 ∧ b(1)c = 0

χc(x
(1)

c ) +
∑
i∈c

K(1)

i,c (1− ti) if a(1)
c = 1 ∧ b(1)c = 1

ϕc(LF ) if a(1)
c = 1 ∧ b(1)c = 0,

(51)

The move energy can be transformed into:

ψp
c (tc, a

(1)

c , b(1)c ) =ϕc(α) + χc(x
(1)

c )− ϕc(LF ) (52)

+
∑
i∈c

wik
α
c ti(1− a(1)

c )

+ (ϕc(LF )− ϕc(α)) a(1)

c

+
∑
i∈c

wik
x(1)
c

c ∆(xi = x(1)

c )(1− ti)b(1)c

+(ϕc(LF )− χc(x
(1)

c )) (1− b(1)c ).

The equivalence can be shown by checking the value
of the transformed move energy for each combination
of a(1)

c and b(1)c . The move energy is pairwise sub-
modular and thus represents our inter-layer potential.
The graph is equivalent to the Robust-PN graph
construction in (Kohli et al, 2008).

For the inter-layer potential between two auxiliary
layers x(n) and x(n-1) where n > 1, the pairwise cost
becomes:

ϕc(x
(n)

c , x
(n−1)
d ) =


0 if x(n)

c = LF

∨x(n)
c = x(n-1)

d

wdk
x(n)
c

c otherwise.

(53)

The condition x(n)
c = x(n-1)

d is satisfied if both auxiliary
variables satisfy a(n)

c = a(n-1)

d and b(n)c = b(n-1)d . A label
of a child is not consistent with a label α if a(n-1)

i = 1,
a label of a child is not consistent with an old label if
b(n-1)i = 0. Thus, the move energy of this potential is:
ψp
c (a

(n-1),b(n-1), a(n)

c , b(n)c ) =
ϕc(α) +

∑
i∈c

wik
α
c a

(n-1)

i if a(n)
c = 0 ∧ b(n)c = 0

χc(x
(n)

c ) +
∑
i∈c

K(n)

i,c (1− b
(n-1)

i ) if a(n)
c = 1 ∧ b(n)c = 1

ϕc(LF ) if a(n)
c = 1 ∧ b(n)c = 0,

As with the previous case, the move energy can
transformed into:
ψp
c (a

(n-1),b(n-1), a(n)

c , b(n)c ) =

ϕc(α) + χc(x
(n)

c )− ϕc(LF )

+
∑
i∈c

wik
α
c a

(n-1)

i (1− a(n)

c ) + (ϕc(LF )− ϕc(α))a(n)

c

+
∑
i∈c

wik
x(n)
c

c ∆(x(n-1)

i = x(n)

c )(1− b(n-1)i )b(n)c

+(ϕc(LF )− χc(x
(n)

c ))(1− b(n)c ). (54)

The graph constructions for both cases of inter-layer
connection are given in figure 4.

5.1.1 Graph Construction for the Pairwise Potentials
of the Auxiliary Variables

We assume that the pairwise potentials considered are
in the same form as eq. (44). There are two case to
consider: In the first case, x(n)

c = x(n)

d , and the move
energy of the pairwise potentials between auxiliary



Fig. 5. A graph construction for the α-expansion move of the
pairwise potential on the auxiliary level if the label before the move
was a) the same, b) different. The colours of variables ti and
b
(n)
c correspond to the label before the move. Edges modelling

corresponding pairwise potentials are shown in bold.

variables is:
ψp
cd(a

(n)

c , b(n)

c , a(n)

d , b(n)d ) =
0 if a(n)

c = a(n)

d ∧ b(n)c = b(n)d

Kα if a(n)
c ̸= a(n)

d ∧ b(n)c = b(n)d

K
x
(n)
c

if a(n)
c = a(n)

d ∧ b(n)c ̸= b(n)d

Kα +K
x
(n)
c

if a(n)
c ̸= a(n)

d ∧ b(n)c ̸= b(n)d .

