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oChapter 1+

WHAT IS STATISTICS?

WE MUDDLE THROUGH LIFE MAKING CHOICES
BASED ON INCOMPLETE INFORMATION...

SHOULD I HAVE THE S0UP?
27 OUT OF THE 26 TIMES
T'VE HAD IT, IT WAS PRETTY
6000... BUT 15 MONDAY THE
REGULAR CHEF'S NIGHT
OFF? AND WHAT IF ALL THE
AIR MOLECULES IN THE
ROOM SUPDENLY FLY UP TO
THE CEILING?

SHOULD T UAVE THE 50UP?
EVERYTHING ELSE 15 50
EXPENSIVE, AND T DON'T

KNOW WHO'$ PAYING.. ARE

STATISTICIANS STINGY? TVE
NEVER GONE OUT WITH

ONE BEFORE.. THOUGH 1

ONCE KNEW A VERY

G6ENEROUS ACCLOUNTANT...




MOST OF U5 LIVE
COMFORTABLY WITH SOME
LEVEL OF UNCERTAINTY.

P AARRH... COULD You
JUST BRING ME A
CALCUATOR 2 M

WHAT MAKES STATISTICS UNIQUE 15 ITS ABILITY TO QUANTIFY UNCERTAINTY,
TO MAKE IT PRECISE. THIS ALLOWS STATISTICIANS TO MAKE ZATEGORICAL
STATEMENTS, WITH COMPLETE ASSURANCE—ABOUT THEIR LEVEL OF
UNCERTAINTY!

GOOD CHOICE! TM 95%
CONFIDENT THAT TONIGHT'S
S0UP HAS PROBABILITY

BETWEEN 73% AND 77% OF
BEING REALLY DELIcIOUS!




(THIS 15 NOT JUST A MATTER OR
ORDERING SOUP! STATISTICS ALSO
INVOLVES MATTERS OF LIFE AND
DEATH...

REY—HAVE YOu EVER
HAD THe S0up HERE ON
AN OFF NIGHT?

FOR EXAMPLE, IN 1996, THE SPACE SHUTTLE CHALLENSER EXPLODED, KILLING
SEVEN ASTRONAUTS. THE DECISION TO LAUNCH IN 29-DEGREE WEATHER HAD
BEEN MADE WITHOUT DOING A SIMPLE ANALYSIS OF PERFORMANCE DATA AT
LOW TEMPERATURE.

A MORE POSITIVE EXAMPLE 15 THE ALK POLIO VACCING. TN 1954, VALCINE
TRIALS WERE PERFORMED ON SOME 400,000 CHILDREN, WITH STRICT CONTROLS
TO ELIMINATE BIASED RESULTS. 600D STATISTICAL ANALYSIS OF THE RESULTS
FIRMLY BSTABLISHED THE VALLINE'S EFFECTIVENESS, AND TODAY POLIO 15
ALMOST UNKNOWN.




TO ACLOMPLISH THEIR FEATS OF MATHEMATICAL
LEGERDEMAIN, STATISTICIANS RELY ON THREE
RELATED DISCIPLINES:

( )

Data
analysis

THE 6ATHERING, DISPLAY, AND
SUMMARY OF DATA;

Probability

THE LAWS OF CHANCE, IN
AND OUT OF THE CASINO;

THE SCIENCE OF DRAWING
STATISTICAL CONCLUSIONS
FROM SPECIFIC DATA, USING A
\KNOWLEP&E OF PROBABILITY.

J

IN THIS BOOK, WE'LL LOOK AT ALL THREE, AS APPLIED TO A WIDE VARIETY OF
SITUATIONS WHERE STATISTICS PLAYS A (RUCIAL ROLE IN THE MODERN WORLD.

A TaXt N
THIS WEATHER %




IN CHAPTER 2, WE'LL LOOK AT A
SIMPLE DATA $ET, THE REPORTED
WEIGHTS OF A BUNCH OF COLLEGE
STUDENTS.

1 ‘Ji,{g'

IN CHAPTER 3, WE STUDY THE LAWS OH
PROBABILITY IN THEIR BIRTHPLALE, THE
6AMBLING DEN.

N THE \T™
CENTURY = 3% I*

S
S

TR TS,

CHAPTERS 4 AND 5 SHOW HOW TO
PESCRIBE THE WORLD WITH
PROBABILITY MODELS, USING THE
CONCEPT OF THE RANDOM VARIABLE.

CHAPTER 6 INTRODULES ONE OF THE
STATISTICIAN'S E5SENTIAL PRO-
CEPURES, TAKING SAMPLES OF A
LARGE POPULATION.

IN CHAPTER 7 AND
BEYOND, WE DESCRIBE
HOW TO MAKE

STATISTICAL INFERENCES
IN SUCH COMMON REAL-
WORLD ARENAS AS
GLECTION POLLING,
MANUFACTURING QUALITY
CONTROL, MEDICAL
TESTING,
ENVIRONMENTAL
MONITORINS, RACIAL
BIAS, AND THE LAW.

IN SHORT,
EVERYWHERE!




e

FINALLY, IN DISCUS5ING
STATISTICS, IT'S HARD TO
AVOID MENTIONING ONE
OTHER THING: THE
WIDESPREAD MISTRUST OF
STATISTICS IN THE WORLD
TODAY. EVERYONE KNOWS
ABOUT "LYING WITH
STATISTICS," WHILE 600D
STATISTICAL ANALYSIS 15
NEARLY IMPOS5IBLE TO FIND
IN DAILY LIFE. WHAT'S ONE
TO VO?

3 OUT oF 4 DoCToRS

RECOMMEND NOT BELIEVING
ANY STATEMENT BEHINMING .
WITR “3 00T OF 4 0OCTORS...

. J
OUR HUMBLE OPINION 15 THAT LEARNING A LITTLE MORE ABOUT THE
SUBJECT MIGHT NOT BE SUCH A BAD IDEA.. AND THAT'S WHY WE WROTE THIS
8OOK!

~

=

IN WHAT FOLLOWS, WE TRY TO PRESENT THE ELEMENTS OF STATISTICS A%
GRAPHICALLY AND INTUITIVELY AS POS5IBLE. ALL YOU NEED TO 6ET THROVUGH
IT 15 A LUTTLE PATIENCE, SOME THOUGHT, AND A CERTAIN TOLERANCE FOR
ALGEBRA—OR, IF NOT THAT, THEN MAYBE A COURSE REQUIREMENT!/




+CHAPTER 2+

DATA DESCRIPTION




DATA ARE THE STATISTICIAN'S
RAW MATERIAL, THE NUMBERS WE
USE TO INTERPRET REALITY. ALL
STATISTICAL PROBLEMS INVOLVE
EIMHER THE COLLECTION,
DESCRIPTION, AND ANALYS1S OF
DATA, OR THINKING ABOUT THE
COLLECTION, DESCRIPTION, AND
ANALYSIS OF DATA.

‘a

CHANCES ARE 91%
THAT \ CAN MAKE
SENSE OF THI%w...

2‘7‘
RS T
//0 5 \q
9 999 33! 33€6
43 19 (99 g

m\

e ™

THIS CHAPTER CONCENTRATES ON DATA DESCRIPTION. HOW CAN WE REPRESENT
DATA IN USEFUL WAY5? HOW CAN WE $EE UNDERLYING PATTERNS IN A HEAP OF
NAKED NUMBERS? HOW (AN WE SUMMARIZE THE DATA'S BASIC SHAPE?

Y ;\\5‘ “

no /7.46 se
\ 2¥ ’2

o ',?43 2?32" 622, 2
|51 199\ 7!5\7;?4 o

61«'//:/ 21.37 /9695,19

? 2!

WELL, TO DESCRIBE DATA, THE FIRST THING YOU NEED 15 SOME ACTUAL DATA
TO DESCRIBE... 50 LET'S COLLECT SOME DATA!

q
/]

S @0 ,‘955"”3 3?




( HERE 15 SOME REAL DATA:
A% PART OF A CLASSROOM
EXPERIMENT, 92 PENN STATE
STUDENTS REPORTED THEIR
WEIGHT, WITH THESE
RESULTS:

skabe‘rJT;iE S(ALE,
ITH .- JUST TAKE M
WORD foR (T... i

MALES

140 145 160 190 155 165 150 190 195 138 160 155 153 145 170 175 175 170 180 135
170 157 130 1685 190 155 170 155 215 150 145 155 155 150 155 150 180 160 135 160
130 155 150 148 155 150 140 180 190 145 150 164 140 142 136 123 155

FEMALES
140 120 130 138 121 125 116 145 150 112 125 130 120 130 131 120 118 125 135 125
18 122 115 102 115 150 110 116 108 95 125 133 110 150 108

\ J/

6ETTING RIGHT POWN TO BUSINESS, WE DRAW A POT PLOT: ONE DOT PER
STUDENT 60E5 OVER EACH STUPENT’S REPORTED WEIGHT.

esee
essse
.
esssssssse
.
‘Jecacescans

100 150 200
Weight in Pounds

YOU MAY SEE A PROBLEM HERE:
THE CLUMPS AT 150 AND 155
POUNDS. THE STUDGNTS TENDED
TO REPORT THEIR WEIGHT IN
FIVE-POUND INCREMENTS. IN
REAL-LIFG SITUATIONS LIKE THIS
ONE, SUCH ROUNDING OFF (AN
OBSCURE 6ENERAL PATTERNS IN
DATA. BUT FOR NOW, WE'LL JUsT
WORK AROUND IT.




(WE CAN SUMMARIZE THE DATA WITH A FREQUENCY TABLE. DIVIDE THE NUMSER\
LINE INTO INTERVALS AND COUNT THE NUMBER OF STUDENT WEIGHTS WITHIN
EACH INTERVAL. THE FREQUENCY 15 THE COUNT IN ANY G6IVEN INTERVAL. THE
RELATIVE FREQUENCY 15 THE PROPORTION OF WEIGHTS IN EACH INTERVAL,
LE, IT’5 THE FREQUENCY DIVIDED BY THE TOTAL NUMBER OF STUDENTS.

CLASS INTERVAL MIDPOINT FREQUENCY RELATIVE FREQUENCY

67.5-102.4 95 2 o022
102.5-1115 1o 9 098
17.5-132.4 125 19 206
132.5-1474 140 7 185

1475-1624 155 27 293
162.5-1774 170 8 087
1775-1924 185 8 087
192.5-2015 200 1 on

2075-222.4 215 1 on

TOTAL 92 1.000

NOTE: WE KEPT THE INTERVAL BOUNDARIES AWAY FROM THOSE TROUBLESOME
( 5-POUND MULTIPLES. THIS 6ETS AROUND THE STUDENTS’ REPORTING BIAS.

J

GUIDELINES FOR FORMING THE CLASS INTERVALS:

1 , USE INTERVALS OF
EQUAL LENGTH WITH
MIDPOINTS AT 15 92
CONVENIENT ROUND LARGE OR
NUMBERS. SMALL?

2) FOR A SMALL DATA
SET, USE A SMALL
NUMBER OF
INTERVALS.

3) FOR A LARGE DATA
SET, USE MORE
INTERVALS!




IN THE FREQUENCY TABLE, WE ARE SHOWING HOW MANY DATA POINTS ARG
"AROUND” GACH VALUE. WE CAN GRAPH THIS INFORMATION, TOO. THE RESULTING
BAR GRAPH 15 CALLED A HISTOGRAM. EACH BAR COVERS AN INTERVAL AND 15
CENTERED AT THE MIDPOINT. THE BAR'S HEIGHT 15 THE NUMBER OF DATA
POINTS IN THE INTERVAL.

25
20
15
10

il v L \J L] L] L] L] L] v L] L) L]

100 150 200
Weight in Pounds

WE CAN ALSO DRAW A RELATIVE FREQUENCY HISTOGRAM, PLOTTING THE
RELATIVE FREQUENCY AGAINST THE WEIGHT. IT LOOKS EXACTLY THE SAME,
GEXCEPT FOR THE VERTICAL SCALE.

&)

021 TS/
S
0.1- 7
0.0 < h pa— T T T T T | B S T T T T
100 150 200

Weight in Pounds

1"



THE STATISTICIAN JOHN TUKEY
INVENTED A QUICK WAY TO
SUMMARIZE DATA AND STILL KEEP
THE INDIVIDUAL DATA POINTS. ITS
CALLED THE STEM-AND-LEAF
DIASRAM.

FOR THE WEIGHT DATA, THE STEM 15 A
COLUMN OF NUMBERS, CONSISTING OF
THE WEIGHT DATA COUNTED BY TENS
(16, WE LEAVE OFF THE LAST DI6IT).

LE., 90 POUNDS,

NOW ADD THE FINAL DIGIT OF GACH
WEIGHT IN THE APPROPRIATE ROW:

STEM : LEAVES MEANING
1; : THERE ARE
1 s 629 V:f:é:;ﬂ? OF
12 : 0155005 , 112, 118,
13 : 080015 120, ETC.
14 : 05
15:0
16 :

17 :
10 :
19 :
20:
2:

FILLED IN, IT LOOKS LIKE THIS:

9 :5

10: 208

1 : 628855060

12 : 01553005525
13 : 9500850600153
14 : 05505560502
15 : 50%53705505505050500500
16 : 050004

17 : 055000

18 : 0500

19 : 00500

20:

21:5

AND FINALLY, PUT THE “LEGAVES® IN
ORDGR.

9:5

10 : 208

11 : 002556608

12 + 00012355555
13 1 0000013555608
14 : 00002555556
15 : 000000000035555555555T -
16 : 000045
17 : 000055
18 : 000%
19 : 00005
20:

2:6

ALL THO%E ZEROGS AND FIVES CLEARLY
SHOW THE STUDENTS' REPORTING BIAS!

n




—
600D GRAPHIC DISPLAY 1S PART
ART AND PART $CIENCE

AND SOMETIMES, PART
PoLITICS!

CRUSADING NURSE FLORENCE NIGHTINGALE
COMPILED MORTALITY STATISTICS FROM
BRITISH MILITARY HOSPITALS, PRODPUCING
SHOCKING HISTOGRAMS LIKE THIS ONE:
THE RADIAL AXIS
INDICATES DEATHS—IN
HOSPITALS AS WELL AS
ON THE BATTLEFIELD—
OF BRITISH SOLDIERS
IN THE CRIMEAN WAR.

HER STATISTICAL EFFORTS LED
DIRGLTLY TO IMPROVED HOSPITAL
CONDITIONS AND A REDUCTION IN THE
DEATH RATE.




SUMMARY STATISTICS

NOW WE MOVE FROM PICTURES TO FORMULAS. OUR OBIECT 15 TO 6ET SOME
SIMPLE MEASUREMENTS OF THE CRUDEST CHARALTERISTICS OF A SET OF DATA...

Symbolic

Movers
“from one side of the
equation to the other”

ANY SET OF MEASUREMENTS WIDE +- CENTER NEAR HERE
HAS TWO IMPORTANT CSPREAD M
PROPERTIES: THE CENTRAL

OR TYPICAL VALUE, AND

THE $PREAD ABOUT THAT —'_7_'
VALUE. YOU ¢AN SEE THE

IDEA IN THESE NARROW

HYPOTHETICAL HISTOGRAMS. SPREMD I

: ~
(ws CAN 60 A LONG WAY WITH A LITTLE NOTATION. SUPPOSE WE'RE MAKING A
SERIES OF OBSERVATIONS.. 77 OF THEM, TO BE EXACT.. THEN WE WRITE

xu xzn x;» - xn

A% THE VALUES WE OBSERVE. THUS, n 15
THE TOTAL NUMBER OF DATA POINTS, AND
2z, (5AY) 15 THE VALUE OF THE FOURTH
PATA POINT.

AN ARRAY 15 A TABLE OF DATA:

OBSERVATION 1 2 3 4 . n
PATAVALUE 2, %, 2, % ~ Znp

L

14



A SMALL SET OF n =5 DATA POINTS MAKES THE BOOKKEEPING EASY.
SUPPOSE, FOR EXAMPLE, WE ASK FIVE PEOPLE HOW MANY HOURS OF
TELEVISION TUEY WATCH IN A WEEK.. AND GET THE FOLLOWING ARRAY:

OBSERVATION 1 2 3 4 5
DATA VALUE 5 7 3 38 7

THEN Z,-’, 11'7, x;‘;) 14'”. AND Z,-7~

WHAT’S THE “CENTER" OF
THESE DATA? THEREG ARE
ACTUALLY SEVERAL
DIFFERENT WAYS TO
MEASURE IT. WE'LL LOOK AT
JUST TWO OF THEM.

~MEAN ‘
(OR “AVERASE™)

THE MEAN OR AVERAGE VALUE 15 REPRESENTED
BY Z.. IT'S OBTAINED BY ADDING ALL THE DATA AND
DIVIDING BY THE NUMBER OF OBSERVATIONS:

SUM OF DATA
n

U A tZ -z,
n
FOR OUR EXAMPLE,
z. 5tTH3¢ BT b0
- 5 5
= 12 nours

zZ =




WE HAVE A SHORTHAND FOR THAT
Zy ¥ Zy + - + X, USING THE 6REEK
CAPITAL LETTER $I6MA, FOR SUMMATION:

ALL RIGHT! NOW
WE LOOKIN' LIKE
A STATISTICS
BOOK!

FOR THE SUM Z, + %3 + — + Zp WE
WRITE

AND READ IT AS
“THE SUM OF %;

Z i A5 i 6065 FROM
170 n’

%0.. TO REPEAT, THE AVERASE, OR MEAN, OF A SET OF DATA %; 15

n
2%

x = i=1

n

25
n

i=1

IN THE CASE OF OUR 92 PENN STATE STUDENTS, THE MEAN WEIGHT 15

n
91
2 xo_ 3%
<% 91

145.19 pounDS




M E D I AN 15 ANOTHER KIND OF CENTER: THE
THE “MIDPOINT" OF THE DATA, LIKE THE

“MEDIAN STRIP® IN A ROAD.

TO FIND THE MEDIAN

VALUG OF A DATA SET,

WE ARRANGE THE DATA 3 6 7 7 39
IN ORPER FROM

SMALLEST TO LARGEST. f

THE MEDIAN 15 THE
VALUE IN THE MIDDLE. THE MEPIAN

IF THE NUMBER OF POINTS 15 EVEN—IN WHICH CASE THERE 15 NO MIDDLE, WE
AVERAGE THE TWO VALUES AROUND THE MIDDLE... 50 IF THE DATA ARE

3 5 7 7 WE AVERAGE 5 5+7-6
b

AND 7 TO 6ET 2

MIDDLE
SPALE

THIS 6IVES US A GENERAL RULE: ORDER THE DATA FROM SMALLEST TO LARGEST.

IF THE NUMBER OF DATA
POINTS 15 OPD, THE MEDIAN
15 THE MIDDLE DATA POINT.

JUST AS THE MEDIAN
STRP'S POSITION 5

IF THE NUMBER OF POINTS 15
EVEN, THE MEDIAN 15 THE
AVERASE OF THE TWO DATA
POINTS NEAREST THE MIDULE.




FOR THE 77=92 STUDENT WEIGHTS, 9:5

WE CAN FIND THE MEDIAN FROM THE 10 : 208
ORDERED STEM-AND-LEAF DIAGRAM: 11 : 0025566688
JUST COUNT TO THE 46™ 12 : 00012355555
OBSERVATION. THE MEDIAN 15 13 : 0000013555688
14 : 0000255555 ¢
15 : 000000000035%55%5555557
Zy + Xy 145 + 145 16 : 000045
= 17 : 000055
2 2 18 : 0005
19 : 0000%
= 145 rounps 20:
21: 5

(WHY MORE THAN ONE MEASURE OF THE CENTER? EACH HAS ADVANTASES. FOR |
EXAMPLE, THE MEDIAN 15 NOT SENSITIVE TO OUTLIERS, OR EXTREME VALUES
NOT TYPICAL OF THE REST OF THE DATA. SUPPOSE IN OUR SMALL TV-
WATCHING GROUP, ONE PERSON WATCHES 200 WOURS PER WEEK. THEN OUR
DATA AR 3, 5, 7, 7, 200. THE MEDIAN, 7, 15 UNCHANGED, BUT THE MEAN 15
NOW Z = 45.9!

MO You're
STORTIN'
THe MEMNN
WEIOHT,
Toot

IN 1984 THE UNIVERSITY OF VIRGINIA ANNOUNCED
THAT ITS DEPARTMENT OF RHETORIC AND COM-
MUNICATIONS GRADUATES MEAN STARTING SALARY
WAS $55,000. THE OUTLIER, THE SALARY OF NBA
CENTER RALPH SAMPSON, DI NOT REPRESENT THE
EARNING POWER OF A BA..IN SPEECH FROM V. OF V.
\(THF MEDIAN SALARY WASN'T PUBLISHED.)




MEASURES OF
S PREATD w

BESIDES KNOWING THE

CENTRAL POINT OF A DATA HIl WERE
SET, WE'D ALSO LIKE TO IDENTICAL!
DESCRIBE THE DATA'S

SPREAD, OR HOW FAR '
FROM THE CENTER THE
DATA TEND TO RANGE.

4

FOR INSTANCE, IF THE
STUPENTS ALL WEIGHED
EXACTLY 145 POUNDS,
THERE WOULD BE NO
SPREAD AT ALL.
NUMERICALLY, THE SPREAD
WOULD BE Z&ERO, AND .THE
HISTOGRAM WOULD 8E
\QKINNY.

St

-
]

BUT IF MANY OF THE STUDENTS WERE VERY LIGHT AND/OR VERY HEAVY,
OBVIOUSLY WE'D SEE SOME SPREAD—SAY, IF THE FOOTBALL TEAM WAS PART.
OF THE SAMPLE...

% @

THE HISTOGRAM WOULD BE WIDER, SOMETHING LIKE THI%:

27 P20




(AGNN. THERE'S MORE THAN ONE WAY TO MEASURE A SPREAD. ONE WAY 1%

INTERQUARTILE RANGE

THE IDEA 15 TO DIVIDE
THE DATA INTO FOUR
EQUAL 6ROUPS AND SEE
HOW FAR APART THE
EXTREME 6ROUPS ARE.

~\

o e s

‘\
¢

7

HERE’S THE RECIPE:
1)

2)

PUT THE DATA IN NUMERICAL
ORDER.

DIVIDE THE DATA INTO TWO
EQUAL HIGH AND LOW 6ROUPS
AT THE MEDIAN. (IF THE
MEDIAN 15 A DATA POINT,
INCLUDE IT IN BOTH THE HIGH
AND LOW 6ROUPS.)

FIND THE MEDIAN OF THE
LOW 6ROUVP. THIS 15 CALLED
THE FIRST QUARTILE, OR @.

3

THE MEDIAN OF THE HIGH
6ROUP 15 THE THIRD
QUARTILE, OR Q.

4

Lows

MEDIAN
b

[ Q-
.9

oo

= MEDIAN OF
ReHS

.
Lx g

XX}
cooe

- & Q >MEOlNl°F

oo
ece

NOW THE INTERQUARTILE RANGE (IQR) 15 THE DISTANCE (OR DIFFERENCE)

BETWEEN THEM:

IQR = Qg -

o7



HERE'S THE WEIGHT DATA
WITH THE MIDPOINTS OF
THE HIGH AND LOW 6ROUPS
EMPHASIZED:

9:5

10: 208

11 : 002556609 /
12: 00012355555
13 : 0000013555608
14 : 00002555556
15: 355555555557
16 : 000045

17 : 0000%5

18 : 0005

19 : 0000%
20:
21: 5

AND WE 566 THAT

IQR = 156 - 125
= 3] POUNDS
AGAIN, THIS 15 THE DIFFERENCE

BETWEEN THE MEDIAN HEAVY
$TUDENT AND MEDIAN LIGHT ONE.

ONLY I YouRt
A LINEBACKER..