(55)
This move energy can be transformed into a pairwise
submodular one as:

ψp
cd(a

(n)

c , b(n)c , a(n)

d , b(n)d ) = Kαa
(n)

c (1− a(n)

d )

+Kα(1− a(n)

c )a(n)

d +K
x
(n)
c
b(n)c (1− b(n)d )

+K
x
(n)
c

(1− b(n)c )b(n)d . (56)

The equivalence can be seen by checking all possible
combinations of a(n)

c , b(n)c , a(n)

d and b(n)d .
In the case where x(n)

c ̸= x(n)

d the move energy of the
pairwise potential between auxiliary variables is:
ψp
cd(a

(n)

c , b(n)c , a(n)

d , b(n)d ) =

0 if a(n)
c = a(n)

c ∧ b(n)c = b(n)d = 0

K
x
(n)
c

+K
x
(n)
d

if a(n)
c = a(n)

d ∧ b(n)c = b(n)d = 1

Kα if a(n) ̸= a(n)

d ∧ b(n)c = b(n)d

K
x
(n)
c

if a(n)
c = a(n)

d ∧ b(n)c = 1 ∧ b(n)d = 0

K
x
(n)
d

if a(n)
c = a(n)

d ∧ b(n)c = 0 ∧ b(n)d = 1

K
x
(n)
d

+Kα if a(n)
c = b(n)c = 0 ∧ a(n)

d = b(n)d = 1

K
x
(n)
c

+Kα if a(n)
c = b(n)c = 1 ∧ a(n)

d = b(n)d = 0,
(57)

and the equivalent pairwise submodular move energy
is:

ψp
cd(a

(n)

c , b(n)c , a(n)

d , b(n)d ) = Kαa
(n)

c (1− a(n)

d )

+Kα(1− a(n)

c )a(n)

d +K
x
(n)
c
b(n)c +K

x
(n)
d

b(n)d . (58)

This equivalence holds for the 3× 3 allowed configu-
rations of a(n)

c , b(n)c , a(n)

d and b(n)d . Graph constructions
for both cases x(n)

c = x(n)

d and x(n)
c ̸= x(n)

d are given in
figure 5.

All the previous constructions were made under the
assumption that none of the variables already takes
the label α or LF . If a variable in the base layer
already takes the label α, the problem is equivalent
to changing each ti to 0 in all pairwise submodular
expressions. If the variable in the auxiliary layer al-
ready takes the the label α, both a(n)

c and b(n)c have
to be changed to 0 in all derived expressions. In the
case that the auxiliary variable takes the label LF , the
variable can take only label α and label LF after the
move and thus b(n)c has to be changed to 0. Setting the
label of any variable to 0 is equivalent to tying it to
the sink or equivalently changing each incoming edge
to this variable to the edge going to the sink. Setting
the label of any variable to 1 is equivalent to tying it
to the source or equivalently changing each outgoing
edge of this variable to the edge going to the source.
The infinite edge between a(n)

c and b(n)c is not necessary
if the hierarchy is hierarchically consistent, see 4.4.1.

5.2 αβ-swap
For αβ-swaps the graph-construction can be built by
applying these steps: relabelling all variables taking
label α to β, and applying α-expansion to only a
subset of variables, which took the labels α or β before
the move.

6 HIERARCHICAL RANDOM FIELDS FOR SE-
MANTIC SEGMENTATION
Having described the definition and intuition behind
the AHRF framework, in this section we describe the
set of potentials we use in the object-class segmen-
tation problem. This set includes unary potentials for
both pixels and segments, pairwise potentials between
pixels and between segments and connective poten-
tials between pixels and their containing segments.

In the previous sections we decomposed the en-
ergy (14) into a set of potentials ψc(xc). In this section
we will decompose them further, writing ψc(xc) =
λcξc(xc), where ξc is a feature based potential over c
and λc its weight. Initially we will discuss the learning
of potentials ξc(xc), and later discuss the learning of
the weights λc.

For our application we used potentials defined
over a three-level hierarchy. Although, the hierarchy
can be extended indefinitely, we found that perfor-
mance saturated beyond three-levels on the datasets
we considered. We refer to elements of each layer
as pixels, segments and super-segments respectively.
Unsupervised segments are initially found using mul-
tiple applications of a fine scale mean-shift algo-
rithm (Comaniciu and Meer, 2002). “Super-segments”
are based upon a coarse mean-shift segmentation, per-
formed over the result of the previous segmentations.



Original Image Pixel-based RF Segment-based RF Hierarchical RF Ground Truth

Fig. 6. Qualitative results on the MSRC-21 data set comparing non-hierarchical (i.e. pairwise models) approaches defined over pixels
(similar to TextonBoost (Shotton et al, 2006)) or segments (similar to (Pantofaru et al, 2008; Russell et al, 2006; Yang et al, 2007)
described in section 3) against our hierarchical model. Regions marked black in the hand-labelled ground truth image are unlabelled.



Original Image Pixel-based RF Segment-based RF Hierarchical RF Ground Truth

Fig. 7. Qualitative results on the Corel data set comparing approaches defined over pixels or segments against the hierarchical model.

Original Image Pixel-based RF Segment-based RF Hierarchical RF Ground Truth

Fig. 8. Qualitative results on the Sowerby data set comparing approaches defined over pixels or segments against the hierarchical
model.



Fig. 9. Qualitative results on the VOC-2008 data set. Successful segmentations (top 3 rows) and standard failure cases (bottom)
- from left to right, context error, detection failure and misclassification.

Original Image Pixel-based RF Segment-based RF Hierarchical RF Ground Truth

Fig. 10. Qualitative results on the Stanford data set.
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(Shotton et al, 2008) 72 67 49 88 79 97 97 78 82 54 87 74 72 74 36 24 93 51 78 75 35 66 18
(Shotton et al, 2006) 72 58 62 98 86 58 50 83 60 53 74 63 75 63 35 19 92 15 86 54 19 62 07

(Batra et al, 2008) 70 55 68 94 84 37 55 68 52 71 47 52 85 69 54 05 85 21 66 16 49 44 32
(Yang et al, 2007) 75 62 63 98 89 66 54 86 63 71 83 71 79 71 38 23 88 23 88 33 34 43 32

Pixel-based RF 84 76 73 93 84 77 84 96 85 91 90 86 91 95 91 41 92 53 87 65 77 70 17
Segment-based RF 81 66 80 98 83 64 81 99 59 89 85 68 68 98 76 26 85 39 84 30 49 50 07

Hierarchical RF 87 78 81 96 89 74 84 99 84 92 90 86 92 98 91 35 95 53 90 62 77 70 12

TABLE 1
Quantitative results on the MSRC data set. The table shows % pixel recall measure Nii/

∑
j Nij for different object classes.

‘Global’ refers to the overall error
∑

i∈L Nii∑
i,j∈L Nij

, while ‘average’ is
∑

i∈L
Nii

|L|
∑

j∈L Nij
. Nij refers to the number of pixels of label i

labelled j. The comparison suggests that the incorporation of the classifiers at different scales leads to a significant improvement of
the performance.
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(Batra et al, 2008) 83 85 87 92 82 91 66 83 94
Pixel-based RF 76 72 80 85 88 83 75 57 35

Segment-based RF 80 78 92 65 91 84 81 67 73
Hierarchical RF 84 85 92 82 94 88 83 77 76

TABLE 2
Quantitative results on the Corel data set. Segment-based method tend to outperform pixel-based ones. Due to the insufficient

amount of data the performance largely depends on the random split of the data. The same error measure as for the MSRC data set
has been used. Combining classifiers at different scales led to an improvement of the performance.
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Pixel-based RF 83 47 92 83 00 89 28 07 33
Segment-based RF 89 60 94 87 47 94 61 10 35

Hierarchical RF 91 64 97 96 45 98 59 09 43

TABLE 3
Quantitative results on the Sowerby data set. The segment-based method tend to outperform pixel-based ones. Context-based pixel

method could not capture small objects due to the insufficient size of the images. The same error measure as for the MSRC data set
has been used. As with other data sets, the hierarchical random field outperformed both approaches over single scale.
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XRCE 25.4 75.9 25.8 15.7 19.2 21.6 17.2 27.3 25.5 24.2 7.9 25.4 9.9 17.8 23.3 34.0 28.8 23.2 32.1 14.9 25.9 37.3
UIUC / CMU 19.5 79.3 31.9 21.0 8.3 6.5 34.3 15.8 22.7 10.4 1.2 6.8 8.0 10.2 22.7 24.9 27.7 15.9 4.3 5.5 19.0 32.1