JOUN TUKEY INVENTED ANOTHER KIND OF
DISPLAY TO SHOW OFF THE IQR, CALLED A
BOX AND WHISKERS PLOT. THE BOX'S
ENDS ARE THE QUARTILES @ AND @;. WE
DRAW THE MEDIAN INSIDE THE BOX.

Q, Q,

|

L S B | o

L T v
1o e 136 40 146 (60 155

IF A POINT 15 MORE THAN 1.5 IQR FROM
AN END OF THE BOX, IT'S AN OUTLIER.
DRAW THE OUTLIERS INPIVIDUALLY.

MEDIAN

— T P A
135 W 155 200

FINALLY, EXTEND "WHISKERS" OUT TO THE
FARTHEST POINTS THAT ARE NOT OUTLIERS
(L&, WITHIN 1.5 IQR OF THE QUARTILES).

— T

s G sun S B gum RN B A B S B B WY

BOX-AND-
WHISKERS
PLOT% ARE
ESPECIALLY
600V FOR
SHOWING OFF
DIFFERENCES
BETWEEN

- 6ROUPS.

o
PO VS SN WY B VO VR W N §

21



( THE STANDARD MEASURE OF SPREAD 15 THE

STANDARD DEVIA‘I‘ION

UNLIKE THE IQR, WHICH 15
"BASED ON MEDIANS, THE \
STANDARD DEVIATION MEASURES
THE SPREAD FROM THE MEAN.
YOU ¢AN THINK OF IT,
ROUGHLY $PEAKING, AS THE
AVERASE DISTANCE OF THE
DATA FROM THE MEAN Z.-

EXCEPT THAT WE USE THE SQUARES OF THE DISTANCES INSTEAD. THAT 15,
IF THE SQUARED DISTANCE OF POINT %; TO Z 15 (%; — Z)% THEN

n
1 -
AVERAGE SQUARED DISTANCE = FZ (zi_z)z
i=1
FOR TECHNICAL REASONS, WE USE n-1 IN

THE DENOMINATOR RATHER THAN 7, AND
DEFINE THE SAMPLE VARIANCE $* AS

52 = ‘,7—.’.72:(;&,--—35)zL

i=1

FOR THG DATA SET {3 & 7 7 38}, WITH Z = 12 AND 27 = 5 WE CALCULATE
THE VARIANCE:

5 = G127 + (5-1212 + (1-12P + (-2 + (30-12)% THE LARGE
= oD VARIANCE HERE
REFLECTS THE
WIDE SPREAD IN

_ 81+ 49 + 25+ 25 + 676
4

=214

22




BUT A SPREAD MEASURE SHOULD
HAVE THE SAME UNITS AS THE
ORIGINAL DATA. IN THE
EXAMPLE OF WEIGHTS, THE
VARIANCE 5% 15 MEASURED IN
POUNDS $SQUARED.. OOOP%!

\ .. THE O8VIOUS THING TO PO 1% TO
TAKE THE SQUARE ROOT, AND 50 WE
. PO.. TO DEFING:

( )
STANDARD »=r- Ao
i=1
VW ' AT' ON WHICH, FOR OUR SIMPLE DATA 4ET, 15
s =\[214 = 14.63

EVEN FOR SMALL DATA 5ET5,
THE ARITHMETIC CAN BE
TEDIOUS! 50 NOWADAYS, WE
JUST HIT THE $ BUTTON ON
THE HAND CALCULATOR, OR
CONSULT THE DATA REPORT
GENERATED BY A COMPUTER
SOFTWARE PACKAGE.

2%



.
Properties of

-x_aml s

THE MEAN AND STANDARD
DEVIATION ARE VERY 6000
FOR SUMMARIZING THE
PROPERTIES OF FAIRLY
SYMMETRICAL HISTOGRAMS
WITHOUT OUTLIERS—IE.,
HISTOGRAMS SHAPED LIKE
MOUNDS.

\_

7

-
mwm"//////‘%% /é 4%%%/

A SHAPg
To REMENBER.

L

IT’S OFTEN USEFUL TO KNOW HOW MANY STANDARD DEVIATIONS A DATA POINT
15 FROM THE MEAN. WE DEFINE Z-5CORES, OR STANDARDIZED SCORES, AS
DISTANCE FROM Z PER $TANDARD DEVIATION.

Z-Z .
= L7 FoREACH

Z; 3

A Z-5CORE OF +2 MEANS THAT AN OBSERVATION 15 TWO STANDARD
DEVIATIONS ABOVE THE MEAN. FOR THE WEIGHT DATA (Z=145.2 AND
$=23.7), WE CAN PLOT THE DATA ON THE ORIGINAL Z-AXI5 IN POUNDS AND

THE Z-5CORE AXIS SIMULTANEOUSLY.

150

175
¥

200

2

0 1 T 2
Z score

126

>

A STUDENT WEIGHING 175 POUNDS WAS A 2-5coRE OF JTZ—1452_1 9L

231




(an EMPIRICAL RULE: )

FOR NEARLY SYMMETRIC MOUND-SHAPED DATA SETS, APPROXIMATELY 66%

OF THE DATA 15 WITHIN ONE STANDARD DEVIATION OF THE MEAN AND 95% OF
THE DATA 15 WITHIN TWO STANDARD DEVIATIONS OF THE MEAN.

7

7%
v, .

I T 1 I | I I 1 I I I 1

FOR THE WEIGHTS, OUR EMPIRICAL RULE HOLDS UP PRETTY WELL: 64%
(=59/92) OF THE WEIGHTS ARE WITHIN ONE STANDARD DEVIATION OF THE

MEAN, AND 97% (= 89/92) OF THE WEIGHTS ARE WITHIN TWO STANDARD
DEVIATIONS OF THE MEAN,

Weight in pounds
100 150
L 1 1 1 1 1 1 1 1 1 1
: i
59 points ERRRRRR
I T T 1 1
i
89 points i i i :
. / )
S2points s ibsaiddli 1.4 . AND NOW
f ! ! ' FOR A REST
-2 - 0 1 2 FROM NUMBER
2 score CRUNCHING!
\_ J
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WE'VE COME A LONG WAY IN THIS CHAPTER! STARTING WITH A UNORGANIZED
PILE OF NUMBERS, WE HAVE:

’
1 ) FOUND $EVERAL DIFFERENT
WAYS TO DISPLAY THEM

LOOKED AT TWO PIFFERENT

2) concerTs OF THE CENTER OF
DATA, THE MEDIAN AND THE
MEAN

3 MEASURED THE $PREAD OF THE
DATA AROUND THE CENTER IN
TWO DIFFERENT WAY%S

ENCOUNTERED MOUND-SHAPED

@) WISTOGRAMS AND Z, A VARIABLE
THAT INDICATES HOW MANY
STANDARD DEVIATIONS YOU ARE
FROM THE MEAN.

NOW, IN ORDER TO PROBE THE BEHAVIOR OF DATA MORE DEEPLY, WE'RE 60ING
TO MAKE A LITTLE DETOUR INTO THE REALM OF RANDOMNESS... A LAND WHERE
THINGS ALWAYS WORK OUT IN THE LONG RUN, AND WHERE THE ONLY LAW 15
THE LAW OF THE 6AMBLING CASINO...




+Chapter 3¢
PROBABILITY

OTHING IN LIFE 15 CERTAIN. IN EVERYTHING WE DO, WE
GAUGE THE CHANCES OF SULLESSFUL OUTCOMES, FROM
BUSINESS TO MEDICINE TO THE WEATHER. BUT FOR MOST
OF HUMAN HISTORY, PROBABILITY, THE FORMAL $TUDY OF THE
« HAWS OF CHANCE, WAS USED FOR ONLY ONE THING: GAMBLING.




( NOBODY KNOWS WHEN — h

GAMBLING BEGAN. IT BURY ,P
G60ES BALK AT LEAST AS WITH MY
FAR A5 ANCIENT E6YPT, ASTRAGAL)...
WHERE SPORTING MEN \ c{{:&? To
AND WOMEN USED FOUR- DEATH!
SIDED “ASTRAGALI” !
MADE FROM ANIMAL SN—

HEELBONES.

THE ROMAN EMPEROR CLAUDIUS (10 BLE-54 CE) WROTE THE FIRST KNOWN
TREATISE ON 6AMBLING. UNFORTUNATELY, THIS BOOK, "HOW TO WIN AT DICE”
WAS LOST.

L )
MODERN DICE GREW POPULAR IN THE MIDDLE AGES, IN TIME FOR A RENAIS-
SANCE RAKE, THE CHEVALIER D& MERE, TO POSE A MATHEMATICAL PUZZLER:

e —T—

/ WHAT'S LIKELIER:
ROLLING AT LEAST ONE
$IX IN FOUR THROWS OF

{ A 5IN6LE DIk, OR
ROLLING AT LEAST ONE
DOUBLE $IX IN 24
THROWS OF A PAIR OF
pice?

\—.——_—-/




THE CHEVALIER REASONED
THAT THE AVERAGE NUMBER
OF SUCLESSFUL ROLLS WAS
THE S5AME FOR BOTH 6AMBLES:

CHANCE OF ONE $IX = +

2
AVERAGE NUMBER W,
FOUR ROLLS - 4-(y)= %

CHNCE OF DOUBLE 4
5 IN ONE ROLL * 73g

AVERALE NUMBER W,
WROLLY=24.(3) = 3

WHY, THEN, PID HE LOSE
MORE OFTEN WITH THE
SECOND 6AMBLE??7?

(DE MERE PUT THE QUESTION TO HIS FRIEND, THE GENIUS BLAISE PASCAL |

(1623-1666).

AT LAST, A PROBLEM ALTHOUGH PASCAL HAD EARLIER
6IVEN UP MATHEMATICS AS A FORM
OF SEXVAL INDULGENCE (1), HE
AGREED TO TACKLE DE MERES

PROBLEM.

PASCAL WROTE HIS
FELLOW 6ENIVS PIGRRE
D& FERMAT, AND WITHIN
A FEW LETTERS, THE
TWO HAD WORKED OUT
THE THEORY OF
PROBABILITY IN ITS
MOVERN FORM—EXCEPT,
OF COURSE, FOR THE
CARTOONS.

*PEAR PIERRE,
WHAT A BEAUTIFUL
THEORY WE coud /¢
HAVE, |F ONLY
ONE OF US
OULD DRAW.~

9



BASIC DEFINITIONS

AS OUR GAMBLER PLAYS A 6AME, WE PLAY
SCIENTIST, OBSERVING THE OUTCOME:

»random experiment
15 THE PROCESS OF OBSERVING THE
OUTCOME OF A CHANCE EVENT.

i elementary
ovtcomes izt AL Pos-
S1BLE RESULTS OF THE RANDOM EX-
PERIMENT.

e sample space s
THE SET OR COLLECTION OF ALL THE
ELEMENTARY OUTCOMES.

IF THE EVENT WAS A COIN TO%5, FOR THE ELEMENTARY OUTCOMES ARE

EXAMPLE, THE RANDOM EXPERIMENT HEADS AND TAILS..
CONSI5TS OF RECORDING ITS .
OUTCOME..

AND THE SAMPLE SPACE 15 THE SET
| wrrrren




THE SAMPLE SPACE OF THE THROW OF A $INGLE DIE 15 A LITTLE BIGGER.

AND FOR A PAIR OF DICE, THE SAMPLE SPACE LOOKS LIKE THIS (WE MAKE ONE
DIE WHITE AND ONE BLACK TO TELL THEM APART):

[ X ] [ X ] [ X ] [X] [ X ] [ X ]
[ X J [ X [ X J [ X [ X ¢ [ X J
[ X ] [ X [ X ] [ X ) [ X ] [ X ]
[ ) [ 3] L) [ ) o e [ )
(J [ J (] (] o (]

[ K ] (K [ 2K ] [ 2K ] o e (K ]
[ ) o0 [ ) [N J [ N ] [N J
[ K ] (K ] e [ 2K ] [ K ) [ 3K ]
o ® [ J [ J [ [ ]

THIS SAMPLE SPACE
HAS 36 (6X6)
ELEMENTARY OUT-
COMES. FOR THREE
DICE, THE 5PACE
WOULD HAVE 216
ENTRIES, AS IN THIS
6X6X6 STACK. AND
FOUR bick?

(@?/b &(wouw! ) AT SOME POINT, WE HAVE TO $TOP

LISTING, AND START THINKING...

N



( NOW LET'S IMAGINE A
RANDOM EXPERIMENT WITH
7 ELEMENTARY OUTCOMES
0, O,, . 0, WE WANT TO
ASSI6N A NUMERICAL
WEIGHT, OR PROBABILITY,
TO EACH OUTCOME, WHICH
MEASURES THE LIKELIHOOD
OF IT5 OCLURRING. WE
WRITE THE PROBABILITY OF
0; As P(0O;).

\. Y,

FOR EXAMPLE, IN A FAIR COIN

TO%5, HEADS AND TAILS ARE
EQUALLY LIKELY, AND WE
A%516N THEM BOTH THE
PROBABILITY 5.

P(H)=P(T) = .5

EACH OUTCOME COMES R /At
UP HALF THE TIME. e
ASK ANY FOOTBALL <o
’LAY‘&, NS

r
IN THE ROLL OF TWO DICE, THERE ARE 36 ELEMENTARY OUTCOMES, ALL
EQUALLY LIKELY, 50 THE PROBABILITY OF EACH 15 ;7 .

I ——— —r—

QNE BILLION, 2 HUNDRED

MILLION ... AACk... WHEE ZE.-
AND SIX...

FOR INSTANCE,
P(BLACK 5, WHITE 2) = ;7

WHICH MEANS: IF YOU ROLLED THE
DICE A VERY LARGE NUMBER OF TIMES,
IN THE LONG RUN THIS OUTCOME
WOULD OCCUR 'g OF THE TIME.




WHAT IF OUR GAMBLER
CHEATS AND THROWS A
LOADED DIE? FOR THE SAKE
OF ARGUMENT, SUPPOSE THAT
NOW A ONE COMES UP 25%
OF THE TIME (IN THE LONG
RUN).

’
THE SAMPLE SPACE 15 THE

SAME AS FOR A FAIR DIE {3 B Eg @

{1.2,3,4,5, ¢} 25 L

BUT THE PROBABILITIES ARE
DIFFERENT. Now P(1) =.25
AND THE REMAINING
PROBABILTIES ADD UP TO .75.
IF 2, 3, 4, 5, AND 6 WERE
ALL EQUALLY LIKELY, THEN
EACH ONE WOULD HAVE

PROBABILITY .15 = 2(T5)
\_

IN 6ENERAL, GLEMENTARY OUTCOMES NEED NOT HAVE EQUAL PROBABILITY.

Tue PRoBARILITY
OF A WhLK (5
5%...

o--




[ NOW WHAT CAN WE SAY
ABOUT THE PROBABILITIES
P(O;) IN AN ARBITRARY RAN-
DOM EXPERIMENT? FIRST OF
ALL,

P(0):>0

PROBABILITIES ARE NEVER
NESATIVE. A PROBABILITY OF
ZERO MEANS AN EVENT CANT
HAPPEN. LESS THAN ZERO
WOULD BE MEANINGLESS.

=
YOIty
V)

SECOND, IF AN EVENT 15 CERTAIN TO HAPPEN, WE ASSIGN IT PROBABILITY 1.
(IN THE LONG RUN, THAT'S THE PROPORTION OF TIMES IT WILL OCLUR!)

IN PARTICULAR,
THE TOTAL
PROBABILITY OF 00...
THE SAMPLE METAPHySICAL!
L 4
b .

SPACE MUST BE 1. IF WE DO
THE EXPERIMENT, SOMETHING
15 BOUND TO HAPPEN!

( PUT THESE TWO TOGETHER, AND YOU HAVE THE CHARACTERISTIC )
PROPERTIES OF PROBABILITY:
P(O,’) >0 PROBABILITY 19 NON-NESATIVE
TOTAL PROBABILITY OF ALL
P(0) +P(0) +-+P(0,) =1 gicueumary ourcomes 15 oNE.
WBUT F (GMATN
M‘aL'rA?u sté:a‘
witL .
MY SURT... \\%3
. J




LIKE A CLEVER POLITICIAN, WE
HAVE AVOIDED CERTAIN
UNPLEASANT QUESTIONS,
SUCH AS A) WHAT DOES
PROBABILITY MEAN? AND

B) HOW DO WE A%5I6N
PROBABILITIES TO OUTCOMES?

————
B-OUH, B-PUH-.
LET’S DISCUSS

SOMETHING EASIER,

LIKE 6AYS IN THE

MILITARY...

HERE ARE SOME APPROAZHES THAT HAVE BEEN TAKEN:

[ ]
Classical rrosisiny:
BASED ON 6AMBLING IDEAS, THE
FUNDAMENTAL A%SUMPTION 15 THAT
THE 6AME 15 FAIR AND ALL
GLEMENTARY OUTCOMES HAVE THE

SAME PROBABILITY.
CMON.’\
DADDY NEEDS

A New
\{Heoes/!

Relative Frequency:

WHEN AN EXPERIMENT CAN BE REPEATED,
THEN AN EVENT’S PROBABILITY 15 THE
PROPORTION OF TIMES THE GVENT
OCLURS IN THE LONG RUN.

Personal PROBABILITY: MOST
OF LIFE'S GVENTS ARE NOT
REPGATABLE. PERSONAL PROBABILITY
15 AN INDIVIDUAL'S PERSONAL
ASSESSMENT OF AN OUTCOME'S
LIKELIHOOD. IF A 6AMBLER BELIEVES
THAT A HORSE HAS MORE THAN A 50%
CHANCE OF WINNING, HE'LL TAKE AN
EVEN BET ON THAT HORSE.

AN ORJECTIVIST USES GITHER THE
CLASSICAL OR FREQUENCY DEFINITION
OF PROBABILITY. A SURJECTIVIST OR
BAYGSIAN APPLIES FORMAL- LAWS OF
CHANCE TO HiI5 OWN, OR YOUR,
PERSONAL PROBABILITIES.

HOW PO YOU KNOW THE
| GBLEMENTARY OUTCLOMES M

ARG GQUALLY LIKELY
WITHOUT ROLLING THE
PICE A BILLION TIMES?

OBIECTIVIST

1



BASIC OPERATIONS

S0 FAR, WE HAVE DISCUSSED ONLY THE
PROBABILITY OF ELEMENTARY OUTCOMES.
IN THEORY, THAT WOULD BE ENOUGH TO
DESCRIBE ANY RANDOM EXPERIMENT, BUT
IN PRACTICE [T’ PRETTY UNWIELDY. FOR
EXAMPLE, EVEN SUCH AN ORDINARY
OCLURRENCE A5 ROLLING A SEVEN 15 NOT
AN ELEMENTARY OUTCOME.. 50 WE
INTRODUCE A NEW IDEA:

(AN EVENT 15 A SET OF ELEMENTARY OUTCOMES. THE PROBABILITY OF AN |

EVENT 15 THE UM OF THE PROBABILITIES OF THE ELEMENTARY OUTCOMES IN
THE SET. FOR INSTANCE, SOME EVENTS IN THE LIFE OF A TWO-DICED ROLLER
ARE:

EVENT DESCRIPTION EVENT'S ELEMENTARY PROBABILITY.

OUTLOMES 2
A: pice AvD TO 3 {012), (2.0} P(N)= 3¢
B: DICE ADD TO 6 ((15), @), 33), (42), 5} P(B)= %

C: WHITE DIE SHOWS 1 {(1.), (1,2), (13), (14), A
1,5), (1,6} P(C) = %

D: BLAZK DIE SHOWS 1 {am, (2, 30, (4, A
(51, (61)} P(D)= 36




[ THE BEAUTY OF USING )
GVENTS, RATHER THAN oot 3
GLEMENTARY OUTCOMES, 15
THAT WE CAN COMBING
EVENTS TO MAKE OTHER
EVENTS, USING LOGICAL
OPERATIONS. THE
RELEVANT WORDS ARE
AND, OR, anp NOT.

THAT 15, 6IVEN EVENTS E AND F, WE CAN MAKE NEW GVENTS:
€ and F: Tuc cvenT E AND THE EVENT F BOTH OLUR.
E OF F:  THC GVENT E OR THE GVENT F OCLURS (OR BOTH DO).
Mot E:  Tuc evenT € poEs NoT OwUR.

—
COMBINING OUR PRIMITIVE
DEFINITIONS OF PROBABILITY WITH /! GAMBLE COMPULSNELY
THESG LOGICAL OPERATIONS WILL AND ' LOST MY SHIRT
6IVE US SOME POWERFUL AND m.PASCAL 6 STILL
FORMULAS FOR MANIPULATING WORKING ON MY PROBLEM.
PROBABILITIES. WHAT ARE MY CHANCES

AVEC TU, CHERIE 1




(LET’S RETURN TO THE DICE-THROWING EXAMPLE. IF C 15 THE EVENT, WHITE |

DIE = 1, AND D 15 THE EVENT, BLACK DIE = 1, THEN:

€ OR D15 Tue

E2)EH (23RN (321MH KA )M IR enmre suaveo
CIEE GRS (ORR 2R MR TR one v on e
E’E B]m Bm E]E El- g‘_:]- OTHER 15 1).
o=EH 7B - TR TR 6 Ane D

BE 7R THR R I LR oo s
[<]EE (<188 [ 188 (=188 [ 1]

DICE ARE 1).

THIS ILLUSTRATES THE ADDITION RULE: FOR ANY EVENTS E, F,
P(E OR F) = P(E) + P(F) - P(E AND F)

ADDING P(E) + P(F) POUBLE COUNTS THE ELEMENTARY OUTCOMES SHARED BY
E AND F, 5O WE HAVE TO SUBTRACT THE EXTRA AMOUNT, WHICH 15 P(E AND F).

(IN THE ABOVE EXAMPLE,

1
P(C OR D) = %

AS YOU CAN SEE BY
COUNTING ELEMENTARY
OUTCOMES. LIKEWISE,

1
P(C AND D) = %%

AND WE CONFIRM THE FORMULA:

PO + P(D) P(C AND v)
g - L=1
" 36

= P(COR D)




( SOMETIMES, THE OVERLAP & AND F 15 CMPTY, AND THE TWO EVENTS HAVE )
NO ELEMENTARY OUTCOMES IN COMMON. TN THAT CASE, WE SAY E AND F ARE
MUTVALLY EXCLUSIVE, MAKING P(E AND F) = 0. HERE WE 5EE THE MUTUALLY
EXCLUSIVE EVENTS A, THE DICE ADD TO 3, AND B, THE DICE ADD TO 6.

FOR MUTUALLY EXCLUSIVE EVENTS, WE 6ET A SPECIAL ADDITION RULE: TF E
AND F ARE MUTUALLY" EXCLUSIVE, THEN

P(E OR F) = P(E) + P(F)

Lmv WE CHECK THAT P(A OR B) = 1 =Z +2 = P(A)+P(B)

AND FINALLY, A SUBTRACTION RULE: FOR ANY EVENT E,
P(E) = 1 - P(NOT E)

THIS 15 USEFUL WHEN P(NOT E) 15 EASIER TO COMPUTE THAN P(E). FOR
INSTANCE, LET & BE THE EVENT, A DOUBLE-1 15 NOT THROWN. THE EVENT

NOT-E, A DOUBLE-1 /5 THROWN, HAS PROBABILITY P(NOT E) = 32 .

0 - o). "m].-af: Tof-ol:o
Pe) - 1ortior & [ W) K R R
(- B K K B B
.35 B S K A R
3 B W I B R
i) ) i ] R

39



S0 WE INTRODUCE

conditional

probability
(AN E55ENTIAL-CONCEPT IN
STATISTICS!)

\.