MPI 12.9 75.4 19.1 7.7 6.1 9.4 3.8 11.0 12.1 5.6 0.7 3.7 15.9 3.6 12.2 16.1 15.9 0.6 19.7 5.9 14.7 12.5
Hierarchical RF 20.1 75.0 36.9 4.8 22.2 11.2 13.7 13.8 20.4 10.0 8.7 3.6 28.3 6.6 17.1 22.6 30.6 13.5 26.8 12.1 20.1 24.8

TABLE 4
Quantitative analysis of VOC2008 results (Everingham et al, 2008) based upon performance the intersection vs. union criteria( ∑

i∈L Nii

|L|(−Nii+
∑

j∈L Nij+Nji)

)
. All other methods used classification and detection priors trained over a much larger data set that

included unsegmented images. The reported results are from the actual challenge.
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Pixel-based RF 77.9 67.8 90.9 71.3 85.9 82.7 70.0 76.9 8.9 63.7
Segment-based RF 77.3 68.1 94.3 65.1 89.9 88.4 70.6 77.9 17.3 49.0

Hierarchical RF 80.9 70.4 94.8 71.6 90.6 88.0 73.5 82.2 10.2 59.9

TABLE 5
Quantitative results on the Stanford data set. The table shows % pixel recall measure Nii/

∑
j Nij for different object classes.

‘Global’ refers to the overall score
∑

i∈L Nii∑
i,j∈L Nij

, while ‘average’ is
∑

i∈L
Nii

|L|
∑

j∈L Nij
. Nij refers to the number of pixels of label i

labelled j. The comparison suggests that the incorporation of the classifiers at different scales leads to a significant improvement of
the performance. Other papers typically report only the global overall score. For comparison, the pixel CRF approach of (Gould et al,
2009a) gets 74.3%, their region-based method (Gould et al, 2009a) 76.4%, the follow-up paper of (Kumar and Koller, 2010) 79.4%,

the segment-based method of (Tighe and Lazebnik, 2010) 77.5% and the image parsing using recursive neural networks
of (Socher et al, 2011) 78.1%.
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Best Mean-Shift seg. 71 57 60 91 76 46 59 88 68 68 64 53 71 67 48 15 83 24 76 39 51 40 17
3 Mean-Shift seg. 76 64 59 98 81 55 74 98 71 84 70 58 70 69 45 26 86 29 89 55 62 49 17

Best SLIC seg. 70 56 52 95 79 48 57 92 59 74 54 51 60 62 47 21 80 23 78 45 40 35 14
3 SLIC seg. 77 63 58 96 84 57 68 95 73 80 69 67 76 67 56 22 87 27 86 58 59 42 09

Best Graph-Cut seg. 69 56 48 94 74 49 60 93 61 76 61 51 58 67 47 23 78 28 76 50 45 35 13
3 Graph-Cut seg. 75 63 51 94 79 55 67 97 74 83 70 60 67 68 58 20 85 30 84 61 58 45 13

All 9 segmentations 83 69 65 97 83 58 73 99 84 87 75 69 77 75 73 26 90 26 90 66 66 50 14

TABLE 6
The comparison of performances of three different sources of super-pixels on the MSRC data set, Mean-Shift (Comaniciu and Meer,

2002), SLIC (Achanta et al, 2012) and Graph-cut segmentations (Zhang et al, 2011) and their combination. The results suggest
that the combination of multiple segmentations of different kind leads to a significant improvement of the performance. The results

were obtained using the same random split of training and test images. These results show the use of 1, 3, or 9 sets of different
super-pixel runs in the second layer, and not a three layer hierarchy as in table 1.

6.1 Features

Several well-engineered features were experimen-
tally found to be more discriminative then the
raw RGB values of pixels. In our application we
use textons (Malik et al, 2001), local binary pat-
terns (Ojala et al, 1994), multi-scale (Bosch et al,
2007) dense SIFT (Lowe, 2004) and opponent
SIFT (van de Sande et al, 2008). Textons (Malik et al,
2001) are defined as a clustered 16-dimensional re-
sponse to 16 different filters - Gaussian, Gaussian
derivative and Laplacian filters at different scales. Lo-
cal binary pattern (Ojala et al, 1994) is a 8-dimensional
binary feature consisting of 8 comparisons of the
intensity value of the centre pixel with its neighbours.
The SIFT (Lowe, 2004) feature contains the histograms
of gradients of 4 × 4 cells quantized into 8 bins. The
resulting 128 dimensional vector is normalised to 1.
Opponent SIFT (van de Sande et al, 2008) is a variant
of coloured SIFT and is built of separate histograms
of gradients for 3 channels in the transformed colour
space. All features except local binary patterns are
quantized to 150 clusters using standard K-means
clustering.