THE FORMULAS WE JUST DERIVED
ARE, IN FACT, APEQUATE FOR
ANSWERING DE MERE'S QUESTION—
BUT NOT EASILY! (YOU MIGHT TRY
USING THEM ON A SIMPLER
QUESTION: WHAT'S THE PROBABILITY
OF ROLLING AT LEAST ONE $IX IN
TWO ROLLS OF A SINGLE DIE?) WE
NEED MORE MACHINERY!

SUPPOSE WE ALTER OUR EXPERIMENT SLIGHTLY, AND THROW THE WHITE DIk
BEFORE THE BLACK DIE. WHAT'S THE PROBABILITY THAT THE FACES SUM TO 3?7

b

NOW SUPPOSE THE

WHITE DIE COMES

UP 1 (BVENT ().
WHAT’S THE




[ WE cALL IT THE
CONDITIONAL
PROBABILITY THAT EVENT
A WILL OCLUR, 6IVEN
THE CONPITION THAT
EVENT € HAS ALREADY
OCLURRED. WE WRITE

P(AIC)

AND SAY “THE
PROBABILITY OF A,
6IVEN C°

BEFORE ANY DICE WERE THROWN, THE SAMPLE SPACE HAD 36 OUTCOMES, BUT
NOW THAT THE EVENT C HAS OCCURRED, THE OUTCOME MUST BELONG TO THE
REDUCED SAMPLE SPACE C.

[ ] [ ] [ ] L [ ] ®
IN THE REDUCED SAMPLE SPACE OF $IX ELEMENTARY OUTCOMES, ONLY ONE
OUTCOME (1,2) SUMS TO 3. SO THE CONDITIONAL PROBABILITY 15 1/6.

( \
IN 6ENERAL, TO FIND
THE CONDITIONAL

PROBABILITY P(GIF),
WE LOOK AT THE

How
v?g&wwm&s
CHANGE S

Tee WORLD EVENT E AND F AS
BvoLves? PART OF THE REDUCED
SAMPLE SPACE F.
\\ J




W WE TRANSLATE THIS —_
INTO A FORMAL WITH THE DICE,\T'S

DEFINITION: THE CONDITIONAL

PROBABILITY OF &, 6IVGN F, 15 A C) g
P T
P(E and F) ¢

P(EIF) = ‘T

P(F)

FROM WHICH YOU CAN DIRECTLY
VERIFY SOME INTUITIVE FACTS:

PCEIE) = 1 (once 6 ocwrs,

1T’ CERTAIN.)
WHEN E AND F ARE MUTUALLY
EXCLUSIVE,

(ONCE F HAS
PEIF) = 0 OCLURRED, € 15

IMPO%5IBLE.)

-
REARRANGING THE DEFINITION 6IVES U5 THE MULTIPLICATION RULE:
P(E AND F) = P(EIF)P(F)

WHICH WE WOULP LIKE TO REDUCE TO A “SPECIAL” MULTIPLICATION RULE,
UNDER THE FAVORABLE CIRCUMSTANCES THAT P(EIF) = P(E). THAT WOULD B
EXCELLENT!

—

AND wuu.s You'Re
WA\TN(r FOR THE

NEXT ?A&E NOTE THAT

SWAPPING E AND F
PROVES TUpT

?(v)?(elv) P(E)?(FIE)




INDEPENDENCE and the

special multiplication rule.

TWO EVENTS E AND F ARE INDEPENDENT OF EACH OTHER IF THE
OCLURRENCE OF ONE HAS NO INFLUENCE ON THE PROBABILITY OF THE
OTHER. FOR INSTANCE, THE ROLL OF ONE DIE HAS NO EFFECT ON THE ROLL
OF ANOTHER (UNLESS THEY'RE 6LUED TOGETHER, MAGNETIC, ETC.).

IN TERMS OF CONDITIONAL PROBABILITY, THIS AMOUNTS TO SAYING
P(G) = P(GIF) oOr, equivaLeNTLY, P(F) = P(FIE). WHEN E AND F ARE
INDEPENDENT, WE 6ET A SPECIAL MULTIPLICATION RULE:

P(E AND F) = P(E)P(F)

LET’S VERIFY THE INDEPENDENCE OF DICE, USING THE FORMULAS. € 15 THE
EVENT WHITE DIE COMES UP 15 D 15 THE EVENT BLACK DIE cOMES UP 1, AND
WE HAVE:

p(cIp) = ‘.’l%‘(%pl c -g_—’z- =-‘5 = P(c)

BUT THE WHITE DIE SHOWING 1 OBVIOUSLY DOES AFFECT THE CHANCES THAT
THE SUM OF THE TWO PICE 15 3!

A
P(AAND ©) _ P(12) _ 36 ! 1
PAK) » “2 7 ¥ s T s S e — PN = —
PO CORE - b * 18
%0 THESE TWO EVENTS ARE NOT INDEPENDENT.

4



BEFORE G6OING ON, LET'S SUMMARIZE ALL THE RULES WE'VE ACCUMULATED:

ARDITION RULE:

P(E OR F) = P(E) + P(F) - P(E AND F)

SPECIAL ADDITION RULE: WHEN E AND F ARE —

MUTUALLY EXCLUSIVE, Tom,vﬁeutf;. o

P(E OR F) = P(E) + P(F) N
THINKING !

SUBTRACTION RULE:
P(E) = 1 - P(NOT E)

MULTIPLICATION RULE:
P(E AND F) = P(EIF)P(F)

SPECIAL MULTIPLICATION RULE: WHEN E
AND F ARE INDEPENDENT,

P(E AND F) = P(E)P(F)

r -

AND NOW, DE MERE'S PROBLEM AT LAST.. LET E BG THE GBVENT OF 6ETTING
AT LEAST ONE $IX IN FOUR ROLLS OF A SINGLE DIE. WHAT'S P(E)? THIS 15
ONE OF THOSE EVENTS WHOSE NEGATIVE 15 BASIER TO DESCRIBE: NOT £15
THE EVENT OF &6TTING NO $IX6S IN FOUR THROWS.

TF A; 15 THE GVENT, 66TTING NO

SIX ON THE i™ THROW, WE KNOW
THAT P(A; ) = - . WE ALSO KNOW
THAT ROLLS ARE INDEPENDENT, 50

P(NOT E) =
P(A, AND A, AND A; AND A,)

" 54‘.
so\’ '(6) 462,

MULTIPLACATION
RULE

P(E) = 1 - P(NOT E) = .518

~\

J




( NOW THE SECOND WALF: LET F BE THE EVENT, 6ETTING AT LEAST ONE
DOUBLE SIX IN 24 THROWS. ASAIN, NOT F 15 EASIER TO DESCRIBE. IT’S THE
EVENT OF 6ETTING NO DOUBLE $IXES.

M
oRAVO! 1
ChN OIE
nheePy !

IF B; 15 THE EVENT, NO POUBLE
5IX 15 THROWN ON THE ™
ROLL, THEN NOT F = B, AND B,
AND.. B,,. THE PROBABILITY OF
EACH B 15

Q
P(NOT F) = (:Tz)l- 509

(BY THE MULTIPLICATION RULE)
AND WE CONCLUDE THAT

P(F) = 1 — P(NOT F) = | — 509
= .49

DE MERE TOLD PASCAL HE HAD ACTUALLY OBSERVED THAT EVENT F OCCURRED
LESS OFTEN THAN GVENT E, BUT HE WAS AT A LO%5 TO EXPLAIN WHY... FROM
WHICH WE CONCLUDE THAT DE MERE GAMBLED OFTEN AND KEPT CAREFUL

RECORDS!/!
——

WHAT ARE
MY OVD4 Of
GETTING IN?
o e

3 T
mr

Mk

° Ul

- NOW LET’S LEAVE THE

S CASINO AND REJOIN THE
L < REAL WORLD..



BAYES THEOREM and the

case of the false positives...

FOR A MORE SERIOUS APPLICATION OF
CONDITIONAL PROBABILITY, LET’S ENTER
AN ARENA OF LIFE AND DEATH..

SUPPOSE A RARE DISEASE INFECTS ONE OUT OF EVERY 1000 PEOPLE IN A
POPULATION...

AND SUPPOSE THAT THERE 15 A 600D, BUT NOT PERFECT, TEST FOR THIS
DISEASE: IF A PERSON HAS THE DISEASE, THE TEST COMES BACK POSITIVE 99%
OF THE TIME. ON THE OTHER HAND, THE TEST ALSO PRODUCES SOME FALSE
POSITIVES. ABOUT 2% OF UNINFECTED PATIENTS ALSO TEST POSITIVE. AND YOU
JUST TESTED POSITIVE. WHAT ARE YOUR CHANCES OF HAVING THE DISEASE?

LET'S PuT
IT TS WAY:
SHouLD 1

OAY 14 AOVBNCE?




WE HAVE TWO GVENTS TO WORK WITH: f\
WELLO? —~

A : PATIENT HAS THE DISEASE
B : PATIGNT TESTS POSITIVE.

;ms % PR
LVDDESUCQUE..
GET ME My

THG INFORMATION ABOUT THE TEST'S LAWYER-.

GFFECTIVENESS CAN BE WRITTEN

P(A) = .001 (ONE PATIENT IN 1000 WAS THE DISEASE)

PBIA) = .99 (PROBABILITY OF A POSITIVE TEST,
6IVEN INFECTION, 15 .99)

P(BINOT A) = .02 (PROBABILITY OF A FALSE POSITIVE, 6IVEN
NO INFELTION, 15 .02)
AND WE ASK

(PROBABILITY OF HAVING THE DISEASE,
P(AIB) = WHAT? 6IVEN A POSITIVE TEST)

( SINCE THE TREATMENT FOR THIS DISEASE HAS SERIOUS $IDE BFFECTS, THE A

DOCTOR, HER LAWYER, AND HER LAWYER'S LAWYGR CALL ON JOG BAYES, CP
(CONSULTING PROBABILIST), FOR AN ANSWER. JOE DERIVES A THEOREM FIRST
PROVED BY HI$ ANCESTOR, THE REV. THOMAS BAYES (1744-1809).

ﬁ
\ WARN YOU...
THIS 16 GOING TO
USE —CACKLE —
CONPI\TIONAL
PrRoBARBILATY.-.

L



(" T0E BELINS WITH A 2X2 TABLE, WHICH DIVIDES THE SAMPLE SPACE INTO FOUR |
MUTUALLY EXCLUSIVE EVENTS. IT DISPLAYS GVERY POS5IBLE COMBINATION OF
DISEASE STATE AND TEST RESULT.

A NOT A
B A AND B NOT A AND B
NOT B| A AND NOT 8 NOT A AND NOT 8

LET'S FIND THE PROBABILITIES OF EACH EVENT IN THE TABLE:

A NOT A SUM
B P(A AND B) P(NOT A AND B) P(8)
NOT B| P(A AND NOT B) P(NOT A AND NOT 8) | P(NOT B)

PN

P(NOT A

1

THE PROBABILITIES IN THE MARGINS ARE FOUND BY SUMMING ACRO%5 ROWS

| AND DOWN COLUMNS.
QY DEFIMITion",

P(A AND B) = P(BIAP(A) = (99)(.001) = .00099
P(NOT A AND B) = P(BINOT A)P(NOT A) = (.02)(999) = .01998
ALLOWING U5 TO FILL IN SOME ENTRIES:

NOW COMPUTE:

A NOT A SUM
B 00099 01998 | 02097
NOT 8 | P(A AND NOT 8) P(NOT A AND NOT 8) | P(NOT 8)

001

999

WE FIND THE REMAINING PROBABILITIES BY SUBTRACTING IN THE COLUMNS, THEN

ADDING ACRO%S THE ROWS.




THE FINAL TABLE 15:

A NOT A
8 00099 01998 02091 | P(B)
NOT 8 00001 97902 97903 P(NOT 8)
001 999 1
P(A) P(NOT A)

FROM WHICH WE DIRGLTLY PERIVE

P(A AND B) _ 00099 _
P(8) 02097

P(AIB) = 0472

~\

DESPITE THE HIGH ACCURACY OF THE TEST, LES5 THAN 5% OF THOSE WHO
TE5T POSITIVE ACTUALLY HAVE THE DISEASE! THIS 15 CALLED THE FALSE
POSITIVE PARAPOX.

PARADOX
PA\éuf
LAWYERS...

THIS TABLE, SHOWS

WHAT HAPPENS IN A
GROUP OF A THOUSAND PISEASE  NO DiseASE
PATIGNTS. ON AVERAGE,

ONLY 21 PEQPLE WiLL  TESTS 1 20 2
TEST POSITIVE—AND posmIVE
ONLY ONE OF THEM TE5TS 0 979
HAS THE DISEASE! 20  NEGATVE

FALSE POSITIVES COME 1 999 1000
FROM THE MUCH

LARSER UNINFECTED
GROUP.

~




WHAT'S THE PHYSICIAN TO DO? JOE BAYES ADVISES HER NOT TO START
TREATMENT ON THE BASIS OF THIS TEST ALONE. THE TEST DOES PROVIDE
INFORMATION, HOWEBVER: WITH A POSITIVE TEST THE PATIENT'S CHANCE OF
HAVING THE DISEASE INCREASED FROM 1 IN 1000 TO 1 IN 23. THE DOCTOR
FOLLOWS UP WITH MORG TESTS.

@(\

d

JOE BAYES COLLECTS KIS CONSULTING CHECK BEFORE ADMITTING THAT ALL
THOSE STEPS HE WENT THROUGH CAN BE COMPRESSED INTO THE SINGLE
FORMULA CALLED BAYES THEOREM:

_ P(A)P(BIA)
P(AIB) = P(A)P(BIA)+P{NOT A)P(BINOT A)

WONDER WWAT
THE ANCESTOR
WouLp HaVE

IT COMPUTES P(AIB) FROM P(A) AND THE TWO CONDITIONAL PROBABILITIES

P(BIA) AND P(BINOT A). YOU CAN DERIVE IT BY NOTING THAT THE BI6 FRACTION
CAN BG EXPRESSED AS

PIA and B)+P[NOTA and B)  _ P(B) P(AIB)
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(IN THIS CHAPTER, WE COVERED THE
BASICS OF PROBABILITY: IT5 DEFINITION,
SAMPLE SPALES AND ELEMENTARY
OUTCOMES, CONDITIONAL PROBABILITY,
AND SOME BASIC FORMULAS FOR
COMPUTING PROBABILITIES. WE
ILLUSTRATED THESE IDEAS USING A
2-DICE SAMPLE SPACE. FOR THE MODERN
GAMBLER, PROBABILITY 15 THE POWER
TOOL OF CHOICE.

AND FINALLY, IN THE MEDICAL EXAMPLE, WE SHOWED HOW THESE ABSTRACT
IDEAS COULD HELP TO MAKE 600D DECISIONS IN THE FACE OF IMPERFECT
INFORMATION AND REAL RISKS—THE ULTIMATE 6OAL OF STATISTICS.

BUT THIS 15 JUST THE BESINNING. FOR U5, PROBABILITY 15 ONLY A TOOL—AN
ES5ENTIAL TOOL, TO BE SURE—IN THE STUDY OF STATISTICS. IN THE CHAPTERS
THAT FOLLOW, WE'LL EXPLORE THE SUBTLE RELATIONSHIP BETWEEN
PROBABILITY, VARIATIONS IN STATISTICAL DATA, AND OUR CONFIDENCE IN
INTERPRETING THE MEANING OF OUR OBSERVATIONS.







+Chapter 4+

RANDOM VARIABLES

IN CHAPTER 2, WG SAW THAT OBSERVATIONS OF NUMERICAL
DATA, LIKE STUDENTS’ WEIGHTS, CAN BE GRAPHED AND
SUMMARIZED IN TERMS OF MIDPOINTS, $PREADS, OUTLIERS, ETC.
IN CHAPTER 3, WE AW HOW PROBABILITIES CAN BE ASSI6NED
TO THE OUTCOMES OF A RANDOM EXPERIMENT.

IF WE IMASING A RANDOM EXPERIMENT RGPEATED MANY TIMES,
WE EXPECT THAT THE ACTUAL OUTCOMES OVER TIME WILL BE
GOVERNED BY THGIR PROBABILITIES. THE PROBABILITIES FORM A
MODEL FOR REAL-LIFE EXPERIMENTS.. 50 WHY NOT PO FOR THE
MODEL WHAT WE'VE ALREADY DONE FOR THE DATA IT DESCRIBES?
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( _ )
THE KEY IDEA 15 THE RANDOM VARIABLE, WHICH WE
s X
A RANDOM VARIABLE 15 DEFINED AS THE NUMERICAL OUTCOME OF A
RANDOM EXPERIMENT. )
.

FOR EXAMPLE, IMAGINE DRAWING ONE STUDENT AT RANDOM FROM THE
STUDENT BODY. THAT'S THE RANDOM EXPERIMENT. THE STUDENT'S HEIGHT,
WEIGHT, FAMILY INCOME, 5A.T. SCORE, AND 6RADE POINT AVERASE ARE
ALL NUMERICAL VARIABLES DESCRIBING PROPERTIES OF THE RANDOMLY
SELECTED STUDENT. THEY'RE ALL RANDOM VARIABLES.

THE
ADMINISTRATION'S
JOB 15 To TuRN

ANOTHER EXAMPLE: TO%5 TWO COINS (THE RANDOM EXPERIMENT) AND RECORD
THE NUMBER OF HEADS: 0, 1, OR 2.

0o 2
OUTCOME il HT TH HH \

z o 1 2

NOTE THE NOTATION! THE VARIABLE 15 WRITTEN WITH A CAPITAL X. THE
LOWERCASE % REPRESENTS A SINGLE VALUE OF X, FOR EXAMPLE =2, IF
HEADS COMES UP TWICE.
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ANOTHER EXAMPLE 15
BASED ON THE FAMILIAR
TO% OF TWO DICE. LET
Y REPRESENT THE SUM
OF THE DOTS ON THE
TWO DICE. FOR THIS
RANDOM VARIABLE, Y

CAN BE ANY NUMBER o Y — 7
BETWEEN 2 AND 12. —

( )
NOW WE WANT TO LOOK AT THE PROBABILITIES OF THE OUTCOMES. FOR

THE PROBABILITY THAT THE RANDOM VARIABLE X HAS THE VALUE 2, WE
WRITE Pr(X = ), OR JUST p(z). FOR THE COIN-FLIPPING RANDOM
VARIABLE X, WE CAN MAKE THE TABLE:

THIS TABLE 15
CALLED THE
z I o | ! | 2 PROBABILITY

1 ‘ 1 | 1 PISTRIBUTION OF
- - - THE RANDOM
4 2 4 VARIABLE X.

FOR THE RANDOM VARIABLE Y (THE UM OF TWO DICE), THE PROBABILITY
PISTRIBUTION LOOKS LIKE THIS:

YUP! THAT's
WHY | GAVE
UP DICIN'?




[ NOW LET'S DRAW G6RAPHS, OR HISTOGRAMS, SHOWING THESE
PROBABILITY DISTRIBUTIONS. FOR EACH VALUE OF X, WE DRAW A BAR
EQUAL IN HEIGHT TO p(z).

50 —

25 —]

7 )

I I |
0 1 2

BASE 1 AND HEIGHT p(z), 50 THE TOTAL AREA 15 THE SUM OF THE
kPROBABILI"I’ IES OF ALL OUTCOMES, LE. 1.

IT'S EASY TO $EE THAT THE TOTAL AREA OF THESE BOXES 15 1: GACH BOX HAS

HERE’S THE PROBABILITY HISTOGRAM OF THE RANDOM VARIABLE Y, SHOWING
THE PROBABILITY DISTRIBUTION OF THE UM OF TWO DICE:
Y
(e
Y6
Yo
Y-

7

1
/16' %




rWl-l)'. PO WE CALL THESE GRAPUS HISTOGRAMS? YOU'LL RECALL THAT IN
CHAPTER 2, A HISTOGRAM WAS A GRAPH THAT DISPLAYED HOW MANY DATA
POINTS LAY IN EACH OF A SERIES OF INTERVALS:

25

20

15

10

5

0 ""_ v v ¥ T

100 150
Weight in Pounds

FROM THIS FREQUENCY WISTOGRAM, WE DERIVED THE RELATIVE FREQUENCY
HISTOGRAM, SHOWING THE PROPORTION OF DATA IN EACH INTERVAL:

0.2

0.1

0.0 (

T T T T v v

100 150
Weight in Pounds

T T T Y

BUT YOU'LL RGCALL THAT, BY
ONG DGFINITION, PROBABILITY
15 THE RELATIVE FREQUENCY
OF AN EVENT °IN THE
LON6 RUN.” IF WE REPEAT
THE RANDOM GXPERIMENT
MANY TIMES, THE RELATIVE
FREQUENCY HISTOGRAM OF i
THE OUTCOMES SHOULD COME DATh ¥
TO LOOK VERY MUCH LIKE
THE RANDOM VARIABLE'S
PROBABILITY WISTOGRAM!
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WE ILLUSTRATE USING THE RANDOM | | THE TOS5ER BE6INS FLIPPING TWO
VARIABLE X AND A MAD COIN TO55GR.| | COINS REPEATEDLY, KEEPING TRACK
N . | OF THE RESULTS.

4*: I

e

WE KNOW X'$ PROBABILITY: DISTRIBUTION, AND WE ALSO KNOW THAT THE
ACTUAL COIN FLIPS WILL MATCH THE PROBABILITIES APPROXIMATELY. AFTER
1000 TO%5E5, THE MAD TO%5ER TALLIES HER DATA:

PROBABILITY

MOVEL OBSERVED DATA
n.
N =NUMBER OF 3 = RELATIVG
P z OCLURRENCES FREQUENCY
25 0 260 260
5 1 517 517
25 2 223 223

AND WE 56C THAT THE PROBABILITY HISTOGRAM OF X LOOKS LIKE THE “PURE
FORM™ OR MODEL OF THE RELATIVE FREQUENCY HISTOGRAM OF THE DATA.




TO EXTEND THE ANALOGY BETWEEN RELATIVE FREQUENCY AND DATA, WE
SHOULD NOW BE WILLING TO TALK ABOUT THE MEAN AND VARIANCE (OR
STANDARD DEVIATION) OF A PROBABILITY DISTRIBUTION...

AND JUST TO REMIND
OURSELVES THAT WE'RE IN
THE REALM OF THE
ABSTRALT, WE BREAK OUT
SOME GREEK LETTERS...

MEAN AND VARIANCE OF
RANDOM VARIABLES

WE USE SPECIAL TERMINOLOGY
AND $YMBOLS TO DISTINGUISH
BETWEEN THE PROPERTIES OF
DATA SETS AND PROBABILITY
DISTRIBUTIONS:

PROPERTIES OF DATA ARE CALLED SAMPLE PROPERTIES, WHILE PROPERTIES
OF THE PROBABILITY DISTRIBUTION ARE CALLED MODEL OR POPULATION
PROPERTIES. WE USE THE GREEK LETTER 4« (MU) FOR THE POPULATION
MEAN, AND o (LOWERCASE 516MA) FOR THE POPULATION STANDARD
DEVIATION. (FOR DATA, WE USE THE ROMAN SYMBOLS Z AND $.)




e

\

~

THE SAMPLE MEAN WAS DEFINED P

8Y THE EQUATION =~ GOOD! NowW LETS

n ~ TWIST T AROUND.
2 - i “‘ >

i=1

NOW SOME OF THESE DATA POINTS z; MAY WELL HAVE EQUAL VALUES. THINK
OF THE MAD COIN TO%5ER: THE ONLY AVAILABLE VALUES WERE 0, 1, AND 2, AND
SHE MADE 1000 TO%5ES. THE VALUE 0 WAS TAKEN ON 260 TIMES, 1 HEAD CAME
UP 517 TIMES, AND 2 HEADS, 223 TIMES.