6.2 Unary Potentials from Pixel-wise Features

Unary potentials from pixel-wise features are derived
from TextonBoost (Shotton et al, 2006), and allow us to
perform texture based segmentation, at the pixel level,
within the same framework. The features used for
constructing these potentials are computed on every
pixel of the image, and are also called dense features.
TextonBoost estimates the probability of a pixel taking
a certain label by boosting weak classifiers based on
a set of shape filter responses. The shape filters are
defined by a texton t and rectangular region r. Their
response v[t,r](i) for a given point i is the number
of textons t in the region r placed relative to the
point i. Corresponding weak classifiers are decision
stumps, which split on a shape filter response and
one of a set of thresholds. The most discriminative
weak classifiers are found using multi-class Gentle
Ada-Boost (Torralba et al, 2004).

We observed that textons were unable to discrim-
inate between some classes of similar textures. This
motivated us to extend the TextonBoost framework by
boosting classifiers defined on multiple dense features
(such as colour, textons, histograms of oriented gra-
dients (HOG) (Dalal and Triggs, 2005), and pixel lo-



cation) together. Generalised shape filters are defined
by feature type f , feature cluster t and rectangular
region r. Their response vf[t,r](i) for given point i is
the number of features of type f belonging to cluster
t in the region r placed relative to the point i. The pool
of weak classifiers contains decision stumps based on
the generalised shape filters against a set of thresholds
θ. See (Shotton et al, 2006; Torralba et al, 2004) for
further details of the procedure. Our results show that
the boosting of multiple features together results in a
significant improvement of the performance (note the
improvement from the 72% of (Shotton et al, 2006) to
81% of our similar pixel-based random field in figure
1). Further improvements were achieved using expo-
nentially instead of linearly growing thresholds and
Gaussian instead of uniform distribution of rectangles
around the point. The potential is incorporated into
the framework in the standard way as a negative log-
likelihood:

ϕi(xi = l) = − log
eHl(i)∑

l′∈L e
Hl′ (i)

= −Hl(i) +Ki, (59)

where Hl(i) is the Ada-Boost classifier response for
a label l and a pixel i and Ki = log

∑
l′∈L e

Hl′ (i) a
normalising constant.

6.3 Histogram-based Segment Unary Potentials
We now explain the unary potential defined over
segments and super-segments. For many classification
and recognition problems, the distributions of pixel-
wise feature responses are more discriminative than
any feature alone. For instance, the sky can be either
‘black’ (night) or ‘blue’ (day), but is never ‘half-
black’ and ‘half-blue’. This consistency in the colour of
object instances can be used as a region based feature
for improving object segmentation results. The unary
potentials of auxiliary segment variables are learnt us-
ing multi-class Gentle Ada-Boost (Torralba et al, 2004)
over the normalised histograms of multiple clustered
pixel-wise features. The pool of week classifiers are
decision stumps that return 1 if more that θ % of
a segment belongs to cluster t of feature f , and 0
otherwise. The selection and learning procedure is
identical to (Torralba et al, 2004).

The segment potential is incorporated into the en-
ergy as:

ϕc(x
(1) = l) = λs|c|min(−Hl(c) +Kc, α

h), (60)

ϕc(x
(1) = LF ) = λs|c|αh, (61)

where Hl(c) is the response given by the Ada-boost
classifier to clique c taking label l, αh a truncation
threshold and K = log

∑
l′∈L e

Hl′ (c) a normalising
constant.

For our experiments, the cost of pixel labels dif-
fering from an associated segment label was set to
klc = (ϕc(x

(1) = LF ) − ϕc(x(1) = l))/0.1|c|. This means
that up to 10% of the pixels can take a label different

to the segment label without the segment variable
changing its state to LF .

6.4 Pairwise Potentials
The pairwise terms on the pixel level ψp

ij(·) take the
form of the classical contrast sensitive potentials.