AS WE' LET z RANGE OVER -
ALL VALUES OF X, CALL 71, BECAUSE EACH
THE NUMBER OF DATA Z 15 COUNTED
POINTS WITH THE VALUE . Nz TIMES..
THEN WE CAN REWRITE
THAT FORMULA A$

z = ;’En,z
allz

OR

7 = 7

7= 5l
allz

AH! BUT NOW %ﬁ 15 THE RELATIVE FREQUENCY.. THE “APPROXIMATE
PROBABILITY.." THE NUMBER THAT APPROACHES p(%)-50, BY ANALOGY, WE
FORM THE EXPRESSION

Zzp(z)
all %

AND DEFING THAT A% THE
MEAN OF THE PROBABILITY
DISTRIBUTION.

2 J




f

\_

DEFINITION: THE

MEANING :
mean or The THE CENTER
RANDOM VARIABLE X 15 OF 15
DEFINED AS

HWSTOGRAM!

M=) 2p(x)
27 [

THIS 15 ALSO CALLED THE EXPECTED VALUE OF X, OR E[X]. THINK OF IT AS
THE 5UM OF THE PO%5IBLE VALUES, EACH WEIGHTED BY ITS PROBABILITY.

THE MAD COIN TOS5ER'S EXPERIMENT ALLOWS US TO COMPARE HER $AMPLE
MEAN Z WITH OUR MODEL MEAN .

SAMPLE MODEL

2| E 2 z | px)  zpo)

o | 0 o | 25 P)

1| e 517 1| s 5

2 | 23 2 | 25 5
963 = % 1= u

s

L

NOW LET’S PO THE SAME THING TO
THE VARIANCE. MAYBE YOU
REMEMBER THE FORMULA

i=1

IT (ALMOST) MEASURES THE AVERASE
SQUARED DISTANCE OF DATA FROM THE
MEAN. A5 ABOVE THIS (AN BE REWRITTEN:

_ Z — Nz
allz
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(" EXCEPT FOR THAT ANNOYING DENOMINATOR 71-1 INSTEAD OF 71, THIS ALSO )
LOOKS LIKE A WEIGHTED SUM OF SQUARED DISTANCES.. 50 WE MAKE ANOTHER
DEFINITION:

e Variance

OF A RANDOM VARIABLE X
15 THE GXPGLTED SQUARED
DISTANCE FROM THE
POPULATION MEAN:

otz Z (z2-1)'p(2)

allz

e standard

deviation -

15 THE SQUARE ROOT
OF THE VARIANCE.
\

DO YOV S5
THAT o2 15 THE
SAME AS
E[(X-p2]?

WE USE THE TABLE

FROM THE LAST z | p(2)  (z0'p(%)
PAGE TO FIND THE o 25 iz 2
VARIANCE OF THE A
Gom wancn o | B G
(FOR WHICH 1 = 1), ; ;
TOTAL 50 = o
=

TO SUM UP: i AND o, THE POPULATION MEAN AND STANDARD DEVIATION,ARE
PROPERTIES WE CAN COMPUTE FROM PROBABILITY DISTRIBUTIONS. THEY ARE
COMPLETELY ANALOGOUS TO THE SAMPLE MEAN Z AND STANDARD DEVIATION $
COMPUTED FROM SAMPLE DATA.
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OUR GXAMPLES %0 FAR HAVE BEEN DISCRETE RANDOM VARIABLES. THEIR
OUTCOMES ARE A SET OF ISOLATED (“DISCRETE") VALUES, LIKE THOSE WE SAW
IN CHAPTER 3, BUT THERE ARE ALSO

Continuous g™ » (oo
Random 3
Variables

LET'S IMAGINE A RANDOM EXPERIMENT
IN WHICH ALL OUTCOMES HAVE
PROBABILITY ZERO. THAT'S RIGHT,
P(%) = 0 FOR EVERY Z.

( N\

A SIMPLE EXAMPLE 15 A BALANCED, SPINNING POINTER. IT CAN STOP ANYWHERE
IN THE CIRCLE. TF X REPRESENTS THE PROPORTION OF THE TOTAL
CIRCUMFERENCE IT LANDS ON, THE RANDOM VARIABLE X CAN TAKE ON ANY
VALUE BETWEEN 0 AND 1—AN INFINITE RANGE OF VALUES.

L

SOME PROBABILITIES ARE EASY TO 0

FIND, LIKE THE PROBABILITY THAT X x

FALLS WITHIN A RANGE: FOR

EXAMPLE, Pr(2s € X € 75 ) = 5,

BECAUSE TS WALF THE CIRCLE. BUT

WHAT ABOUT Pr(X = 5)7 SINCE X 7; 25
CAN TAKE ON AN INFINITE NUMBER * .

OF VALUES, AND ALL OF THESE

VALUES ARG GQUALLY LIKELY, THE

PROBABILITY THAT X 15 EXACTLY 5

(OR GXALTLY ANYTHING) 15

PRECISELY 0. 5



HOW CAN WE DRAW A PICTURE OF THIS?
BY ANALOGY WITH THE CASE OF
DISCRETE PROBABILITIES, WE TRY TO
SEE CONTINUOUS PROBABILITIES AS
ARCAS UNDER SOMETHING. FOR THE
SPINNING POINTER, THE "SOMETHING"
LOOKS LIKE THIS:

A(Z) »0WHEN Z < 0
A(2) = 1WHEN 0 € Z < 1
(%) = 0 WHEN Z > 1

THE PROBABILITY THAT THE
POINTER POINTS ANYWHERE
BETWEEN @ AND b 15 PRECISELY
THE AREA OF THE SHADED REGION
UNDER THE CURVE BETWEEN @ AND
b (N THIS ChsE, b-a).

4 z

THE PROBABILITY OF AN EXACT
OUTCOME, HOWEVER, 15 THE "AREA®
OVER A POINT, WHICH 15 ZERO.
(AND NOTE THAT THE TOTAL AREA
UNDER THE CURVE 15 EXACTLY 1.)




THE SAME PICTURE DESCRIBES THE RANDOM NUMBLR G66NERATOR FOUND ON

MOST COMPUTERS AND SOME CALCULATORS. PRESS THE BUTTON; OUT POPS A

NUMBER BETWEEN 0 AND 1; AND ALL THE NUMBERS ARE EQUALLY LIKELY, JUST
AS WITH THE $PINNING POINTER.

BUT $ADLY, THEY AREN'T
TRULY RANDOM. THEY'RE
PRODUCED BY SOME
ALGORITHM, 50, TO BE
ACLCURATE, WE CALL THEM
PSEUPO-RANDOM NUMBERS.

THE CURVE Y = A(x) IN THIS
EXAMPLE 15 CALLED THE
PROBABILITY DENSITY OF THE
CONTINUOUS RANDOM VARIABLE X.
EVERY CONTINUOUS RANDOM
VARIABLE HAS ITS OWN DENSITY
FUNCTION. THE PROBABILITY
Pr(a < X € b) 15 THE AREA
UNDER THE CURVE BETWEEN THE
Z-VALUES a AND b.




IN 6ENERAL, THE PROBABILITY
DENSITY WON'T BE 50 SIMPLE,
AND COMPUTING THE AREAS CAN
BE FAR FROM TRIVIAL.

a b

WE HAVE TO USE CALLULUS
NOTATION TO DESCRIBE THE
AREA UNDER THE CURVE #(2).
THIS SYMBOL 15 READ “THE
INTEGRAL OF ¥ FROM a TO b

LIKE DISCRETE PROBABILITIES,
CONTINUOUS DENSITIES HAVE
TWO FAMILIAR PROPERTIES:

A(x) 20

If(z)dz =1

(TRY NOT TO BE ALARMED BY THOSE
INFINITIES.. THEY JUST MEAN WE'RE
LOOKING AT THE TOTAL AREA UNDER
THE CURVE FROM END TO END,
EXCEPT THAT THERE 15 NO ENDY)




(" ALTHOUGH THE
NOTATION MAY BE
UNFAMILIAR, ALL IT
MEANS 15 AN ARGA.
THE INTESRAL $I6N
ITSELF 15 A STRETCHED
*5" FOR SUM, WHICH
THE INTEGRAL, IN
SOME SENSE, 15.

AS A SUMLIKE SOMETHING, THE INTESRAL SERVES TO DEFINE THE

MEAN AND VARIANCE of a continvous
random variable.

- WITH THE alz
DISCRETE
jnd FORMULAS:
ot =j WA dz cr’:Z(z-,u)‘p(z)
oo allz

ALTHOUGH IT MAY NOT BE OBVIOUS. FROM THE FORMULAS, THESE DEFINITIONS
OF MEAN AND VARIANCE ARG ENTIRELY CONSISTENT WITH THEIR ROLE AS
CENTER AND AVERAGE SPREAD OF THE PROBABILITIES GIVEN BY THE DENSITY
#(%). THE PICTURE TO KEEP IN MIND 15 THIS:




ADDING

random variables

ONCE YOU KNOW THE MEAN AND
VARIANCE OF A RANDOM VARIABLE,
WHAT CAN YOU PO WITH THEM?
WELL, FOR ONE THING, YOU ¢AN
FIND THE MEAN AND VARIANCE OF
SOME OTHER RANDOM VARIABLES...

( j D
FOR EXAMPLE, LOOK AT A FAIR COIN TO%5. LET X = 1 IF THE COIN COMES LP
HEADS AND 0 IF IT COMES UP TAILS.

z |o 1
px)| 5 5

BY NOW, YOU SHOULD BE ABLE
TO FIND THE MEAN

EX] = 0-p(0) = 1-p(1)
=0+.5
= 5
AND THE VARIANCE

ot = (0-5Pp(0) + (1- 5Pp(1)
- 25
. J

NOW LET'S PLAY A SIMPLE GAMBLING GAME: YOU ANTE UP $6.00 TO PLAY; I
FLIP A COIN; YOU WIN $10 IF THE COIN COMES UP HEADS, ZERO IF TAILS. THEN
YOUR WINNINGS W ARG

Ws=i10X-6"

A NGW RANDOM VARIABLE!
WHAT ARG IT$ MEAN AND
VARIANCE?




(A LITTLE THOVGHT SHOULD )
CONVINCE YOU THAT E[W]

15 6IVEN BY
E[w] = E[1oX- 6]
= 10E[X] - 6

WHICH WORKS OUT TO
10(05)-6 = -

YOU (AN CHECK IT USING
\nus TABLE:

IN 6GNERAL, IT 15 NOT HARD
TO SHOW THAT

E[ax+b] = aE[x] +5

WHEN a AND b ARE ANY exX
NUMBERS AND X 15 ANY RANDOM

VARIABLE. FOR THE VARIANCE,
THERE'S ALSO A GENERAL

RESULT: /‘:\

caX+h) = ata(X) : !
' ag[x1+b

( N
IN THE GAMBLING GAME ABOVE, THE POS5IBLE OUTCOMES ARE -6 AND 4, 50

IT'S CLEAR THAT THE VARIANCE OF W MUST BE 6REATER THAN THE VARIANCE

OF X. IN FACT,

(W) = o(10X+6)

= 100a%(X)
= 25
AND
ow) = 5§




YOU CAN ALSO ADD TWO RANDOM VARIABLES TOGETHER. FOR INSTANCE, SUP-
POSE WE TO%5 A COIN TWICE. THE NUMBER OF HEADS ON BOTH TOS5E% 15
X, +X;, WHERE X, AND X, ARE THE RANDOM VARIABLES 6IVING THE RESULTS
OF THE FIRST AND SECOND TO55E5.

#¥z, | 0 1 2
p(z,+zz)| 25 5 25

AGAIN, IT'S EASY TO SEE THAT

E[X+X,] = G[XJ +E[X,]

r((7OM’T ASK ABOUT THE PROBABILITY DISTRIBUTION OF X +X,, BECAUSE IT
DEPENDS IN A COMPLICATED WAY ON THE TWO ORIGINAL DISTRIBUTIONS. FOR
EXAMPLE, IF X, AND X, ARE BOTH THE SPINNING POINTER DISTRIBUTION, THE
HISTOGRAMS ACT LIKE THIS:)




THE VARIANCE OF THE SUM OF RANDOM VARIABLES HAS A SIMPLE FORM IN
THE SPECIAL CASE WHEN THE VARIABLES X AND Y ARG INDEPENDENT. THE
TECHNICAL DEFINITION OF INDEPENDENCE 15 BASED ON THE PROBABILITY
PROPERTY P(A AND B) = P(AP(B).. BUT FOR U, INDEPENDENCE JUST MEANS
THAT X AND Y ARG 6ENGRATED BY INDEPENDENT MECHANISMS, SUCH AS
FLIPS OF A COIN, ROLLS OF A DI, ETC.

OUTSIDE THE
CASINO, IT'S HARD
TO FIND COMPLETE
INDEPENDENCE...

-
WHEN X AND Y ARG INPEPENDENT,
THEIR VARIANCES APD:

aHX+Y) = T (X (Y)
IN THG CASE OF TWO COIN TO%5E5,
(X ¥Xy) = o (X)) + T (Xy)
=.25+.25
= .5

. J

S1asTICS,
THIS W A
VERY USEFUL

ALL OF THIS CAN BE GENERALIZED TO THE UM OF MANY RANDOM VARIABLES:
n n

ED X] = Y ElX]
i=1 i=1

AND, WHEN THE X; ARG ALL INDGPENDENT,

Vz(zn:xi) = iv'()(,-)

i=1 i=1




(THESE CALLULATIONS LIE AT THE
HEART OF MOST SAMPLING THEORY
AND STATISTICS. MANY SUMMARIES
OF DATA, SUCH AS THE SAMPLE
MEAN, ARE LINEAR COMBINATIONS
OF DATA (1€, SUMS OF THE TYPE
aX+bY+cZ +.)

THE WORLD
15 THE SUM OF
IS PARTS!

.t .'. - N %/J)?//’\
i
s ~
E ===

IN THE NEXT CHAPTER, WE WILL SEE TWO IMPORTANT EXAMPLES OF RANDOM
VARIABLES: ONE, THE BINOMIAL, 15 THE SUM OF MANY REPEATED INDEPENDENT
RANDOM VARIABLES. THE OTHER, THE NORMAL, 15 A CONTINUOUS RANDOM
VARIABLE THAT HAS A SURPRISING RELATIONSHIP TO THE BINOMIAL, AND ANY
OTHER UM OF INDEPENDENT RANDOM VARIABLES AS WELL.

JUST REMEMBER:

RANDOM EXPERIMENT, C‘&;‘%’“& R
NUMERICAL
OuTcoMe! PAYLHECK. .



+Chapter 5+

A TALE OF TWO
DISTRIBUTIONS

NOW WE LOOK AT TWO IMPORTANT EXAMPLES OF
RANDOM VARIABLES, ONE DISCRETE AND ONE CONTINUOUS.




rWE BEGIN WITH THE DISCRETE ONE, CALLED THE BINOMIAL RANDOM VARIABLE. A
SUPPOSE WE HAVE A RANDOM PROCESS WITH JUST TWO POSSIBLE OUTCOMES:
A HEADS-OR-TAILS COIN TO%%, A WIN-OR-LOSE FOOTBALL 6AME, A PASS-OR-
FAIL AUTOMOTIVE SMOG6 INSPECTION. WE ARBITRARILY CALL ONE OF THESE
OUTCOMES A $SUCCESS AND THE OTHER A FAILURE.

P——— c—
CONGRATULATIONS O
YOLR SUCCESS! YOUR CAR )

JUST FAILED THE
SMO6

TeoT!
N

WHAT WE DO 15 TO REPEAT THI$ EXPERIMENT.. WELL, REPEATGOLY. SUCH A
REPEATABLE EXPERIMENT 15 CALLED A

B?rnoulli
trial,

PROVIDED IT HAS THESE CRITICAL
PROPERTIES:

1) THE RESULT OF EACH TRIAL
MAY BE EITHER A SUCLESS OR
A FAILURE

2) THG PROBABILITY p oF
SUCLESS 15 THE SAME IN
EVERY TRIAL.

3) THE TRIALS ARE INDEPENDENT:
THE OUTCOME OF ONE TRIAL HAS
NO INFLUENCE ON LATER OUTCOMES.

™




STARTING WITH A BERNOULLI TRIAL, WITH PROBABILITY OF SULLESS p, LET'S
BUILD A NEW RANDOM VARIABLE BY REPEATING THE BERNOULLI TRIAL.

'I'It.e .

binomial /2w
random " o6 rests?
variable

X 15 THE NUMBGR OF
SUCCES565 IN n REPEATED
BERNOULLI TRIALS WITH
PROBABILITY p OF SUCLESS.

AN EXAMPLE OF A BINOMIAL RANDOM VARIABLE 15 THE NUMBER OF HEADS
(5VCCESSES) IN TWO FLIPS OF A COIN. HERE 11 =2 AND p =.5

A= NUMBER
OF SULLESSES | o 1 2
Pr(X=4) | 25 5 a5

ANOTHER EXAMPLE |5 DE MERE'S FIRST GAMBLE: TO%5ING A SINGLE DIE
FOUR TIMES IN A ROW. SUCCESS MEANS ROLLING A 6. THE DISTRIBUTION 15:

UM... THE PASTRIBUTION
\9\\- ‘6\\. ’

e WHAT 6 TME
PROBABILITY OF
ROLLNG & b'S
N 4 RoLLS ?



IN GENERAL, WHAT'S THE PROB-
ABILITY DISTRIBUTION OF THE
BINOMIAL FOR ANY PROBABILITY
P AND NUMBER OF TRIALS 77 A
PROBABILITY CALLULATION &IVES
THE ANSWER: THE PROBABILITY
OF OBTAINING £ SUCCESSES IN
nTRIALS, PrX=4), 15

Pr(X=8 = (})pta-pr+

TIME FOR YouR
MATH TUCRAPY !

( nere (3). READ *n CHOOSE 4" 15 THE BINOMIAL COGFFICIGNT. TT COUNTS |
ALL POSSIBLE WAYS OF GETTING 4 SUCLES5ES IN 11 TRIALS. EACH INDIVIDUAL
SEQUENCE OF 4 SUCLES5ES AND n-4 FAILURES HAS PROBABILITY p(1-p)™4,
8Y THE MULTIPLICATION RULE. THERE ARE () OF THESE SEQUENCES.

l—p) PP G-p ¥

FEGES . G

THE FORMULA FOR () 15

@) = ot %A@D}
{

WHERE

nl = nx(n-)x(n-2)x .. x4

AND 0! 15 TAKEN TO BE 1. FOR INSTANCE, AB Ac AD

(3). THE NUMBER OF POS5IBLE WAYS TO

oo s BC BD €D

) PR I %
(’)"zm' é

4
76



( ANOTHER VIEW OF THE BINOMIAL COBFFICIENTS 15 IN PASCAL’S TRIANGLE. |
EACH GNTRY 15 THE SUM OF THE TWO NUMBERS JUST ABOVE IT.
o,
1 5
12 (3)
3
4 6
10 (10)
(3) 5 20 15 6 1 7
o NS I A B
1 8 28 56 70 % 128 0
193604126126943691‘/(10
1 10 45 120 210 252 210 120545 10 1
1 N 55 165 330 462 462 330 165 55 N 1
1 12 66 220 495 792 924 792 495 220 6 12 1
e
70 FIND (7). JUST COUNT DOWN TO ROW 7 AND OVER TO GNTRY 4
k(REMEMBERlN& ALWAYS TO START COUNTING FROM ZERO). D

WHEN p = 5, THE BINOMIAL'S
PROBABILITY DISTRIBUTION 15
PERFGLTLY SYMMETRICAL. FOR
6 COIN FLIPS, FOR INSTANCE, IT'S

k=oHEADS 0 1 2 3 4 5 .
*

meb (F @)% @' Qe @ @1 @)

WITH THIS

HISTOGRAM: ¢

S g S N ey



FOR DE MERE'S ROLL OF FOUR DICE, THE DISTRIBUTION 15 MORE LOPSIDED:

615/
28
129 900/lz%
\90/‘1% 29, ’
o
ov“;’&’e‘s“ o \ 2 '3 4

THE MEAN AND VARIANCE OF THE
BINOMIAL DISTRIBUTION ARE

m = np
o* = np(-p)

WE WON'T BORE
YOU W\TH THE
DERIVATION.. .

]

NOTE THAT THE MEAN MAKES
INTUITIVE $ENSE: IN 71 BERNOULLI
TRIALS, THE EXPECTED NUMBER OF
SUCLES5ES SHOULD BE np. THE
VARIANCE FOLLOWS FROM THE
FACT THAT THE BINOMIAL 15 THE
SUM OF 71 INDEPENDENT BERNOULLI
| TRIALS OF VARIANCE p(1-p).

THE PARAMETERS OF THE BINOMIAL DISTRIBUTION ARE 77 AND p. THE
DISTRIBUTION, MEAN, AND VARIANCE DEPEND ONLY ON THESE TWO NUMBERS.
TABLES OF THE BINOMIAL DISTRIBUTION APPEAR IN MOST TEXTBOOKS AND
COMPUTER PROGRAMS. HERE 15 A TABLE FOR n=10.

VALUES OF Pr(X=4)
Kk
o 1 2 3 4 S5 6 7 8 9 10
.1 0.349 0.387 0.194 0.057 0.011 0.001 0.000 0.000 0.000 0.000 0.000
.25 0.056 0.188 0.282 0.250 0.146 0.058 0.016 0.003 0.000 0.000 0.000
P .50 0.001 0.010 0.044 0.117 0.205 0.246 0.205 0.117 0.044 0.010 0.001
.75 0.000 0.000 0.000 0.003 0.016 0.058 0.146 0.250 0.282 0.188 0.056
9 0.000 0.000 0.000 0.000 0.000 0.001 0.011 0.057 0.194 0.387 0.349



-
BUT CALLULATING
THESE THINGS FOR
LARGE VALVES OF n
CAN BE A PAIN.. OR AT
LEAST, IT WAS BAZK IN
THE 18™ CENTURY,
WHEN JAMGS
BERNOULLI AND
ABRAHAM DE MOIVRE
WERE TRYING TO PO
IT WITHOUT A

We EED N/ OR WipER ) )
) NEW TooLs! | PAPER...

SN =
@)

DEPLOYING A NEWLY
INVENTED WEAPON, THE
CALCULUS, DE MOWRE
SHOWED THAN WHEN p =5,
THE BINOMIAL DISTRIBUTION
WAS CLOSELY
APPROXIMATED BY A
CONTINUOUS DENSITY
FUNCTION WHICH COULD 86
‘DESCRIBED VERY SIMPLY.

TO SEE HOW THIS WORKS, IMASINE THE BINOMIAL DISTRIBUTION WITH p = 5
AND 7 VERY LARGE—A MILLION, 5AY..

001 1

VM...

WHAT A

WIDE, LOwW
THWNG ..




NOW, SAID DEMOIVRE, SLIDE THIS
GRAPH OVER, 50 ITS MEAN 15 ZERO.

SQUASH THE CURVE ALONG THE z AXIS
UNTIL THG STANDARD DEVIATION
BGLOMES 1, WHILE STRETCHING IT

AXIS TO KEEP THE ARGA
AL TO 1.

ALONG6 THE
UNDER IT

Souigy

THE RESULT 15 VERY CLOSE TO A SMOOTH, SYMMETRICAL, BELL-SHAPED
CURVE, WHICH DEMOIVRE SHOWED WAS GIVEN BY THE SIMPLE FORMULA:

1 -z

—_— e"’T

V'—

THIS FUNCTION 15 CALLED THE
standard normal
distribution.

(e 16 A USEFUL MATHEMATICAL

CONSTANT APPROKIMATEL
EQUAL TO 2.718.) !

N

2T
%’% » BEROTIFUL
D 2 Taner

——

\.

(" (CONVINCE YOURSELF THAT THIS FUNCTION REALLY HAS A BELL-SHAPED
#(2) 15 VERY NEARLY ZERO—IT HAS A BI6
DENOMINATOR; IT'6 SYMMETRICAL, SINCE #(Z) = £(~Z), AND IT HAS A

GRAPH. FOR Z FAR FROM ZERO,

MAXIMUM AT Z = 0)

THE DISTRIBUTION 15 CALLED THE
STANDARD NORMAL BECAUSE ALL
THAT SQUASHING AND STRETCHING
WAS SPECIALLY ARRANGED TO 6IVE
IT THESE SIMPLE PROPERTIES,
WHICH WE PRESENT WITHOUT
PROOF:

\

(/]
= 1

M
o




(TO SUMMARIZE DE MOIVRE, — —
IF YOU “NORMALIZE™ THE ?-8uT... ToaT WS ToR
BINOMIAL DISTRIBUTION WHAT pBoLT DeMOIVRE,

WITH p = 1/2—1E., CENTER T™E C-C-C- NoT ForR US..

IT ON ZERO AND MAKE TS
STANDARD DEVIATION = 1,
THEN IT CLOSELY FITS
THE STANDARD NORMAL
DISTRIBUTION

() = ﬁ-lie’z;

OTHER NORMALS, WITH DIFFERENT MEANS AND VARIANCES, ARE OBTAINED BY
STRETCHING AND SLIDING THE STANDARD NORMAL. IN G6ENERAL, WE WRITE THE
FORMULA

THIS 6IVES A SYMMETRIC,
£z | ) | _J(EM)r  ELL-SWAPED pISTRIBUTION
Z|\po) = gme T C CENTERED ON THE MEAN
- o WITH THE STANDARD
DEVIATION o

HERE ARE TWO DIFFERENT NORMALS WITH THE REGIONS WITHIN THEIR
STANDARD DEVIATIONS SHADED.

#2 WITH SMALL o,

£ WITH LARGE o,




DE MOIVRE PROVED THAT THE STANDARD NORMAL FITS THE (NORMALIZED)
BINOMIAL WITH p = .5, BUT, IN FACT, IT WORKS FOR ANY VALUE OF p.

GENERALLY: FOR ANY
VALUE OF p, THE

ALL BANOMIALS

BINOMIAL PISTRIBUTION TURN INTO
OF n TRIALS WITH \ NORMALS,
PROBABILITY p 1% EVENTUALLY...
APPROXIMATED BY THE
NORMAL CURVE WITH
M = np AND
o = np(1-p).
-
THIS 15 ACTUALLY A
LITTLE $TRANGE. ALL
NORMALS ARE
SYMMETRICAL AND
BELL SHAPED.. BUT, AS
WE 5AW, BINOMIAL
DISTRIBUTIONS ARE
NOT SYMMETRICAL
WHEN p #.5.
B comummnnt
.

BUT IT TURNS OUT THAT AS 7 66T LARGE, THE BINOMIAL'S ASYMMETRY 15
OVERWHELMED, AS YOU SEE IN THIS EXAMPLE:

Al 7'

A

] I I 1

-2 0 5 10
Binomial: n= 2 andp=0.3 Binomial: n= 20 andp = 0.3
82



IN FACT, DEMOIVRE'S DISCOVERY ABOUT THE BINOMIAL 15 A SPECIAL CASE OF AN
EVEN MORE GENERAL RESULT, WHICH HELPS EXPLAIN WHY THE NORMAL 15 50
IMPORTANT AND WIDESPREAD IN NATURE. IT 15 THIS:

“"Fuzzy .
Central Limit /‘\3 T INCLODES
Theorem"™: gy EVERYTHING !
DATA THAT ARE QL

INFLUENCED BY MANY
SMALL AND UNRELATED
RANDOM EFFECTS ARE
APPROXIMATELY NORMALLY
PISTRIBUTED.

.
THIS EXPLAINS WHY THE NORMAL 15 EVERYWHERE: STOCK MARKET
FLUCTUATIONS, STUDENT WEIGHTS, YEARLY TEMPERATURE AVERAGES, SAT.
SCORES: ALL ARE THE RESULT OF MANY DIFFERENT EFFECTS. FOR EXAMPLE,
A STUDENT'S WEIGHT 15 THE RESULT OF 6ENETICS, NUTRITION, ILLNESS, AND
LAST NIGHT'S BEER PARTY. WHEN YOU PUT THEM ALL TOGETHER, YOU 6ET
THE NORMAL! (REMEMBER, THE BINOMIAL 15 THE RESULT OF 7 INDEPENDENT
BERNOULLI TRIALS.)

You MEAN THis
15 NORMAL? A '
‘ '( ",‘u “l

it 1
‘)i l{'l\ M‘lw\“ r‘/'ﬁ]hv’y

\ : OOR6G...NEXT TIME
l )
" 'l AFTER n-1 BEERS..

‘2(,.’ y




(THE z TRANSFORMATION
_ M

Z = o

CHANGES A NORMAL
RANDOM VARIABLE WITH
MEAN 4 AND STANDARD
DEVIATION o INTO A
STANDARD NORMAL
RANDOM VARIABLE WITH
MEAN 0 AND STANDARD
DEVIATION 1.

'S ANOTHER
SQUISHING,
SLIDWNG

THEN ALL WE NEED TO FIND PROBABILITIES FOR ANY NORMAL DISTRIBUTION 15

THE 5INGLE TABLE FOR THE STANDARD NORMAL R(Z).

z
F@@)

25 -24 -23 -22 -21 -20 -19 -18 -1.7 -16
0.006 0.008 0.011 0.014 0.018 0.023 0.029 0.036 0.045 0.055

z
F@)

15 -14 -13 -12 -1 -10 -09 -08 -07 -06
0.067 0.081 0.097 0.115 0.136 0.159 0.184 0.212 0.242 0.274

z
F(2)

05 -04 -03 -02 -01 00 01 02 03 04
0.309 0.345 0.382 0.421 0.460 0.500 0.540 0.579 0.618 0.655

z
F(2)

05 06 07 08 09 10 11 12 13 14
0.691 0.726 0.758 0.788 0.816 0.841 0.864 0.885 0.903 0.919

z
F@@)

15 16 17 18 19 20 21 22 23 24
0.933 0.945 0.955 0.964 0.971 0.977 0.982 0.986 0.989 0.992

z
F(z)

25
0.994

Q\Q,.g@

HERE F(a) = Pr(z < @), THE AREA UNDER THE DENSITY CURVE TO THE LEFT

OF z=a.

N

(WE CAN ALSO
6RAPH THE
CURVE F@

%‘:— F(2),

-
[

L
CUNILATIVE 2
PROBABILITY.

IT LOOKS

Plaeae--

LIKE THIS)

()

2



THE TABLE ALLOWS US TO FIND THE 50, FOR GXAMPLE,

PROBABILITY OF Z BEING IN ANY INTGRVAL . - Fe
a €z €b. IT 15 JUST THE DIFFERENCE Pr(-'::;'-)tser Fo-Fen
BETWEEN THE AREAS F(b) AN F(a). = .

d
.

000,

Do 0.9,0,99.9,%
«osv .'-'o!.:.’.?l:’.’.‘o'

Ba @
/71 Praczch) =

Pr(z22)= 1-F(@)
=1-91mM2
= .0228

Fkb) -F@

USING THE SUBSTITUTION
z= 22 we o vse
THG SAME TABLE TO FIND

PROBABILITIES FOR OTHER
NORMAL DISTRIBUTIONS.

FOR GXAMPLE, SUPPOSE STUDENT WEIGHTS ARG
NORMALLY DISTRIBUTED WITH A MGAN = 150
POUNDS AND STANDARD DEVIATION 0= 20:

THEN WHAT’S THE PROBABILITY OF WEIGHING
MORE THAN 170 POUNDS?

NOW IT'$ JUST" ALGEBRA.
Pr(X>170) =
Pr X- \70-190\ _
r(’TrE' > —3;") =
Pv(‘Z > %_—g) z

Pr(2>1)

THAT’S 1= F (1), WHICH WE CAN RGAD FROM THE
TABLE AS 1- 8413 = 1567

AREA= \9GQ7

/

150 \70

A LITTLE LE%5 THAN ONG STUDENT IN SIX TIPS
THE $CALES ABOVE 170 POUNDS.

THE 6ENGRAL RULE FOR COMPUTING NORMAL PROBABILITIES 15 TUERGFORE:

Pr(a <X<b) = F(b;B)—F(a;#)

19




-
NOW BACK TO DE MOIVRE
AND HI5 BINOMIAL
APPROXIMATION... LET’S
LOOK AT A BINOMIAL
DISTRIBUTION WITH 72 =25
TRIALS AND p=5 (25
COIN FLIPS, 5AY). WE CAN

IT 15 7678 EXACTLY.

.

COMPUTE (OR LOOK UP IN
A TABLE) ANY PROBABILITY,
FOR EXMPLE, Pr(x<14).

SHADED
AREA =

1878

J
NOW CALCULATE A NORMAL RANDOM VARIABLE X* WITH THE SAME MEAN
M=np = (25X5) =125 AND STANDARD DEVIATION o = np(1-p) = 2.5.
4 -12.5
Prex*<4) = Pr(z< =)
= Pr(Z<.6)
= .7257
w5
N

7878 VERSVS
72577 WHAT KIND
OF APPROXIMATION

UM.. AN
APPROXIMATE

AH, BUT WE CAN DO BETTER!
IF YOU LOOK CLOSELY AT THE
FIRST HISTOGRAM, YOU $EE
THE BARS ARE CENTERED ON
THE NUMBERS. THIS MEANS
Pr(X*< 14) 15 ACTUALLY THE
[ AREA UNDER THE BARS LESS
THAN 2z = 14.5. WE NEED TO
ACCOUNT FOR THAT EXTRA .5,
AND IN FACT,

Pr(X*<145) = Pr(z< @
- .7681

A VERY 600D APPROXIMATION
TO .7678 INDEED!




( THAT LITTLE EXTRA 5 WE
ADDED 15 CALLED THE

continvity

correction.
WE HAVE TO INCLUDE IT
TO 6T A 6000
CONTINVOUVS
APPROXIMATION TO OUR
DISCRETE BINOMIAL
RANDOM VARIABLE X. IT'S
SUMMARIZED BY THIS ONE
HIDEOVS FORMULA:

a-z-np b-‘-%-ﬂe
Vr(MX <b) =D (——L—np(l_P)< y £ r—_ﬂPf"P))

WHEN 15 THIS APPROXIMATION "6000 ENOUGH?" FOR STATISTICIANS, THE
RULE OF THUMB 1%: WHENEVER 7 15 Bl6 ENOUGH TO MAKE THE NUMBER OF
EXPECTED SUCLESSES AND FAILURES BOTH GREATER THAN FIVE:

np 25 and n(-p) 2

YOU CAN 566 FROM THESE HISTOGRAMS THAT THE FIT WHEN p = 0.1 15
MEDIOCRE OR WORSE UNTIL 17 REAZHES 50, MAKING np = 5.

ik

-1 o 1 2 -2 o 2 4 o s 10

n=2, p= ol n=1, p= ol n=5, p= ol
o7



WHAT'S 0 GREAT ABOUT THIS NORMAL APPROXIMATION? THE BINOMIAL
DISTRIBUTION OCCURS COMMONLY IN NATURE, AND IT ISN'T HARD TO UNDER-
STAND, BUT IT CAN BE TIRESOME TO CALCULATE.

-~ ———

THERE'S A NEW ONE
FOR EVERY VALUE

OF n AND p..

rTHE NORMAL WHICH APPROXIMATES IT MAY BE LESS INTUITIVE, BUT IT'S VERY )
EASY TO USE. THE Z-TRANSFORM CONVERTS ANY NORMAL TO THE STANDARD
NORMAL, ALLOWING U5 TO READ PROBABILITIES STRAIGHT OUT OF A $INGLE
NUMERICAL TABLE.

——

ﬁn A BOOK\
()

RON A~
COMPUTER
SCREeN!

AND BESIDES, THE NORMAL REALLY 15 THE
MOTHER OF ALL DISTRIBUTIONS!

oMMy Mommy!




+Chapter 6+
SAMPLING

BY NOW, AFTER A STEADY DIET OF COINS, DICE, AND ABSTRACT
IDEAS, YOU MAY B WONDGRING WHAT ALL THIS STATISTICAL
GQUIPMENT WE'VE BEEN BUILDING HAS TO PO WITH THE REAL
WORLD. WELL, NOW WE'RE FINALLY 60ING TO FIND OUT..

IN THIS CHAPTER, WE BEGIN LOOKING AT THE REAL BUSINESS OF STATISTICS,
WHICH 15, AFTER ALL, TO SAVE PGOPLE TIME AND MONEY. PEOPLE HATE TO
WASTE TIMG DOING UNNECESSARY WORK, AND ONE THING STATISTICS CAN PO
15 TELL US GXACTLY HOW LAZY WE CAN AFFORD TO BE.




THE PROBLEM WITH THE WORLD 15 THAT THE COLLELTIONS OF STUFF IN IT
ARE 50 LARGE, IT'S HARD TO 66T THE INFORMATION WE WANT:

VOTING POPULATIONS: MANUFACTURED 600D%: PICKLES: WHAT'S THEIR
WHAT PGRCENTAGE WHAT PROPORTION WIL|
FAVORS GACH CANDIDATE?

THE PICKLE-JAR MAKERS
NEEP TO KNOW!

-
THE INDUSTRIOUS,
HARD-WORKING,
SIMPLE-MINDED
BEAVERLIKE WAY TO
ANSWER THESE
QUESTIONS WOULPD
BE TO MEASURE
EVERY $INGLE
PICKLE IN THE
WORLD (5AY) AND
PO SOME
ARITHMETIC.

BUT WE AREN'T BEAVERS—WE'RE
STATISTICIANS! WE'RE LOOKING
FOR THE £ASY WAY OUT.

OM, WELL...

| ATE THe
PENCIL,



OUR METHOP 15 TO TAKE

ol

QUESTION OME: Wow

A SAMPLE... A vo You feeL asour) .- | [N
RELATIVELY SMALL POLLING ? ‘g A
5UBSET OF THE TOTAL <
POPULATION, THE WAY £
POLLSTERS DO AT Js
GLECTION TIME. =
S
AW

AN OBVIOUS QUESTION 15: HOW BI6 A SAMPLE PO WE HAVE TO TAKE TO 6€T
MEANINGFUL RESULTS?

( AND THE ANSWER,
WHICH YOU SHOULD
INSCRIBE IN YOUR
BRAIN FORGVERMORE,
WILL TURN OUT TO
BE: IF 7 15 THE
NUMBER OF ITEMS IN
THE SAMPLE, THEN
EVERYTHING 15
GOVERNED BY

!
Vn .

\




SAMPLING
DESIGN

-
BEFORE POING THE NUMBERS, WE
SHOULD POINT OUT THAT THE

QUALITY OF THE SAMPLE 15 AS
IMPORTANT A% ITS $IZE. HOW DO

WE ASSURG OURSELVES THAT

WE'RE CHOOSING A Q

REPRESENTATIVE SAMPLE?

Q THE S6LECTION PROCGSS

? ITSELF 15 (RITICAL. FOR
EXAMPLE, A VOTER SURVEY THAT
SYSTEMATICALLY GXLLUDED BLACK
PEOPLE WOULD BE WORTHLESS,

AND THERE ARE A HOST OF
OTHER WAYS TO RUIN, OR BIAS, A

A SAMPLE. )

NOT TO PROLONG THE MYSTERY, THE WAY TO GET STATISTICALLY DEPENDABLE
RESULTS 15 TO cHOOSE THE smpLe AT random.

t ¢AN'T HEAR
You! 15 1T STL
RANDOM?




( N )

«~ SIMPLE rRanDOM SAMPLE

SUPPOSE WE HAVE A LARGE
POPULATION OF OBJECTS AND A
PROCEPURE FOR $ELECTING n OF
THEM. IF THE PROCEDURE
GNSURES THAT ALL POS5IBLE
SAMPLES OF n OBJECTS ARE
EQUALLY LIKELY, THEN WE (ALL

THe proceoure A Simple

random sample. Q%%% %é&
. Wy,
THE SIMPLE RANDOM SAMPLE HAS TWO PROPERTIES THAT MAKE IT THE
STANDARD AGAINST WHICH WE MEASURE ALL OTHER METHODS:

1 ) UNBIASED: EACH UNIT HAS THE SAME
CHANCE OF BEING CHO%EN.

2) INDEPENDENCE: SELECTION OF ONE
UNIT HAS NO INFLUENCE ON THE
SELECTION OF OTHER UNITS.

r—
UNFORTUNATELY, IN THE REAL WORLD, COMPLETELY UNBIASED, INDEPENDENT
SAMPLES ARG HARD TO FIND. FOR INSTANCE, SURVEYING VOTERS BY RANDOMLY
DIALING TELEPHONE NUMBERS 15 BIASED: IT IGNORES VOTERS WITHOUT A
TELEPHONE AND OVERSAMPLES PEOPLE WITH MORE THAN ONE NUMBER.

QNG HELLO? PEROT Foa
TR PRESIDENT HEAVQUAR‘E&G'

ﬁ g e

Y=\

"V,

”




IT’6 THEORETICALLY POSSIBLE 1
TO 6ET A RANDOM SAMPLE BY
BUILDING A SAMPLING
FRAME: A LIST OF EVERY
UNIT IN THE POPULATION. BY
USING A RANDOM NUMBER
GENERATOR, WE CAN PICK 71
OBJELTS AT RANDOM.

TGRS
Wl

eIl i il

(R}
W

ROYYTUINY AT T s

(]
P

EQUIVALENTLY, WE CAN PUT ALL THE
NAMES ON CARDS AND PULL 7 OF
THEM OUT OF A DRUM.

BUT THIS 15 NOT ALWAYS EASY. MAKING THE FRAME MAY BE PROMIBITIVELY
CO5TLY, CONTROVERSIAL, OR EVEN IMPOS5IBLE. FOR EXAMPLE, AN E.PA. WATER
QUALITY STUDY NEEDED A SAMPLING FRAME OF LAKES IN THE U5, O THEN

SOMEBODY HAS TO DECIDE:
WHAT WET 4POT
19 A LAKE?

ARE THERE OTHER WAYS TO SAMPLE THAT ARE MORE EFFICIENT AND COST-
EFFECTIVE THAN A SIMPLE RANDOM SAMPLE? YES—IF YOU ALREADY KNOW
SOMETHING ABOUT THE POPULATION. FOR INSTANCE..

L]



p
Stratified

SAMPLING: DIVIDE THE
POPULATION UNITS INTO
HOMOGENEOUS 6ROVPS
C(STRATA) AND DRAW A
SIMPLE RANDOM SAMPLE
FROM GACH 6ROUP.

WAMBURGER

Canl

FOR GXAMPLE, THE POPULATION OF ALL PICKLES CAN BE STRATIFIED BY
TYPE OF PIcKLE. WITHIN GAZH TYPE OR STRATUM, THE $1Z6 SHOULP BE
L1-566 VARIABLE.

CI“s'er SAMPLING 6ROUPS THE POPULATION INTO SMALL
CLUSTERS, DRAWS A SIMPLE RANDOM SAMPLE OF

CLUSTERS, AND OBSERVES EVERYTHING IN THE SAMPLED CLUSTERS. THIS CAN BE

COST-BFFELTIVE IF TRAVEL CO5TS BETWEEN RANDOMLY SAMPLED UNITS 15 HIGH.

-
gl

AL,
Tl Ve
'l;‘./\\@;‘)) 1;|. -t |

A = CLUSTER

AN EXAMPLE 15 A CITY
HOUSING SURVEY WHICH
PIVIDES A (ITY INTO
BLOCKS, RANDOMLY
SAMPLES THE BLOCKS,
AND LOOKS AT GVERY
HOUSING UNIT IN GACH
SAMPLED BLOCK.

%



sys'emanl-i @ FMPLING STARTS WITH A RANDOMLY

CHOSEN UNIT AND THEN SELECTS EVERY 4™
UNIT THEREAFTER. FOR INSTANCE, A HIGHWAY TRAFFIC $TUDY MIGHT CHECK
EVERY HUNDREDTH CAR AT A TOLL BOOTH. THIS PLAN 15 EASY TO IMPLEMENT
AND CAN BE MORE EFFICIENT IF TRAFFIC PATTERNS VARY SMOOTHLY OVER TIME.

EXCUSE ME..WOULD You
MIND ANSWERING FIFTY
OR SIXTY GUBSTIONS?

\X\\Q

Word of warning #1:

MOST STATISTICAL METHODS DEPEND ON
THE INDEPENDENCE AND LAZK OF BIAS OF
THE SIMPLE RANDOM SAMPLE. THE RESULTS
AHEAD APPLY TO THE $IMPLE RANDOM
SAMPLE ONLY. FOR OTHER SAMPLING
PROCEDURES, THE RESULTS MUST BE
MOPDIFIED. THE DETAILS APPEAR IN
SPECIALIZED SAMPLING TEXTBOOKS AND
COMPUTER ALGORITHMS.




- o
Word of warning #2: Wmiour rawomizeo
DESIGN, THERE CAN BE NO

DEPGNDABLE STATISTICAL
ANALYSIS, NO MATTER
HOW IT 15 MOPIFIED. THE
BEAUTY OF RANDOM
SAMPLING 15 THAT IT
“STATISTICALLY
GUARANTEES™ THE
ACCURALY OF THE SURVEY.

> .

A COMMONLY U5ED METHOD 15 ESPECIALLY PRONE TO BIAS: IT’5 CALLED AN
opportunity swec avowing AL
THE BOTHER OF DESIGNING A

PROCEDURE, THE OPPORTUNITY Dow'T WORRY!
SAMPLER JUST GRABS THE WE VOLUNTEERED!
FIRST 72 POPULATION UNITS -

TO COME ALONG.

R

A CLASSIC EXAMPLE 15 SHERE HITE'S BOOK, WOMEN AND LOVE. 100,000
QUESTIONNAIRES WENT TO WOMEN'S ORGANIZATIONS (AN' OPPORTUNITY
SAMPLE), ONLY 4.5% WEREG FILLED OUT AND RETURNGD (RESPONSE BIAS).

SO HER "RESULTS" WERE BASED ON A SAMPLE OF WOMEN WHO WERE HIGHLY
MOTIVATED TO ANSWER THE SURVEY'S QUESTIONS, FOR WHATEVER REASON.

AT LAST, A
SCIGNTIFIC WAY
TO HUMILIATG
ARNOLD!

N



(SAMPLE SIZE «=.=@) <

& standard error

NOW LET’S 6ET DOWN TO - .%

BRASS TACKS.. REAL BRASS <é‘/

TALKS, THAT 15. SUPPOSE THE /r l /*
[

BERNOULLI TACK FACTORY 15
CHURNING OUT BRASS TACKS, :
SOME OF WHICH, INEVITABLY,

i m;@) < =i =) i
9 "

\ =) +

THE ASTUTE READER WILL RECOGNIZE THIS A5 A BERNOULLI 5Y5TeM:s EACH
NEW TACK 15 THE OUTCOME OF A BERNOULL! TRIAL WITH SOME PROBABILITY p
OF SUCCESS (1€, BEING DEFECT-FREE) AND PROBABILITY 1—p OF FAILURG

(1.6, BEING DEFECTIVE).

—a

WE THINK OF THIS SITUATION AS IF THERE WGRE A HIDDEN BUT REAL
“BERNOULLI MACHINE™ WHO5E PROBABILITY p GOVERNS THE OUTCOMES WE
OBSERVE IN THE 50-CALLED “REAL WORLD”

9"



e

SINCE THE BEGRNOULL!
MACHING 15 INVISIBLE, WE
DON'T KNOW WHAT p 15,
BUT WE'P LIKE TO FIND
OUT. 5O WE TAKG A
RANDOM SAMPLE OF n
TACKS, AND FIND THAT

Z OF THEM ARG OK.