ξp(xi, xj) =

{
0 if xi = xj ,

g(i, j) otherwise, (62)

where the function g(i, j) is an edge feature based
on the difference in the intensity of colours of neigh-
bouring pixels (Boykov and Jolly, 2001). It is typically
defined as:

g(i, j) = θp + θv exp(−θβ ||Ii − Ij ||2), (63)

where Ii and Ij are the colour vectors of pixel i and j
respectively. These encourage neighbouring pixels in
the image (having a similar colour) to take the same
label. We refer the reader to (Boykov and Jolly, 2001;
Rother et al, 2004; Shotton et al, 2006) for details.

To encourage neighbouring segments with similar
texture to take the same label, we used pairwise
potentials based on the squared Euclidean distance of
normalised histograms of colour between correspond-
ing auxiliary variables:

ξpcd(x
(1)

c , x(1)

d ) =


0 if x(1)

c = x(1)

d ,

g(c, d)/2 if (x(1)
c = LF ∧ x(1)

d ̸= LF )

∨(x(1)
c ̸= LF ∧ x(1)

d = LF ),

g(c, d) otherwise,
(64)

where g(c, d) = min(|c|, |d|)|h(x(1)
c ) − h(x(1)

d )|22 and
h(·) is the normalised histogram of colours of given
segment.

7 LEARNING WEIGHTS FOR HIERARCHICAL
RANDOM FIELDS

Having learnt potentials ξc(xc) as described earlier,
the problem remains of how to assign appropri-
ate weights λc. This weighting, and the training
of random field parameters in general is not an
easy problem and there is a wide body of litera-
ture dealing with it (Blake et al, 2004; He et al, 2006;
Hinton and Osindero, 2006; Taskar et al, 2004b). The
approach we take to learn these weights uses a coarse
to fine, layer-based, local search scheme over a vali-
dation set.

We first introduce additional notation: V(i) refers
to variables contained in the ith layer of the hierarchy,
while x(i) is the labelling of V(i) associated with a MAP
estimate over the truncated hierarchical random field
consisting of the random variables v′ = {v ∈ V(k) :
k ≥ i}. Given the validation data we can determine
a dominant label Lc for each segment c, such that
LF = l when

∑
i∈l ∆(xi = l) = 0.5|c|, and if there is

no such dominant label, we set Lc = LF .



Algorithm 1 Weight Learning Scheme.
for i from m, the maximal layer, down to 0 do
s1, s2, sh, d1, d2, dh = 1
while s1, s2 or sh ≥ Θ do

for t ∈ {1, 2, h} do
λ
′(i)
t ← λ

(i)
t + dtst

Perform MAP estimate of xi using λ′t instead
of λt
if C(xi) has decreased then
λt ← λ′t

else
st ← st/2, dt ← −dt

end if
end for

end while
end for

At every level of the hierarchy, the label of a clique
x
(i)
c must correspond to the dominant label of this

clique in the ground truth (or LF ) for its pixels to
be correctly labelled. Based on this observation, we
propose a simple heuristic which we optimise for each
layer.

At each layer, we seek to minimise the discrepancy
between the dominant ground truth label of a clique
lc, and the value x

(i)
c of the MAP estimate. Formally,

we choose parameters λ to minimise

C(x(i)) =
∑

c∈V(i)

∆(x(i)c ̸= lc ∧ lc ̸= LF ). (65)

We optimise (65) layer by layer. The full method is
given in algorithm 1, where we use λ

(i)
1 to refer to

the weighting of unary potentials in the ith layer, λ(i)2

the weight of the pairwise terms and λ
(i+1)
h a scalar

modifier of all terms in the (i + 1)th layer or greater.
Θ is an arbitrary constant that controls the precision
of the final assignment of λ.

An alternative and elegant approach to this is that
of (Finley and Joachims, 2008) which we intend to
investigate in future work.

8 EXPERIMENTS

We evaluated the performance of our framework on
four data sets: Corel, Sowerby, Stanford (Gould et al,
2009a), PASCAL VOC 2008 (Everingham et al, 2008)
and MSRC-21 (Shotton et al, 2006)

MSRC-21 The MSRC segmentation data set con-
tains 591 images of resolution 320×213 pixels, accom-
panied with a hand labelled object segmentation of 21
object classes. Pixels on the boundaries of objects are
not labelled in these segmentations. The division into
training, validation and test sets occupied 45%, 10%
and 45% of the images. Methods are typically com-
pared using global criteria or average-per-class recall
criteria (see table 1 for details). For these experiments,

the hierarchy was composed of 3 pairs of nested
segmentations. The parameters of the mean-shift ker-
nels were chosen as (6, 5), (12, 10); (6, 7.5), (12, 15);
and (6, 9), (12, 18). The first value refers to the planar
distance between points, and the second refers to
the Euclidean distance in the LUV colour space. A
quantitative comparison of performance with other
methods is given in table 1. Qualitative results are
given in figure 6. A quantitative comparisons of dif-
ferent super-pixel methods is given in table 6.