WMM... FEELS
LIKE n=q00
AND % =352,

NOW THE PROPORTION OF SUCLESSES IN THE SAMPLE SHOULD BE SOMEWHERE
AROUND p.. 50 WE CALL IT P, PRONOUNCED “P-HAT.”

P 15 THE NUMBER OF SUCLES565 % IN THE SAMPLE, DIVIDED BY THE
SMPLE $IZ6 n. FOR CXAMPLE, IF p WAS 85, AND WE SAMPLED 72 =1000
TACKS, MAYBE WE FOUND = 932 6000 ONGS, MAKING P = .832.

\. J

WE ASK: HOW 6000
15 THIS GSTIMATE?

AND WG ANSWER WITH
ANOTHER QUESTION: WHAT
POES THE FIRST
QUESTION MEAN?




WE CAN'T KNOW THE PRELISE DIFFERENCE BETWEEN P AND p, BECAUSE WE
PON'T KNOW THE VALUE OF p. THE REAL QUESTION 15 THIS: IF WE TOOK MANY
SAMPLES OF 1000 TACKS AND OBSERVED P FOR EACH SAMPLE, HOW WOULD
THOSE VALUES OF £ BE DISTRIBUTED AROUND p?

IN FACT, THESE P VALUES ARE LOOKING MORE AND MORE LIKE A RANPOM
VARIABLE: THE SELECTION OF THE n-UNIT SAMPLE 15 A RANDOM EXPERIMENT,
AND THE OBSERVATION B 15 A NUMERICAL OUTCOME!

| AW BECOMING
ENLGHTENED NOW...
' kNEW T wouLd
NOT BE PAWLESS...

TO BE PRECISE, IF X 15

THE NUMBER OF Bl& ? THE
SUCLESSES IN THE SAMPLE, RA&VOM}AR!ABLE.
THEN X 15 NOTHING BUT LITTLE §, \T%

OUR OLD FRIEND THE
BINOMIAL RANDOM
VARIABLE (7 TRIALS,
PROBABILITY p).. AND WE
DEFING THE OBSERVED
PROPORTION TO BE THE
RANDOM VARIABLE

VALVE FOR A PARTICULAR
SAMPLE!

B _ X
P==




QNOWIN& ALL ABOUT X, WE QUICKLY CONCLUDE A FEW FALTS ABOUT P:

1) THE MEAN OF P 15 E[P] - p
2) THE STANDARD DEVIATION OF P 15

R Al
v

3) FOR LARGE 7, P 15
APPROXIMATELY NORMAL.

AND THERE YOU HAVE IT ALL! THE OBSERVED VALUES OF P WILL BE CENTERED
ON p (NOT SURPRISINGLY), AND THEIR STANDARD DEVIATION, OR SPREAD, 15
PROPORTIONAL TO THAT MAGIC NUMBER WE MENTIONED AT THE BEGINNING OF
THE CHAPTER:

AND, $INCE P 15 NEARLY NORMAL, WE CAN USE OUR RULE OF THUMB TO
CONCLUDE THAT APPROXIMATELY 68% OF ALL GSTIMATES WILL FALL WITHIN ONE
STANDARD DEVIATION OF THE TRUE VALUE o

‘M NERRLY
NORMAL,
TO0-...




-
60ING BACK TO THE TACKS,
WITH 71 = 1000 AND p = .85,

WE 6ET A STANDARD

DEVIATION OF
(85)X.19)
a(P)= T
= .03

50 WE EXPELT ABOUT 68%
OF OUR ESTIMATES TO FALL
IN THE NARROW INTERVAL

8367 < P < 8613

THE STANDARD DEVIATION OF P 15 A MEASURE
or e sampling error.

A% WE'VE SEEN, FOR THE BINOMIAL P, THIS
SAMPLING GRROR 15 INVGRSELY PROPORTIONAL
TO Y77 INCREASING THE SAMPLE $1ZE BY A
FACTOR OF 4 REDUCES THE SPREAD o(P) BY A
FACTOR OF 2.

SAMPLE $1ZE5 FOR TACKS, p = 0.85
n 1 4 1 25 100 10000

@ |1 2 4 § 10 100

o@) | 357 1105 089 oM 0351 003

ALREADY
AT n=100,
You 5€€ v@)

% DOWN

LINGUISTIC NOTE: AN ESTIMTE 15 A 5INGLE MEASURE OR OBSERVATION. AN
ESTIMTOR 15 A RULE FOR GETTING ESTIMATES. IN THIS CASE, THE ESTIMATOR

15 THE RANDOM VARIABLE P= &
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MOST OF STATISTICS INVOLVES THE 4-5TEP PROCESS WE'VE JUST WALKED

THROUGH:

DEFING POPULATION WITH UNKNOWN

PARAMETER

/
E'E‘Wuoou\ S °

FIND AN ESTIMATOR, IT5 THEORETICAL
SAMPLING DISTRIBUTION AND
STANDARD DEVIATION.

o(F) =
e,
n

Q

.-.--.h‘-.-‘-- o=
!

.
t
¢
)
.
[}

E[P) p

ACTUALLY DRAW A RANDOM SAMPLE
AND FIND THE GSTIMATE.

REPORT THE RESULT AND IT5
STATISTICAL OR SAMPLING ERROR.
a—'—~\
7we N $=.84
WITU A SAMPULNG
FR&DR OF li'/o

10%



of the MEAN

NOW WE MOVE FROM BRASS TACKS TO DILL PICKLES..

Q AT 15 ONE
PICKLE! =
__;-J /4%
A\Y 'ﬁ
~i \§
a \ A

r : -

JAR MANUFACTURERS WOULD LIKE TO KNOW THE AVERAGE LENGTH OF A
PICKLE WITHOUT EXAMINING EVERY CUCUMBER IN CALIFORNIA. THEY RANDOMLY
SELECT n PICKLES AND MEASURE THEIR LEN6THS Z,, %5, — Zpr

8Y NOW YOU MAY BE
USED TO THE IDEA
THAT EACH X; 15 A
RANDOM VARIABL:
THE NUMERICAL
OUTCOME OF A
RANDOM EXPERIMENT.

\_ J

IF 44 15 THE (UNKNOWN)
MEAN PICKLE LENGTH, AND
o 15 THE STANDARD
DEVIATION OF THE PIcKLE
LENETH DISTRIBUTION,

STRANGE, HOW
MUCH \WE KNOW ABOUT
RANDOM VARIABLES

WE DIDN'T EVEN KNOW

THEN
WERE RANDOM VARIABLES
E[X] = u A MINUTE A%O-..
o(X)= o

FOR GVERY i (BECAUSE %;
COULD HAVE BEEN THE
LENGTH OF ANY PICKLE).



[ NOW WE LOOK AT THE SAMPLE
MEAN: THE AVERAGE LENGTH OF
THE SELECTED PICKLES. TS A
NEW RANDOM VARIABLE GIVEN
BY:

X = X+ Xpv o+ X, Cﬁ

16 THERE ANYTHING
THAT/SN'T A
RANDOM VARIABLE ?

AS BEFORE, WE'D LIKE TO KNOW "HOW CLOSE® THIS 15 TO 4, MEANING, IF
THIS SAMPLING WERE DONE MANY TIMES, WHAT'S THE DISTRIBUTION OF X?
BECAUSE WE KNOW ABOUT X,, X,, - AND X,,, WE ALSO KNOW THAT

EX] = »

THE VARIANCGES
o(X) = %m of Xi pop
TO GIVE THE.

ONCE ASAIN, WE 5EE THE

MASIC DENOMINATOR! THE

SPREAD OF OBSERVED

SAMPLE MEANS 60E5 AS
1

W.

VARIANCE 0F X

(BUT WE DON'T KNOW THE SHAPE OF X'6 DISTRIBUTION. THE SAMPLE |
PROBABILITY DISTRIBUTION B WS ALMOST NORMAL, BECAUSE IT WAS BASED
ON A BINOMIAL RANDOM VARIABLE. BUT WHAT ABOUT X, THE SAMPLE MEAN
CSTIMATOR???




(1T TURNS OUT THAT X 15 ALSO APPROXIMATELY NORMAL! THIS FAMOUS
RESULT 15 CALLED THE

CENTRAL LIMIT
THEOREM

IT 5AY%: IF ONE TAKES RANDOM SAMPLES
OF 51ZE n FROM A POPULATION OF MEAN
4 AND STANDARD DEVIATION o, THEN, AS
n 6ET5 LARGE, X APPROACHES THE
NORMAL DISTRIBUTION WITH MEAN i

AND STANDARD DEVIATION 57 . THEN

Preas X<b) = P"(Uﬁ ?%;.[At_)

\_

WHAT 15 REMARKABLE ABOUT THIS? IT 5AYS THAT RGGARDLESS OF THE SHAPE
OF THE ORIGINAL DISTRIBUTION (IN THIS CASE, OF PICKLE LENSTHS), THE
TAKING OF AVERAGES RES5ULTS IN A NORMAL. TO FIND THE DISTRIBUTION OF
X, WE NEED KNOW ONLY THG POPULATION MEAN AND STANDARD DEVIATION.

M\

THE THRGE PROBABILITY DENSITIES ABOVE ALL HAVE THG SAME MEAN AND
STANDARD DEVIATION. DESPITE THEIR PIFFEGRENT SHAPES, WHEN 71=10, THE
SAMPLING DISTRIBUTIONS OF THE MEAN, X, ARG NEARLY IDENTICAL.

Lah -l
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The t-distribution

AMAZING AS THE CENTRAL LIMIT THEOREM 15, IT HAS AT LEAST TWO PROBLEMS.

ONE: IT DEPENDS ON A LARGE
SAMPLE 5IZE.

TWO: TO USE IT, WE NEED TO

KNOW o, THE STANDARD
DEVIATION.

LARGE PiCKLE,
SMALL SAMPLE... .
0%

BUT SAMPLE $1ZES ARE OFTEN
SMALL, AND o 15 USUALLY
UNKNOWN. CERTAINLY, IN THE CASE
OF THE PICKLES, WE HAVE NO IDEA
HOW WIDELY THEIR LEN6THS VARY
\AROUNV THE AVERAGE.

WHAT WE CAN DO IN THIS CASE 1S TO E5TIMATE o BY TAKING THE STANDARD
DEVIATION OF THE $AMPLE, WHICH, YOU'LL RECALL, 15 GIVEN BY THE FORMULA

s = 7h D"
=1

THEN, IN PLACE OF THE RANDOM
VARIABLE

DoN'y GET
AUEAD OF YouR-
SELF... THINK

600D THOUGKTS..,

X—u
%
WE SUBSTITUTE $ FOR o,

AND DGFINE A NEW RANDOM
VARIABLE t BY

Z =

X-p

t=
o




YOU CAN THINK OF THE RANDOM VARIABLE T AS THE BEST W& CAN DO UNDER
THE CIRCUMSTANCES. ITS DISTRIBUTION 15 CALLED STUDENT'S T, BGCAUSE ITS
INVENTOR, WILLIAM 05567, PUBLISHED UNDER THE PSEUDONYM "STUDENT.®

GO%5ET, You IMPLY R&
THAT OUR PRODuUCT

_ 1 NEED A P¢...
VARIES w EXCELLENCE!

Anv A CoFFEE ..

lf ‘7 R
i , 3"4 |

(6055ET WAS EMPLOYED BY THG SUINNESS
BREWERY, WHICH REQUIRED HIM TO USE A
PSEUDONYM, FOR SOME REASON.)

MAKING THE ASSUMPTION THAT THE t 15 MORE $PREAD OUT THAN Z IT'S

ORIGINAL POPULATION PISTRIBUTION “FLATTER" THAN NORMAL. THIS 1%
WAS NORMAL, OR NEARLY NORMAL, BECAUSE THE USE OF 5 INTRODUCES
"STUDENT" WAS ABLE TO CONCLUDE: MORE UNCERTAINTY, MAKING t

*5LOPPIGR" THAN Z

THE $TUFF GETS
You DRUNK,
NO MATTER z Dbt
HowW Lousy! /

t -pisT

P

)

THE AMOUNT OF SPREAD DEPENDS ON || 60%56T WAS ABLE TO COMPUTE
THE SAMPLE 51ZE. THE GREATER THE TABLES OF L FOR VARIOUS SAMPLE
SAMPLE $IZE, THE MORE CONFIDENT WE || 51265, WHICH WE WILL $6E HOW TO
CAN BE THAT $ 15 NEAR o, AND THE USE IN THG FOLLOWING CHAPTGR.
CLOSER T 66T TO z, THE NORMAL.

€

/ NORMAL

LARGER
SAMPLE ¢

MBANTWME,
JUST THINK

OF WHAT You\e
HMpee ALREADY
/ LEARNED!
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IN THIS CHAPTER, WE CONSIDERED A CENTRAL PROBLEM OF REAL-WORLD
STATISTICS: HOW TO SELECT A SAMPLE FROM A LARGE POPULATION 5O THAT
STATISTICAL ANALYSIS CAN BE VALID. BESIDES THE "60LD STANDARD" OF THE
SIMPLE RANDOM SAMPLE, WE AL50 DESCRIBED SOME OTHER SAMPLING SCHEMES
THAT ARE USED IN THE INTERESTS OF EFFICIENCY, COST, AND PRACTICALITY.

ON A 5CALE OF
1 To 5, How Do
Jou FeeL Agour
KEEPING PEOPLE
WAITING ?

-

THEN, AS5UMING A SIMPLE RANDOM SAMPLE, WE CONSIDERED HOW VARIOUS
SAMPLE STATISTICS WERE PISTRIBUTED. THAT 15, WE REGARDED THE ACT OF
TAKING THE SAMPLE AS A RANDOM EXPERIMENT, 5O THAT ITS STATISTICS
BECAME RANDOM VARIABLES.

WE FOUND THAT SAMPLE
PROPORTIONS P WERE
APPROXIMATELY NORMALLY
PISTRIBUTED, WHILE THE
DISTRIBUTION OF THE
SAMPLE MEAN X DEPENDED
ON THE SAMPLE $IZE. FOR
LARGE SAMPLES, THE
DISTRIBUTION WAS
APPROXIMATELY NORMAL,
WHILE FOR SMALL SAMPLES,
WE USE THE STUDENT'S ¢
DISTRIBUTION.

* 1N TEA, 0F Couke!
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IN THE NEXT TWO CHAPTERS, WE LOOK
AT HOW TO USE THESE DISTRIBUTIONS TO
MAKE STATISTICAL INFERENCES: 6IVEN A
5INGLE OBSGRVATION, LIKE A POLITICAL
POLL, HOW DO WE USE OUR KNOWLEDGE
OF P AND X TO GVALUATE IT?
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+Chapter 7+

CONFIDENCE
INTERVALS

L)



IN THE LAST CHAPTER WE
LOOKED AT SAMPLING.
STARTING WITH A LARGE
POPULATION, WE IMASINED
TAKING MANY SAMPLES, AND
WE DEDUCED HOW SOME
SAMPLE ESTIMATORS WERE
DISTRIBUTED.

p . . _
IN THIS CHAPTER, WE DO THE REVERSE. 6IVEN ONE SAMPLE, WE ASK THE
QUESTION, WHAT WAS THE RANDOM SYSTEM THAT GENERATED (TS STATISTICS?

TUAT 15,
OWEN A SINLLE
BOX OF TACKS,AND
THE RESULTS OF

THE LAST GUAPTER,
WHAT AN WE
oneLupER

"



[ THIS SHIFT REPRESENTS A CHANGE
IN OUR MODE OF THINKING—FROM
DEDUCTIVE REASONING TO
INDUCTION.

T LIKE A CRIMINAL
INVESTIGATION, WATSOM!

o

IN PEDUCTIVE REASONING, WE REASON INDUCTIVE REASONING, BY

FROM A HYPOTHESIS TO A CONCLUSION: CONTRAST, ARGUES BACKWARD
°IF LORD FASTBACK COMMITTED MURDER, FROM A 5ET OF OBSERVATIONS
THEN HE WOULD WIPE THE FINGER- TO A REASONABLE HYPOTHESIS:

PRINTS OFF THE 6UN”

BRILLIANT

HM. LORD FASTBALK'S
MONOGRAM ON THIS
HANDKERCHIEF AND THIS
SUN. FASTBACK 15 THE
MURDEGRER, WATSON, T'M

IN MANY WAY%, SCIENCE, INCLUDING STATISTICS, 15 LIKE PETELTIVE WORK.
BEGINNING WITH A 56T OF OBSERVATIONS, WE ASK WHAT CAN BE SAID ABOUT
THE SY5TEMS THAT GENERATED THEM.

1



ESTIMATING
CONFIDENCE INTERVALS

15 ONG OF THE MOST
GFFECTIVE FORMS OF

HOLD MY (
WaT, wATSOM!
‘M GOING WNTD
THE POLLING

STATISTICAL INFERENCE, &
AND ONE YOU 566 GVERY 24 N
DAY BEFORE ELECTION .

TING...

(18 A RECENT CLECTION SOMEWHERE, INCUMBENT SENATOR ASTUTE (ACCENT
ON THE LAST SYLLABLE, PLEASE!) COMMISSIONED A POLL BY BETTER HOLMES
RESGARCH. POLLSTER HOLMES DRAWS A SIMPLE RANDOM SAMPLE OF 1000
VOTERS AND ASKS THEM WHAT THEY THINK OF ASTUTE.

A HE'S 60V’S 6IFT
TO HUMANITY
B) HE'S THE DEMY’$
SPECIAL BLESSING
ON MOST OF
HUMANITY

AFTER CENSORING THE REMARKS OF A FEW 6RUMPY OUTLIERS, HOLMES FINDS
THAT 550 VOTERS FAVOR HI5 CLIENT, SENATOR ASTUTE.

THIS 15 THE SINGLE
OBSERVATION.



YOU ONLY ASKED A
THOUSAND PEOPLE?! BUT
THERE ARG A MILLION
VOTERS IN THIS STATE!!! A

\ I DON'T (ARG IF
THERE ARE A
MILLION OR A

BILLION...

THIS 6VARANTEG... IT'S

AN ABSOLUTE, MONEY-
BAZK, TYPE 6UARANTEE, A
RIGHT?

I MADE A SIMPLE RANDOM

SAMPLE! THIS MEANS T (AN

OFFER YOU AN IRONCLAD
GUARANTEE!

YE5, 1 CAN SAY WITH 95%

CONFIDENCE THAT THE TRUE
POPULATION PROPORTION, p, 15
BETWEEN .519 AND .5¢1!

r % CERTAIN??!!
THUNDGR!! WHAT PO YOU
SUPPOSE WOULD HAPPEN
IF I RAN ON A PLATFORM
OF 95% HONESTY??

I DON'T KNOW.
IT'% NEVER BEEN
TRIED..

AFTER ASTUTE CALMS
DOWN, HOLMES EXPLAINS
WHAT HE MEANS BY 95%
CONFIDENCE: HE KNOWS
THAT HIS ESTIMATION
PROCEDURE HAS A 95%
PROBABILITY OF
PRODUCING AN INTERVAL
CONTAINING p, LE., IN HIS
MANY YEARS OF POLLING,
P HAS FALLEN WITHIN THE
CONFIDENCE INTERVAL
AROUND THE OBSERVED
VALUE, P, 95% OF THE
TIME.




SENATOR ASTUTE 15 STILL
CONFUSED! 50 HOLMES GIVES
um an archery lesson.

7 SHoot/
ANYTHING TO
TAKE MY MIND
OFF THEM DANG
STATISTICS!

CONSIDER AN ARCHER-POLLSTER SHOOTING AT
A TARGET. SUPPOSE THAT SHE HITS THE 10 (M
RADIUS BULL'S-EYE 95% OF THE TIME. THAT I5,
ONLY ONE ARROW OUT OF 20 MI%5E5.

SITTING BEHIND THE TARGET 15 A BRAVE
DETECTIVE, WHO CAN'T SGE THE BULL'S-
EYE. THE ARCHER SHOOTS A $INGLE

KNOWING THE ARCHER'S SKILL LEVEL,
THE DETELTIVE DRAWS A CIRCLE WITH
10 (M RADIVS AROUND THE ARROW.
HE NOW HAS 95% CONFIDENCE THAT
HI% CIRCLE INCLUDES THE CENTER OF
THE BULL'S-GYE!

THE CENTER 95% OF THE TIME.

HE REASONED THAT IF HE DREW 10 (M RADIVS CIRCLES
AROUND MANY ARROWS, HI5 CIRCLES WOULY INCLUDE

(PROBABILISTS
USE THE TERM
STOCHASTIC
TO DESCRIBE
RANDOM
MODELS. IT'S
DERIVED FROM
THE 6REEK
STOCHAZES-
THAI, MEANING
TO AIM AT A
TARGET, OR
6UE55, FROM
$TOCHOS, A
TARGET.) M




HOLMES NOW TRANSLATES
THE ARCHERY LESSON INTO
THE LANGUAGE WE

DEVELOPED LAST CHAPTER.

.
Step One: sioor A Lot oF arrows.

A PROBABILITY CALLULATION FINDS
THE WIDTH OF THE ‘BULL'S-EYE”
THE GSTIMATES 5 ARE OUR ARROWS.
WE SAW THAT THE SAMPLING
DISTRIBUTION OF P 15 NEARLY
NORMAL WITH MEAN p AND
STANDARD DEVIATION

Y p(-p) "

SINCE THE CURVE 15 NORMAL, WE USE THE Z-TRANSFORM AND A STANDARD
TABLE TO FIND THE WIDTH OF THE INTGRVAL WITHIN WHICH 95% OF THE
“ARROWS” HIT. (WE'LL SEE EXACTLY HOW TO DO THIS IN A FEW PAGES.) WE
FIND THIS WIDTH TO BE 1.96 STANDARD DEVIATIONS:

95 = Pr(-196<Z<196)

 —
TUE RADIUS
OF Tug BULLS-EYE
15 196
STANDARD
DEVIATIONS -




(NOW WE DO SOME ALGEBRA. BY
DEFINITION OF THE Z-TRANSFORM,

95 =Pr(-196< P-P < 19b)
alp)

WHICH BELOMES
95 = Pr(p-19ba(p) ¢ P < P+19%0(p)

WHICH 15 JUST ANOTHER WAY OF SAYING THAT 95% OF THE £ “ARROWS” LAND
| BETWEEN p - 1960°(p) AND p + 196 (p).

J

NOW WE'RE IN A POSITION TO VIEW THE TARGET FROM BEHIND! ONE MORE
TURN OF THE ALGEBRA CRANK MAKES IT

97 = Pr(?—l-qéf(p) <P < 1'5 * 1.960(9))

HERE WE ARE DRAWING
CIRCLES AROUND A LOT
OF ARROWS (I£.,
MAKING INTERVALS
AROUND ) AND
SAYING THAT 95% OF
THEM COVER p.

( BUT THERE 15 ONE TINY PROBLEM.. WE DON'T ACTUALLY KNOW THE SIZE )

OF THE BULL'S-EYE, BECAUSE WE DON'T KNOW p, AND THE WIDTH 15 A
MULTIPLE OF o (p).

14

%0 WE FUDGE A LITTLE AND USE
THC STANDARD ERROR OF P:

THE C\RCLES

ARe ALL Dl:lf’iggﬂf
4285 NO T 1’ 50-p
1T OKAY, SE(P) = Vpa-p)

REALLY... Vi

IN TS PLACE.. IT'S CLOSE
ENOUGH.. T’ THE BEST WE
CAN DO.. AND IT CAN EVEN BE
THEORETICALLY JUSTIFIED!

18



NOW THE FORMULA 15
95 = Pr($-196%{) < p < P +19b%(@))

AGAIN, THIS CRUATION DESCRIBES THE
PROBABILITY THAT THE TRUE, FIXED
POPULATION PROPORTION FALLS
WITHIN THE RANPOM INTERVAL

(P - 19656(P), P + 196 56(P)).