Corel The Corel segmentation data set contains
100 images of resolution 180 × 120 pixels of natural
scenarios, with a hand labelled object segmentation
of 7 object classes. The division into training and
test sets occupied 50% and 50% the images. The
same parameters as for MSRC data set have been
used due to an insufficient amount of data. Unlike
in MSRC data set, segment-based methods performed
better than pixel-based (see table 2 for more details).
Qualitative results are given in figure 7.

Sowerby The Sowerby segmentation data set con-
tains 106 images of resolution 96 × 64 pixels of road
scenes, with a hand labelled object segmentation of 7
object classes. The division into training and test sets
occupied 50% and 50% the images. As with the Corel
data set, there was insufficient training data to tune
parameters on a validation set, and the parameters
tuned for the MSRC data set were used. Segment-
based methods perform better than pixel-based (see
table 3 for more details). Small classes performed very
badly due to their highly variable appearance and
insufficient training and test data. Qualitative results
are given in figure 8.

Stanford The Stanford segmentation data set con-
tains 715 images of resolution 320×240 pixels of road
scenes, with a hand labelled object segmentation of
7 background classes one one foreground class. The
set of images are split into two equally sized training
and testing sets. The same parameters as for the
MSRC data set were used. Quantitative comparison
of performance is given in table 5. Qualitative results
are given in figure 10.

PASCAL VOC 2008 This data set was used for the
PASCAL Visual Object Category segmentation contest
2008. It is especially challenging given the presence
of significant background clutter, illumination effects
and occlusions. It contains 511 training, 512 validation
and 512 segmented test images of 20 foreground and
1 background classes. The organisers also provided
10, 057 images for which only the bounding boxes
of the objects present in the image are marked. We
did not use these additional images for training our
framework. For this data set we used a two-level
hierarchy. The methods are evaluated using intersec-
tion vs. union criteria (Everingham et al, 2008) that
penalises the performance of classes i and j given
a mislabelling of i as j (see table 4). It should be
emphases that this is not the same as the percentage



Method Best E(meth)− E(min) E(meth)
E(min)

Time
Range exp 265 75 1.000 6.1s

Range swap 137 9034 1.059 20s
α-expansion 109 256 1.002 6.3s

αβ-swap 42 9922 1.060 42s
TRW-S 12 38549 1.239 500s

BP 6 13456 1.081 120s
ICM 5 45955 1.274 25s

Fig. 12. Comparison of methods on 295 testing images. From left
to right the columns show the number of times they achieved the
best energy (including ties), the average difference (E(method) −
E(min)), the average ratio (E(method)/E(min)) and the average
time taken. All three inference methods proposed in this paper: the
α-expansion of section 4.2, and the transformationally optimal range
expansion and swap (section 5) significantly outperformed existing
inference methods both in speed and accuracy. See table 11 for
individual examples.

of pixels correctly labelled. Quantitative comparison
of performance with other methods is given in 4.
Qualitative results are given in table 9. The only
comparable methods used classification and detection
priors trained over a much larger set of images.
The reported results we show are from the actual
challenge, and not the performance of the current
implementation.

The hierarchical random field significantly outper-
formed random field approaches at single scale (pix-
els, segments) on all data sets. Experimentally, the
approach was robust to the choice of the parameters
and typically the same parameters performed well on
all data sets. This suggests that the improvement of
the performance comes from the incorporation of the
different discriminative cues across multiple scales.

8.1 Comparison of Inference Methods

We evaluate α-expansion, αβ-swap, TRW-S, Belief
Propagation (BP), Iterated Conditional Modes, and
both the expansion and swap based variants of our
unordered range moves on the problem of object class
segmentation over the MSRC data set (Shotton et al,
2006), in which each pixel within an image must
be assigned a label representing its class, such as
grass, water, boat or cow. For bp we followed the
same efficient implementation as TRW-S (Kolmogorov,
2006), but without the averaging step. Kappes et al
(2013) showed that many of combinatoric approaches
work well on pairwise cost functions defined over one
set of segments. However, they would not scale to the
number of variables or large cliques we consider.