IF WE SAMPLED REPEATEDLY, THESE
INTERVALS WOULD COVER p 95% OF
THE TIME.

LETS $TARE
AT THIS A
MINUTE...

NOW OUR PROBABILITY CALLULATION 15 DONE, AND IT'S TIME FOR..

Step Two: HE MAKES USE OF STEP ONG TO

THE DETELTIVE WORK. IN A RGAL POLL, '

HOLMES TAKES JUST ONE SIMPLE sE(P) «/ (:55)(:45)
RANDOM SAMPLE OF 1000 VOTES, FINDS = 000
P = 550, AND WANTS TO INFER p.

HE CONCLUDES THAT WE CAN HAVE
95% CONFIDENCE THAT p 15 WITHIN
THE RANGE

P+ 196 5£(P)
=.5502 (1.96)(.0157)

=.5%0 % .031

THIS 15 WHAT POLLS MEAN

THE w
WHEN THEY REFGR TO THEIR A EoRoR ks 3%,
*WARGIN OF GRROR™ IN THIS S antVeR Fisr
(A5G, HOLMES FOUND THAT ) MEANS...

519< p < 581,
IN OTHGR WORDS THAT
P = 55% WITH A 3% MARGIN OF

ERROR. (POLLS TYPICALLY USE A
95% CONFIDENCE LEVEL)



THIS PAGE SHOWS THE RESULTS OF A COMPUTER SIMULATION OF TWENTY
SAMPLES OF $IZE 7 = 1000. WE ASSUMED THAT THE TRUE VALUE OF p = 5. AT
THE TOP YOU SEE THE SAMPLING DISTRIBUTION OF 5 (NORMAL, WITH MEAN p

AND J-W/Ega ). BELOW ARG THE 95% CONFIDENCE INTERVALS FROM GACH
SAMPLE. ON AVERAGE, ONE OUT OF TWENTY (OR 5%) OF THESE INTGRVALS WiILL
NOT COVER THE POINT p = 5.

......nmmHmu“lmmml“"“||H|I!Hmu........ .....

' . MiSSED!

-+

Sample

-+

-4

T T T I 1 1
0.44 0.46 0.48 0.50 0.52 0.54 0.56

95% Confidence Intervals for p
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ALTHOUGH 95%
CONFIDENCE 15
600D ENOUGH FOR
NEWSPAPER POLLS,

ANYTHING LESS, AND
MY BI6 MONEY PEOPLE
WON'T INVEST—T MEAN

CONTRIBUTE TO My

I ISN'T 6007 FIGHT FOR LIBERTY

ENOVEH FOR AND JUSTICE! .
SENATOR ASTUTE.

HE WANTS 99%!

HOW TO INCREASE CONFIDENCE? USING AND ANOTHER WOULD BE TO IMPROVE
THE ARCHERY TARGET, WE CAN SGE TWO | | THE AIM OF THE ARCHER IN THE FIRST
WAYS: ONE 15 TO INCREASE THE 51Z6 PLAZE, 50 HER ARROWS LAND CLOSER
OF THE CIRCLE YOU DRAW... TO THE BULL'S-EYE.

THE FIRST METHOD 15 EQUIVALENT TO WIDENING THE CONFIDENCE INTERVAL.
THE GREATER THE MARGIN OF ERROR, THE MORE CERTAIN YOU ARE THE TRUE
VALUE OF p LIES IN THE INTERVAL.

M (00% ConFiDENT
TRET P 15 BETWEEN

MAYBE T’ TIME TO SEE EXALTLY
HOW WE FIND THE ENDS OF
THESE CONFIDENCE INTERVALS..
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THE RELEVANT NUMBER
HERE WE USUALLY CALL a.
IT MEASURES THE
DIFFERENCE BETWEEN THE
DESIRED CONFIDENCE
LEVEL AND CERTAINTY. FOR
EXAMPLE, WHEN THE
CONFIDENCE LEVEL 15 95%,
OR 095, & 15 05. 50 WE
SPEAK OF THE (1-a)100%
CONFIDENCE LEVEL.

FINPING THE (1-)'100% CONFIDENCE
INTERVAL MEANS: LOOK AT A STANDARD
NORMAL CURVE, AND FIND THE POINTS +2
BETWEEN WHICH THE AREA 15 1—-a.

-z [} Z

AREA =95
/

THIS POINT, CALLED Z,, I$ THE Z-VALUG
2
BEYOND WHICH THE AREA I5 025 = 5.

THAT'S BECAUSE WE'RE CHOPPING OFF
“TAILS" AT BOTH ENDS OF THE CURVE,
\&mcu HAVE A TOTAL ARGA OF

a
2 vt7 = a

WE CAN FIND Zq, STRAIGHT

FROM THE STANDARD NORMAL
TABLE (PAGE @4). IT'S THE
POINT WITH THE PROPERTY

=2
Pr(z 22,027
IN PARTICULAR,

Pr(z 2z,,) = .025

F(2)
z
F(2)

F2)
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FOR THIS LEVEL OF

CONFIDENCE, Go OLT
TS MANY STANDARD
DEVIATIONS /

(WERE'S A LITTLE TABLE OF THE CRITICAL
VALUES FOR VARIOUS LEVELS OF
CONFIDENCE.

1-a | 80 90 95 99
a 20 1o 05 o1
a/2| A0 05 025 005
1.2¢ 1.64 196 258

-

TO MAKE A 99% CONFIDENCE INTERVAL, WE USE THAT TABLE TO WRITE
99 = Prp - 25056(P) < p < p + 250%6(P))

WHICH WE SLOPPILY ABBREVIATE AS
~ 1-
pP=pt258V "5

95+ 258«J lf?”ffs)-
5500

WITH 997, CONFIPENCE.

"

-7 Y gunes
50 .5/



WIDENING THE INTERVAL 15 ONE WAY TO INCREASE OUR CONFIDENCE IN THE

RE5SULT. AS WE MENTIONED, ANOTHER WAY WOULD BE TO SHOOT OUR ARROWS
MORE ACCURATELY. TF WE KNEW THAT THE ARCHER 60T 95% OF HER ARROWS
WITHIN 7 EM OF THE BULL'S-EYE, OUR ESTIMATES COULD BE A LOT SHARPER!

(HOW PO WE PO THIS? BY INCREASING THE SAMPLE $I1ZE! THE WIDTH OF THE )

CONFIDENCE INTERVAL DEPENDS ON THE SAMPLE SIZE: THE INTERVAL HAS THE
FORM P + E, WHERE E, THE ERROR, 15 6IVEN BY

; PIGTEIBUTIDNQ
t 3
€ Z% n —— LARGE N
SMALL U
50 THE BIGGER WE /
MAKE 77, THE SMALLER
THE ERROR. (6.6.,
QUADRUPLING 7 HALVES P
THE INTERVAL WIDTH.)
\_ Y

ASTUTE ASKS HOLMES TO 6IVE HIM A
SMALL ERROR WITH HIGH CONFIDENCE—SAY
99% CONFIDENCE WITH E = +.01. HOLMES
SOLVES FOR n.

GET OuUT Your
WALLET, BO%S,
I'VE GOT AN ANSWER!

z,* p'a-p"
2
E?
(WHERE p* 15 A 6UESS AT THE TRUE

PROPORTION p—REMEMBER, WE
HAVEN'T TAKEN THE SAMPLE YET!)

n =
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~
TAKING A CONSERVATIVE 6UESS
OF p*= .5, HOLMES FINDS

n o 29850
(.on?

_ (645)(.19)
= 000!

= 16,641

1000 VOTERS GAVE A 3%
ERROR WITH 95% CONFIDENCE.
TO 6ET A 1% ERROR WITH 99%
CONFIDENCE, HOLMES WAS TO
&6AMPLF 16,641 VOTERS!

—

| CAN FIGURE
IT out//

AT $10 AN
INTERVIEW—
PAYABLE IN

SO THEY PO THE POLL,
AND 60 INTO THE
ELECTION WITH 99%

ON THE OTHER
HAND, WHO CAN
PLACE A VALUE ON

(BUT.- ALL THIS PROBABILITY STUFF 15 ONLY 600V BEFORE AN ELECTION.
AFTER THE ELECTION, THE SENATOR 15 EITHER 100% IN OR 100% OUT! AND
DESPITE EVERYTHING, SENATOR ASTUTE LO%ES THE ELECTION...

WUAT
WAPPENED?




WHAT HAPPENED 15 THAT POLITICIANS ARE NOT ELECTED BY POLLS!
—_— e——
OUTRALEOUS!

'O PASS A LAW
AGAINST THIS, \¢

| WERE 4TILL
IN THE $ENATE !

SOME PROBLEMS WITH POLLS, A5 OPPOSED TO ELELTIONS:

RESPONSE BIAS: ALTHOUGH THE NON-RESPONSE
VOTERS MAY LIE TO POLL 15 AN BIAS: THE VOTER
MAY NOT BE HOME
OR REFUSE TO TAKE

THE INTERVIEWER UNBIASED SAMPLE
PART IN THE POLL.

OR CHANGE THEIR MINDS || OF POTENTIAL VOTERS,
BEFORE ELECTION DAY. THE VOTING BOOTH

* COUNTS ONLY ACTUAL
| LOVE BOTH MAJOR

VOTERS.
PARTIES AMD ONLY Wity | bs
| COULD VOTE FOR BOTH |[# BUT WASN'T THE 3

ELECTION
You (REDULOys
+ DORK 4

JesTeRDAY? 2

THERE 15 NO WAY FOR A W NEXT TIME,
POLLSTER TO 6ET INSIDE * @E—k Poyeu ¢!
A POTENTIAL VOTERS r~—
HEAD AND KNOW IF SHE'S .°

60ING TO VOTE, IF SHE'S : S/;
LYING, OR IF $HE'S 60ING
TO CHANGE HER MIND
BEFORE ELECTION DAY.
LARGE SAMPLE 51ZE%
CANNOT REDUCE THESE
KINDS. OF ERRORS.




—
SINCE THESE ERRORS (AN BE

LARGE, IT SELDOM PAYS TO TAKE

A VERY LARGE RANDOM SAMPLE.

IN THE LAST FIVE PRESIDENTIAL ELECTIONS, THE 6ALLUP POLL HAS INTER-
VIEWED FEWER THAN 4,000 VOTERS FOR EACH ELECTION. YET IN ALL FIVE
ELECTIONS, THE GALLUP ORGANIZATION'S ERRORS IN PREDICTING THE
PRESIDENTIAL ELECTION OUTLOME HAVE BEEN LESS THAN 2%.

INPLSTRIAL
s

THEIR 5UCCESS 15 DUE TO THEIR USE OF ESTIMATORS THAT ACCOUNT FOR
NON-RESPONSE, AND THEY SCREEN OUT ELIGIBLE VOTERS WHO ARE NOT
LIKELY TO VOTE.

WHAT ABouT
THESE?

TexAs AND
CRICALO, | THINK | 1O SUMMARIZE, ESTIMATED

WE'RE SAFE.../ pROPORTION = TRUE PROPORTION +
BIAS + RANDOM SAMPLING ERROR.
EVEN POLLSTERS HAVE LIMITED
FUNDS. THEY WISELY CHOOSE TO
SPEND THEIR MONEY REDUCING
BIAS, RATHER THAN INCREASING THE
SAMPLES BEYOND 4,000 VOTERS.
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(Conﬁdence Intervals
for pu

UP TO NOW, WE'VE BEEN
LOOKING AT CONFIDENCE
INTERVALS FOR A PROPOR-
TION p OF A POPULATION.
EXACTLY THE SAME
REASONING WORKS FOR
THE POPULATION MEAN .

MV ?

NS

IN THE LAST CHAPTER (P. 105), WE $AW THAT THE DISTRIBUTION OF SAMPLE
MEANS X 15 APPROKIMATELY NORMAL, CENTERED ON THE ACTUAL POPULATION
MEAN L, WITH STANDARD DEVIATION %ﬁ. WHERE o 1$ THE POPULATION
STANDARD DEVIATION. SO, FOR LARGE n,

= Pr(-1.96 < 2<196)
=~ Pr(-196 < —,'— 1.96)

(3

AGAIN, NOT KNOWING o, WE REPLACE o
WITH 5, THE SAMPLE STANDARD DEVIATION:

= Pr(-196 < X/r 1.96)
n

Tus TERM %7 15 CALLED THE SAMPLE STANDARD ERROR, AND WRITTEN
SE(X). WE CONCLUDE THAT

95 = PrX-1965E(X) < u< X+196%E(X))
WHERE

SE0) g M
M
w\ -
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JUST AS BEFORE, WE HAVE
FOUND THAT THE RANDOM
INTERVAL

X £ 196%E(X)

CONERS THE TRUE MEAN, 4, WITH
PROBABILITY .95.- 50 NOW WE (AN
CALL IN SHERLOCK HOLMES TO
MAKE A STATISTICAL INFERENCE
BASED ON A SINGLE SAMPLE OF
$12E n WITH MEAN Z.

e ~
HE (AND WE) ARG 95% CONFIDENT THAT THE MEAN 4 15 WITHIN THE INTERVAL
Z +196%€(X) .

BY GAV, I'M
GETTING MORE
CONRIDENT WITH
EVERY PASHING

A% BEFORE, FOR AN ARBITRARY
LEVEL OF CONFIDENCE 1 —a,




LET'S REVISIT THE STUDENT WEIGHT DATA | | THE SAMPLE MEAN T WAS 145.2

FROM CHAPTER 2, AS5UMING THAT THE LBS. AND SAMPLE STANDARD
n = 92 STUPENTS WERE A SIMPLE DEVIATION $ WAS 23.7. 5O THE
RANDOM SAMPLE OF ALL PENN STATE STANDARD ERROR 15
STUDENTS.

%00 = 2T = 247

AND WE NOW HAVE 95% CONFIDENCE
THAT THE MEAN WEIGHT OF ALL
PENN STATE STUDENTS FALLS IN THE
" INTGRVAL

7 + 1965E(R)
) = 145.2 £ (196 X(2.47)

'

S &

TO SUMMARIZE: FOR A SIMPLE RANDOM SAMPLE (5RS) OF LARGE $IZE, THE
(1-a) <100% CONFIDENCE INTERVAL 15

POPULATION MEAN, u POPULATION PROPORTION, p
K=zt z %@ p =Ptz %P
3
- Y - 1‘
WHERE 5E@) = %75 WHERE 5€(P) —«\/E’Z—;E
e )
THE $1ZE OF BOTH NOW, SENATOR
INTERVALS 15 . ’
HOW WOULD YOU
CONTROLLED BY LIKE A JOB WITH
THE LEVEL OF MY POLLING FIRM?
CONFIDENCE
(1-a) -100% AND
THE SAMPLE SIZE, n.
\_ J




p
Student’s t (again!)
AS WE SAW IN CHAPTER &, THE STATISTIC

Xp
se(X)

HAS AN APPROXIMATELY NORMAL
DISTRIBUTION ONLY WHEN IT 15
COMPUTED USING A LARGE SAMPLE.
FOR SMALL SAMPLES (n=5, 10, 25..),
THIS 15 NO LONGER THE CASE, AND
WE HAVE TO USE THE STUPENT’S &

LET’S LOOK AT T A LITTLE MORE CLOSELY. WE MENTIONED THAT THE t
DISTRIBUTION 15 MORE SPREAD OUT THAN THE NORMAL, AND THAT THE
AMOUNT OF $PREAD DEPENDS ON THE SAMPLE $SIZE.

STANDARD NORMAL
by LARGER SAMPLE

T, SMALLER
/ SAMPLE

THE 6ENERAL IDEA: 6IVEN 7
PIGCES OF DATA %), %3, — Zp»
YOU USE UP ONE “PEGREE

OF FREEDPOM™ WHEN YOV
COMPUTE Z , LEAVING n—1
INDEPENDENT PIECES OF
INFORMATION.

WHAT TS DISCOVERER
GO%5ET DID WAS TO
QUANTIFY THIS
RELATIONSHIP. IF 7 15
THE SAMPLE 5IZE, HE
SAID, THEN CALL n-1
THE NUMBER OF
degrees of

freedom
OF THE SAMPLE.

1



G6O%5ET COMPUTED TABLES OF

"'—'\
THE t DISTRIBUTION FOR A NICE,
DIFFERENT SAMPLE $IZES—I.E., SLOWY
DEGREES OF FREEDOM. WE DISTRIBUTION!
REPEAT, THC MORE DESREES OF -

FREEDOM, THE CLOSER t
BECOMES TO THE STANDARD
NORMAL.

(" KNOWING THE SAMPLE S1ZE 71, WE CHOOSE THE t DISTRIBUTION WITH 72-1
DEGREES OF FREEDOM.

AS WITH THE Z
DISTRIBUTION (L.E.,
THE STANDARD
NORMAL), WE 6ET A
95% CONFIDENCE
LEVEL BY FINDING
THE CRITICAL VALUE
€25 BEYOND

BREA = 95

—t.ois

————

WHICH THE AREA
UNDER THE CURVE
15 .025.

t.ous 15 FARTHER FROM

S\NCE THE CURVE \¢
FLATTER TwAN NORMAL,

O THAN Zgs,.

FOR A (1-a)-100% (ONFIPENCE INTERVAL, WE FIND THE (RITICAL VALUE ta

SUCH THAT Pr(t> t%)

. HERE 15 A SHORT TABLE OF (RITICAL VALUE6

FOR THE t DISTRIBUTION:

- 80 90 95 99
a 20 10 05 01
a/z 10 05 025 005

DELREES OF ! 3.09 63 1271 63.66

FRCCOOM 10 137 181 2.23 414
30 131 170 2.04 275
100 129 166 198 263
P 128 145 196 258

192




ﬁEMI-I COLUMN REPRESENTS A FIXED LEVEL OF CONFIDENCE, WITH INCREASI?
NUMBERS OF PEGREES OF FREEDOM. THE HIGHER THE DEGREES OF FREEDOM,
THE CLOSER THE CRITICAL VALUE 6£T% TO Z 5 THE CRITICAL VALUE OF THE
NORMAL DISTRIBUTION.

WE DERIVE THE WIDTH OF OUR
CONFIDENCE INTERVAL DIRECTLY
FROM THE DEFINITION OF t:

- X=
$e(X)
THEN, FOR CONFIDENCE LEVEL
(1-a)-100% ,

(-2 =Pr(Z-t, 56X < pu < Z+t, 5ECK)

NOTE: \T's
EXACTLY Like
THE CPGE OF
A LARGE SAMPLE,
BUT Witk €
INSTEAD OF Z ¢

FROM WHICH WE INFER: 6IVEN A
SINGLE SAMPLE OF $IZE nn AND
MEAN Z, WE CAN BE (1-a)-100%
CONFIDENT. THAT THE POPULATION
MEAN 4 FALLS IN THE RANGE

u = Tt 56D
7

WHERE SE(Z) = i AND tga 15 THE
CRITICAL VALUE OF THE t DISTRIBUTION

WITH n-1 DEGREES OF FREEDOM.

~
N OT o STRICTLY SPEAKING,

H THE DERIVATION OF
THE t DISTRIBUTION DEPENDED ON
THE ASSUMPTION THAT THE SAMPLE
WAS FROM A NORMAL POPULATION. IN
PRALTICE, CONFIDENCE INTERVALS
BASED ON THE t WORK REASONABLY
WELL, EVEN WHEN THE POPULATION
DISTRIBUTION 15 ONLY APPROXIMATELY
MOUND-SHAPED.
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exumple: SUPPOSE CHAMELEON MOTORS WAS TO (RASH TEST

IT$ CARS TO DETERMINE THE AVERAGE REPAIR COST OF A 10 M.PH. HEAD-ON
COLLISION. THIS 15 EXPENSIVE! THEY DECIDE TO TRY IT ON JUST FIVE

ChRS NAMED AFTER
REPTILES?

THE SAMPLE MEAN:
Z = $540

THE STANDARD DEVIATION:
$ = $299

YOU CAN CHEZK % WITH A
HAND CALCULATOR. IT'S

&) {190 5407+ (400 5407 + (120 5467+ (500 5457+ (3%0.540T")

WA. IMPROVES
THE STYLWG.

\_

50 WHERE CAN WE PLACE THE MEAN WITH 95% CONFIDENCE? WE FIND OUR
CRITICAL VALUE .25 WITH 4 DESREES OF FREEDOM:

1-a 80 90 95 99
a 20 Jd0 05 o0
a/2 Ao 0% 025 005
veorees oF 1 3.09 631 12n 63.66
FREEDOM 2 189 292 430 9.92
3 164 2% 318 5.84
4 153 213 278 460
5 148 201 257 4.03

1%



—
AND PLUG IT IN:

pmo= X3 278 %5

540+ 278(*%z)

540 =372

50 THE BEST WE CAN SAY WITH 95% CONFIDENCE 15 THAT THE AVERASE
DAMAGE WILL LIE BETWEEN $168 AND $912.

L}

BuT ‘M OF
CoNFIDENT THAT
wee st

THE COMPANY CAN EITHER
BE SATISFIED WITH THAT,
OR PO FURTHER TESTS-

J

TO COMPUTE THIS CONFIDENCE INTERVAL USING. STUDENT’S &, WE HAVE MADE
AN UNSTATED ASSUMPTION: WE ASS5UMED THAT CRASH REPAIR CO5T% ARE
APPROXIMATELY NORMALLY DISTRIBUTED, 1., IF WE CRASHED 1000
CHAMELEONS, THE HISTOGRAM OF REPAIR CO5TS WOULD BE SYMMETRICAL AND
MOUND-SHAPED. WE CAN NOT KNOW THIS FROM 5 DATA POINTS ALONE.. BUT
MAYBE YEARS OF EXPERIENCE WITH EARLIER MODELS PROVIDE NORMALLY
PISTRIBUTED COST HISTOGRAMS FOR FRONT GNP REPAIRS: INFORMATION WHICH
WOULD TEND TO SUPPORT OUR USE OF STUDENT'S T

THE TAIL GROWS
BACK By (Tsas,
TS A FEATURE

ON CHAMELEONS..




(10 sUM UP (1), WE
NOW HAVE THREE
SIMPLE RECIPES FOR
FINDING CONFIDENCE
INTERVALS. FOR
PROPORTIONS, OR
MEANS WITH LARGE
SAMPLE 512E5, WE
LOOK UP zg IN A

NORMAL TABLE. FOR
MEANS OF SMALL
SAMPLE SIZES (SAY
n<30), WE FIND t4
IN THE t TABLE. 2

24 5E()

NUMBER:

A\ QTTING AT A
oy, J L, Rerbing
- \ WP ON Z-TABLES..,

IN ALL CASES, THE WIDTH OF THE INTERVAL 15 THAT (RITICAL VALUE TIMES
THE STANDARD ERROR:

z%éE()T) toSEX)

AND EACH OF THOSE STANDARD ERRORS 15 PROPORTIONAL TO THAT MAGIC

~\




¢+Chapter 8¢
HYPOTHESIS TESTING

NOW WE ENTER A NEW AREA.. GOVERNMENT,
BUSINESS, AND THE HARD AND SOFT SCIENCES ALL
USE AND OFTEN ABUSE THESE TESTS OF
SIGNIFICANCE. IT'S ALL ABOUT ANSWERING THE
QUESTION, ‘COULD THESE OBSERVATIONS
REALLY HAVE OCCURRED BY CHANCE?”

ONLUCKY CHAR

WATSON... APPARENTLY
HE MET WITH AN
ACUDENT...
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(WE BEGIN WITH AN EXAMPLE
FROM THE LAW: A COMPOSITE
OF SEVERAL CASES ARGUED IN
THE SOUTH BETWEEN 1960
AND 1990, IN WHICH EXPERT
WITNESSES PRESENTED THE
CASE FOR RACIAL BIAS IN
JURY SGLECTION.

PURE
COWNCIDENCE !