We express the problem as a three layer hierarchy.
Each pixel is represented by a random variable of the
base layer. The second layer is formed by performing
multiple unsupervised segmentations over the image,
and associating one auxiliary variable with each seg-
ment - note that this use of several hierarchies results
in overlapping segments. The children of each of these
variables in x(2) are the variables contained within
the segment, and pairwise connections are formed

between adjacent segments. Further details are given
in section 8 (MSRC).

We tested each algorithm on 295 test images, with
an average of 70,000 pixels/variables in the base
layer and up to 30,000 variables in a clique, and ran
them either until convergence, or for a maximum
of 500 iterations. In the table in figure 12 we com-
pare the final energies obtained by each algorithm,
showing the number of times they achieved an en-
ergy lower than or equal to all other methods, the
average difference E(method) − E(min) and average
ratio E(method)/E(min). Empirically, the message
passing algorithms TRW-S and BP appear ill-suited to
inference over these dense hierarchical random fields.
In comparison to the graph cut based move making
algorithms, they had higher resulting energy, higher
memory usage, and exhibited slower convergence.

While it may appear unreasonable to test
message passing approaches on hierarchical
energies when higher-order formulations such
as (Komodakis and Paragios, 2009; Potetz and Lee,
2008) exist, we note that for the simplest hierarchy
that contains only one additional layer of nodes and
no pairwise connections in this second layer, higher-
order and hierarchical message-passing approaches
will be equivalent, as inference over the trees that
represent higher-order potentials is exact. Similar
relative performance by message passing schemes
was observed in these cases.

In all tested images both α-expansion variants out-
performed TRW-S, BP and ICM.

The later methods only obtained minimal cost la-
bellings in images in which the optimal solution
found contained only one label i.e. they were entirely
labelled as grass or water. The comparison also shows
that unordered range move variants usually outper-
form vanilla move making algorithms. The higher
number of minimal labellings found by the range-
move variant of αβ-swap in comparison to those of
vanilla α-expansion can be explained by the large
number of images in which two labels strongly dom-
inate – unlike standard α-expansion both range move
algorithms are guaranteed to find a global optimum of
such a two label sub-problem. The typical behaviour
of all methods alongside the lower bound of TRW-
S can be seen in figure 12 and further, alongside
qualitative results, in figures 11.

9 CONCLUSION

This work is a generalisation of many previous super-
pixel based methods within a principled random field
framework. Our approach enabled the integration of
features and contextual priors defined over multiple
super-pixels in one optimisation framework that sup-
ports efficient MAP estimation using graph cut based
move making algorithms. To do this, we have exam-
ined the use of auxiliary variables in random fields



Fig. 11. Best Viewed in Colour. This figure shows additional quantitative results taken from the MSRC data set (Shotton et al, 2006). Dashed
lines indicate the final converged solution. The slow convergence and poor solutions found by TRW and BP are to be expected given the large
number of cycles present in the graph. Of the remaining move making schemes, the relatively weak performance of αβ-swap and ICM is
in line with the restricted space of moves available to them. While the three methods derived in this paper significantly outperform all other
approaches, range α-expansion reliably dominates.

which have been relatively neglected in computer
vision over the past twenty years.

In doing so, we have shown that higher-order ran-
dom fields are intimately related to pairwise models.
This observation has allowed us to characterise some
of the higher-order potentials which can be solved
using modified expansion and swap algorithms.

We demonstrated the usefulness of our algorithms
on the problem of object class segmentation where
they have been shown to outperform state of the art
approaches over challenging data sets both in speed
and accuracy. We believe that similar improvements
can be achieved for many other higher-order labelling
problems both in computer vision and machine learn-
ing in general.

The flexibility and generality of our framework al-
lowed us to propose and use novel pixel and segment
based potential functions and achieve state-of-the-art
results on some of the most challenging data sets for
object class segmentation. We believe that use of the
hierarchical random fields will yield similar improve-
ments for other labelling problems. The source code
is publicly available6.
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