PANELS OF JURORS ARE THEORETICALLY PRAWN AT RANDOM FROM A LIST OF
ELIGIBLE CITIZENS. HOWEVER, IN SOUTHERN STATES IN THE '50% AND '60%, FEW
AFRICAN AMERICANS WERE FOUND ON JURY PANELS, 50 SOME DEFENDANTS
CHALLENGED THE VERDICTS. ON APPEAL, AN EXPERT STATISTICAL WITNESS 6AVE
THIS EVIDENCE:

1) oo & ARBREBRAR

ON AN §0-PERSON PANEL
2) OF POTENTIAL JURORS,

ONLY FOUR WERG

AFRICAN AMERICANS.

1 a8
%%i ﬁ%ﬁ%ﬁ%ﬁ%ﬁ%

COULD THIS BE THE RESULT OF
PURE CHANCE?



FOR THE SAKE OF ARGUMENT,
SUPPOSE THAT THE $ELECTION OF
POTENTIAL JURORS WAS RANDOM.
THEN THE NUMBER OF AFRICAN
AMCRICANS ON THE 80-PERSON
PANEL WOULD BE THE BINOMIAL
RANDOM VARIABLE X WITH

7 =60 TRIALS AND p =.5.

%o BERNOULLI
TRIALS, EACH

THUS, THE CHANCES OF 6ETTING A JURY
WITH ONLY 4 AFRICAN AMERICANS 15
Pr(x<4), WHICH WORKS OUT TO ABOUT
0000000000000000014 (!).

SINCE THE PROBABILITY 15 50 SMALL,
THE PARTICULAR PANEL WITH ONLY FOUR
BLACK MEMBGRS 15 STRONG &VIDENCE
AGAINST THE WYPOTHESIS OF RANDOM

TO DRIVE THE POINT HOME, THE
STATISTICIAN NOTES THAT THIS
PROBABILITY 15 LESS THAN THE CHANCES
OF 6ETTING THREE CONSECUTIVE
ROYAL FLUSHES IN POKER.

S0 THE JUDGE REJECTS THE
HYPOTHESIS OF RANDOM SELECTION.

IF T WAS IN THAT
POKER GAME, I'D A
STARTED SHOOTIN'
AFTER THE SGCOND
ROYAL FLUSH.. |

(AND ORDERS HI5 OWN
REMARKS STRICKEN

FROM THE RECORPD!)




LET’S FOLLOW THE PROCESS AGAIN TO
SORT OUT THE FOUR FORMAL 5TEPS OF
STATISTICAL HYPOTHESIS TESTING.

Step 1. FORMULATE ALL
HYPOTHESES.

Mo, THE NULL HyPOTHESIS, 15
USUALLY THAT THE
OBSERVATIONS ARE THE RESULT
PURELY OF CHANCE

Ha, THE ALTERNATE HYPOTHES!S,
15 THAT THERE 15 A REAL
EFFECT, THAT THE
OBSERVATIONS ARE THE
RESULT OF THIS REAL EFFECT,
PLUS CHANCE VARIATION.

Step 2. tue 7e57 sTATISTIC.
IDENTIFY A STATISTIC THAT WILL AS%E%%
THE EVIDENCE ASAINST THE NULL
HYPOTHESIS.

140

IN THE COURT CASE, Ho SAYS THE
JURY WAS RANDOMLY CHOSEN
FROM THE WHOLE POPULATION.
AFRICAN AMERICANS HAVE
PROBABILITY p = .50 OF BEING
CHOSEN.

R, 5AYS THAT AFRICAN AMERICANS
ARE LES5 LIKELY THAN THEIR
PROPORTION IN THE POPULATION
TO BE SELECTED FOR A JURY
PANEL: p < .50.

You... AW
Ngl'g 101.1...
G \ A

IN THE COURT CASE, THE TEST
STATISTIC 15 THE BINOMIAL RANDOM
VARIABLE X WITH p=.50 AND

n=80.
@ LIKe

on
eLps!




Step 3. r-va:

A PROBABILITY STATEMENT WHICH
ANSWERS THE QUESTION: IF THE
NULL HYPOTHES!IS WERE TRUE, THEN
WHAT 15 THE PROBABILITY OF
OBSERVING A TEST STATISTIC AT
LEAST A% EXTREME AS THE ONE WE
OBSERVED?

™~
THE SMALLER
THE P-VALUE,
THE STRONGER
THE EVIDENCE
AGAINST Ho.

Step 4. covarc T
P-VALUE TO A FIXED SIGNIFICANCE
LeveL, a.

a MT5 AS A CUT-OFF POINT
BELOW WHICH WE ASREE THAT AN
BFFELT 15 STATISTICALLY $IGNIFI-
CANT. THAT 15, IF

P-VALUE € a

THEN WE RULE OUT THE NULL
HYPOTHESIS Hp AND AGREE THAT
SOMETHING ELSE 15 6OING ON.

IN THE EXAMPLE, THE P-VALUE WAS
Pr(x<4 | p=.50 AND n=80)

=14 x10718

WE COMPUTED THIS P-VALUE THE
MODERN WAY, USING A STATISTICAL
SOFTWARE PACKAGE.

IN THE JURY CASE, THE STATISTICIAN
TOOK & TO BE 3.6 x 10718, Tug
CHANCES OF BEING DEALT THREE
ROYAL FLUSHES IN A ROW.

A PVALUE
BVEN A Jupée
L CAN UNDERSTAND!




("IN SCIENTIFIC WORK, A FIXED ar-LEVEL OF .05 OR .01 15 OFTEN USED. THESE |

FIXED LEVELS ARC A HOLDOVER ARTIFACT FROM THE PRE-COMPUTER ERA,
WHEN WE HAD TO REFER TO TABLES, WHICH WERE PRINTED ONLY FOR
SELECTED CRITICAL VALUES. STILL, MANY SCIENTIFIC JOURNALS CONTINUE TO
PUBLISH RESULTS ONLY WHEN THE P-VALUE < .05.

EVEN THOUGH

1 TIMe OUT OF
20, RESULTS Wity

A SIGNIFICANCE
LEVEL OF P<.05

ARE FALSE I/

IN LEGAL PROCEEDINGS, THE
STANDARD 15 MORE FLEXIBLE...
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LARGE SAMPLE

SIGNIFICANCE TEST FOR
PROPORTIONS

THE JURY EXAMPLE WAS A SPECIAL CASE
OF A GENERAL PROBLEM. THE NULL
HYPOTHESIS HAD THE FORM p = po,
WHERE o WAS SOME PROBABILITY (IN
THIS CASE, .5 ), NOW LET'S LOOK AT
SUCH PROBLEMS GENERALLY: LET'S
TEST THE HYPOTHESIS p = po.

-

AS USUAL, WE IMAGINE WE HAVE A BI6 POPULATION.. WE OBSERVE A LARGE
SAMPLE... AND WE FIND THAT SOME CHARACTERISTIC OCLURS WITH
PROBABILITY B

BASED ON THIS
OBSERVATION, WE WANT

TO KNOW IF THE TRUE
POPULATION PROBABILITY 15
(FOR INSTANCE) LARGER THAN SOME OTHER VALUE po. FOR EXAMPLE,
SENATOR ASTUTE, HAVING FOUND A P OF 55, WOULD LIKE TO KNOW THAT
P > .5, A WINNING MAIORITY.

\ J
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THE NULL HYPOTHESIS 15
Hot p = po

THE ALTERNATE HYPOTHESIS DEPENDS
ON THE DIRECTION OF THE EFFECT
WE ARG LOOKING FOR. IN SENATOR
ASTUTE'S CASE,

Ha: p> po

BUT IN OTHER CASES, THE ALTERNATE
HYPOTHESIS MIGHT WELL BE

Ha: p< po
OR

“a’ P#Pa

FOR EXAMPLE, IN THE JURY SELEC-
TION EXAMPLE, THE ALTERNATIVE
HYPOTHESIS WAS

“a‘P< o5

AND AT OTHER TIMES, WE ARE
INTERESTED IN KNOWING THAT p 15
DIFFERENT FROM SOME VALUE .
FOR INSTANCE, IN TESTING FOR A
FAIR COIN, WE HAVE AN ALTERNATE
HYPOTHESIS OF

H,: p20O5
BUT HAVE NO A PRIORI OPINION

ABOUT WHETHER HEADS OR TAILS
WILL COME UP MOREG OFTEN.

Step 2. ruc vest stanstic 15
P-r

" NaO-pAT

WHICH MEASURES HOW FAR p DEVIATES
FROM . UNDER THE NULL
HYPOTHESIS, Zops HAS THE STANDARD
NORMAL DISTRIBUTION.

Step 3.tue p-vaLue vepenps

ON WHICH ALTERNATE HYPOTHESIS 15
RELEVANT:

@ ) RIGHT-HANDED" H, : 2> pp
UsES P-VALUE Pr(z > z,,p)

—

0 Zops

b) LeFr-nanoee” K, 2 o< po
USES P-VALUE Pr(z < z,,)

.
7/

Tw O
G) "TWO-5IDED* H,, : p#po
UsES P-VALUE Pr(izl > 1z,,,))

°¢

=IZops) 1Zopl



IN THE CASE OF SENATOR ASTUTE:

1) e urpoTmeses are
"0 : P ‘05
Hy: p>5

2) s Test sTamisTIC 15

. 55-50

NG5 X5)iGoo

3) wis p-vave 1
Pr(Z> z,,) = Pr(z >316) =.0008
(FROM THE NORMAL TABLE).

=316

Zogs

@) rsTUTC, BEING FAIRLY CONSERVATIVE,
TAKES A SIGNIFICANCE LEVEL a OF .01
AND OBSERVES THAT

Pr(z> z,,) = 0008 < a

(%0 Yo Revecr Ho?t )
as="

THE SENATOR THUS REJECTS
THE NULL HYPOTHES!IS, AND
HE (AND HI$ BACKERS) NOW
FEEL CERTAIN HE'S IN THE
LEAD.

You MAY CONTRIBUTE
Now..




LARGE SAMPLE
popuLATioN MEAN e

c)
HERE 15 HOW A SIGNIFICANCE TEST f',;
MIGHT BE USED IN INSPECTION @5
SAMPLING, AN IMPORTANT INDUSTRIAL ¢

APPLICATION.

NEW ASE GRANOLA INC. (LAIMS THAT
THE AVERAGE WEIGHT OF ITS CEREAL
BOXES 15 AT LEAST 16 OZ. THE &6NUINE
&ROCERY CORPORATION WILL SEND BACK
A SHIPMENT IF THE AVERAGE WEIGHT 15
ANY LESS.

BUT OF COURSE 6GNUINE GROCERY HAS
NO INTENTION OF WEIGHING EVERY BOX
IN A SHIPMENT. THEY'RE 60ING TO USE
STATISTICS!



FIRST, THEY CHOOSE THEIR
HYPOTHESES.

Ho: M= 16 OZ.
He: u<1$ OZ

REJECTING THE NULL
RYPOTHESIS MEANS
REFUSING THE GRANOLA .

PAsS TrRE
WoN ‘PRSTERI2ED
GORTS MILK, MAN...

Y

( NEXT, THEY CHOOSE A TEST STATISTIC. BY NOW, IT SHOULD BE PRETTY MUCH A\

KNEE-JERK REACTION TO KNOW THAT THE SAMPLE SPREAD FROM THE MEAN 15

X Mo - X—=u,
SE(X) 7

WHERE 5 15 THE SAMPLE
STANDARD DEVIATION. UNDER
THE NULL HYPOTHESIS, THIS
APPROXIMATES THE
STANDARD NORMAL WHEN
THE SAMPLE 15 LARGE, BY
THE CENTRAL LIMIT

( THEOREM.

SKIPPING OVER STEP 3 FOR A MOMENT, THEY SET A SIGNIFICANCE LEVEL. BEING A
BUNCH OF DROPPED-OUT SCIENCE MAIORS, THE 6ROCERS THINK ar=.05 5OUNDS
ABOUT RIGHT.

| MAJORED i A Remener e
ASTROLOGY, (NUMBEQ 5. Yem...)
VTN

JUST THEN, A BOXAR
LOADED WITH 10,000
BOXES OF GRANOLA
ARRIVES AT THE DOOR.
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THEY PULL OUT A
SIMPLE RANDOM
SAMPLE OF 49 BOXES,
WEIGH EACH ONE, AND
PETERMINE THE
SAMPLE’S SUMMARY
STATISTICS:

Z = 15.90 oz
$ = .35 oo

A UITTLE LIGHT—BUT
SIGNIFICANTLY 507

P

THEY PLUG THE VALUES INTO THE TEST STATISTIC TO FIND
15.9-16

Zogs = = -2

e

NOW THEY COMPUTE THE P-VALUE:

Prcz < -2 | Hp) = . 0227

SEND 1T
BACK, You
BURN

MRTIST!

-2 jl.os o
THIS BEING LESS THAN THE .05
SI6GNIFICANCE LEVEL, 6ENVINE 6ROCERY
REJECTS THE NULL HYPOTHESIS, AND
k1’ME SHIPMENT.

—— —V\ -
60T THE MUNCHIES,
WHAT T
MAN... | DADN'T
HAPPENED? y: THiE ANYONE WOULD

NOTICE I | ATE A
LITTLE FROM EveRy
Box

\N

e



(SMALL SAMPLE
TEST FOR THE POPULATION

MEAN

WE RETURN TO CHAMELEON MOTORS, AND IT5 10 MPH. (RASH TEST. THE
RIGHTEOUS INSURANCE COMPANY WILL INSURE AN AUTO ONLY IF THE MEAN
REPAIR COST AFTER A 10 M.PH. COLLISION 15 LESS THAN $1000. THE COMPANY
USES A STANDARD ar = .05 AS 1T SIGNIFICANCE LEVEL. 0.

Ho: 12 $1000  MEAN COST 15 TOO HIGH
Ha: u<$1000  MeaN cOST 15 OK.

THE TEST STATISTIC 15 THE L DISTRIBUTION

X—sto WHERE 44, 15 THE
=X HYPOTHETICAL MEAN
S6(X) OF $1000

AND WE WANT OUR OBSERVED
t VALUG TO LI TO THE LEFT
OF -tos (BECAUSE LOW Z 15

[m" DESIRABLE, Z—4¢p SHOULD BE

UL geaTIVE, TO SUPPORT Ha).

ll
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a
I 05 015 005
w_ ! 631 1211 6346
o § 2 (292 430 992
ga 3 235 318 584
§ g 4 |213 2718 4s0
5 201 2571 403

FROM THE TABLE OF (RITICAL
t VALUES, WE SEE THAT

tos = 2.13, 50 WE DECIVE TO
REJECT H, IF

to.g < -'t,p; = -2.13

FROM CHAPTER 8, WE HAVE
Z = $540 AND 6 = $299
FOR A SMALL, FIVE-CAR
SAMPLE, 50 WE FIND

-1000
tops = 21071000
299/\5

= -344< "t,pg

= -t

THE CAR PASSES THE TEST.. Ho 15 REJECTED.. AND THE INSURANCE POLICY 15

Vo THUESE
FLIES HAVE

LIFE
INSURANCE ?

THIS 15 AN EXAMPLE OF ACCEPTANCE SAMPLING. THE NULL HYPOTHESIS 15
THAT REPAIR CO5T% ARE UNALCEPTABLE, AND THE MOTOR COMPANY 15
ASS5UMED GUILTY UNTIL IT PRESENTS SUFFICIENT EVIDENCE OF IT%
INNOCENCE—L.E., THAT ITS PRODUCT 1S WITHIN SPECIFICATIONS.
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‘DECISION THEORY

WE CAN THINK OF HYPOTHESIS TESTING AND
SI6NIFICANCE TESTS IN TERMS OF A HOUSEHOLD
SMOKE-DETECTOR. TF YOU HAVE ONE OF THESE
WHERE YOU LIVE, YOU'VE PROBABLY NOTICED HOW IT
TENDS TO 60 OFF BVERY TIME YOU MAKE THE TOAST

THIS 15 WHAT 15 CALLED A TYPE | ERROR: AN ALARM WITHOUT A FIRE.
CONVERSELY, A TYPE Il GRROR 15 A FIRE WITHOUT AN ALARM. EVERY COOK
KNOW$S HOW TO AVOID A TYPE I ERROR: JUST REMOVE THE BATTERIES.
UNFORTUNATELY, THIS INCREASES THE INCIDENCE OF TYPE II ERRORS!

SIMILARLY, REDUCING THE CHANCES OF TYPE II ERROR, FOR GXAMPLE BY MAKING
THE ALARM HYPERSENSITIVE, CAN INCREASE THE NUMBER OF FALSE ALARMS.
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WE (AN SUMMARIZE THIS IN A TWO-BY-TWO DECISION TABLE.

NO FIRE FIRE
NO ALARM NO ERROR TPE I
ALARM TYPE I NO ERROR

NOW THINK OF THE NULL HYPOTHESIS AS THE CONDITION OF NO FIRE, WHILE
THE ALTERNATE HYPOTHESIS 15 THAT A FIRE 15 BURNING. THE ALARM
CORRESPONDS TO REJECTION OF THE NULL HYPOTHES!S:

TRUE STATE
Ho Ha
ACEPTH, | NOERROR | TYPET
REJECT H, | TYPEI NO ERROR

-
ALL THE SIGNIFICANCE TESTS WE DID EARLIER IN THIS CHAPTER EMPHASIZED
THE PROBABILITY OF COMMITTING A TYPE 1 ERROR—1.E, THE PROBABILITY OF

OUR OBSERVATIONS OCLURRING IF Hy WAS TRUE. WE DEMANDED THAT

Preesecrine Ky | Hp) = Pr(TYPE 1 ERRORI H,) = a

1-a@ MEASURES OUR CONFIDENCE THAT ANY ALARM BGLLS WE HEAR ARE
GENUVINE. HIGH CONFIDENCE MEANS RARELY SETTING OFF FALSE ALARMS.




BUT SOMETIMES WHAT WE REALLY WANT TO KNOW 15 THE CHANCE OF MAKING
A TYPE |l ERROR! IN OTHER WORD%, HOW SENSITIVE 15 OUR “ALARM SYSTEM®
WHEN THE ALTERNATE HYPOTHESIS 1S TRUE?

AN ENVIRONMENTAL

IN THE PAST, FACTORIES DISCHARGING CHEMICALS INTO WATERWAYS WERE
REQUIRED TO SHOW THAT THE PISCHARGE HAD NO EFFECT ON THE DOWN-
STREAM WILDLIFE. THAT'S H,. THE POLLUTER COULD CONTINUE AS LONG AS
THE NULL HYPOTHESIS WAS NOT REJECTED AT THE .05 SIGNIFICANCE LEVEL.

é .

o © BuRl

BorBLE

SO A POLLUTER, SUSPECTING THAT HE WAS IN VIOLATION OF EPA STANDARDS,
WOULD DEVISE AN INEFFECTIVE POLLUTION MONITORING PROGRAM.

—

WELL \NTERVIEW
A FEW pUCKS Y




THE POLLUTER 15 DELIGHTED, SINCE, LIKE OUR SMOKE ALARM WITHOUT A
BATTERY, HI% TEST HAS LITTLE OR NO CHANCE OF SETTING OFF AN ALARM.

WRITE THIS DOWN:
“THe OuCk RESPONDED
ENTHUSIASTICALLY. "

p

LET'S FORMALIZE THIS
IDEA TO DESCRIBE THE
PROBABILITY OF A TYPE
Il GRROR, WE BREAK OUT
ANOTHER 6REEK LETTER:
BETA, OR B.

B = Proaccerting Hyp [Hyp
= Pr(TYPE 11 ERROR |H )

THE POWER OF A TEST
15 DEFINED AS 1-B. IT'S

Pr (ResecTig Hp |Hg ).

.

YOU'LL BE HAPPY TO KNOW THE
ENVIRONMENTAL REGULATORS HAVE
MOVEPD IN THE DIRECTION OF REQUIRING
POLLUTION MONITORING PROGRAMS TO
SHOW THAT THEY HAVE A HIGH

PROBABILITY OF DETELTING SERIOUS ( .
POLLUTION EVENTS. THE REQUIRED -
POWER ANALYSIS OFTEN REVEALS

WIDDEN FLAWS IN THE MONITORING Wi
PROGRAM.



ONE WAY TO VISUALIZE THE EFFECT OF A TEST'S POWER 15 BY GRAPHING THE
PROBABILITY OF REJECTING Hy AGAINST THE ACTUAL STATE OF THE SYSTEM. IN
THE CASE OF A SMOKE ALARM, THE PROBABILITY CLIMBS TOWARD 1 AS THE

SMOKE 6ETS THICKER.

1
2
s
33
D
o
RAW PONE REALLY (RISP BURNING MOLOTOV COCKTAIL
KITCHEN SMOKE DENSITY

FOR THE E.PA. WATER QUALITY EXAMPLE, THE HORIZONTAL AXIS 15 THE TRUE
CONCENTRATION OF POLLUTANT IN THE WATER.

1
o’
H
l: ¢°...
] 5
[] 3
g3 i
ks :
w H
éq :
H =ee  SAVE GVERY 6UPPY
YA — GOLUEN MGAN
.
. eee DONT ROCK BOAT
o T T
MSOVE STANDARD  PURG INDUSTRIAL SOLVENT

PERMISSTBLE
POLLUTANT CONCENTRATION

HERE ARE THE POWER CURVES FOR THREE MONITORING PROGRAMS. THE SAVE

EVERY LAST GUPPY (CO5T% $5 MILLION), THE 6OLDEN MEAN (LO5TS
$500,000), AND DON'T ROCK THE BOAT (ALSO (O5T% $500,000, BUT THEY PUT
ON A 600D SHOW!). THE HIGHER THE TEST'S POWER, THE STEEPER THE CURVE.
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/co;;—wunou;/ WITH THESE
SECTIONS COVERING THE BASICS OF
CONFIDENCE INTERVALS AND
HYPOTHESIS TESTING, YOU HAVE JUST
COMPLETED YOUR FIRST COURSE IN
CLASSICAL STATISTICS!

WHY THEN DO YOU HAVE SUCH AN EMPTY FEELING IN YOUR STOMALH?
BECAUSE, TO USE THESE IDEAS IN ANY PRACTICAL WAY, WE HAVE TO BE ABLE
TO APPLY THEM TO A VARIETY OF SITUATIONS WE HAVEN'T EVEN TOUCHED ON
YET. THAT 15 WHERE WE ARE G6OING NEXT, WITH THE COMPARISON OF TWO
POPULATIONS.

O.X.! BRING
ON THE.
POPULATIONS !

REECRES

\_ . J




oChapter 9+

COMPARING
TWO POPULATIONS

IN WHICH WE LEARN SOME NEW RECIPES USING
OLPD INGREPIENTS...




(THE LAST TWO CHAPTERS EXPLAINED )
CONFIDENCE INTERVALS AND
HYPOTHESIS TESTING WITH THE
STEAK AND POTATOES OF RANDOM
MODELS: THE NORMAL AND THE
BINOMIAL DISTRIBUTIONS.

WITU THE MORMAL T
PLIYING TRE RoLE 3
OF Tue PoTATOES!
[]
\_ . J

BUT WHAT MAKES STATISTICS ALMOST AS CHALLENGING AS COOKING 15 THE
VARIETY. LIKE AN EXPERT COOK, THE STATISTICIAN CAN “TASTE® THE
INGREDIENTS IN A PROBLEM AND THEN FIND THE MOST EFFECTIVE WAY TO
COMBINE THEM INTO A STATISTICAL RECIPE.

HM... HOW Do
You SUBTRACT
SALT ?

(THE REASON COOKBOOKS AND STATISTICAL METHODS TEXTS ARE 50 HEAVY 15
THAT THEY BOTH PROVIDE SOLUTIONS IN A 6REAT VARIETY OF SITUATIONS!)

Nt;\d WUERE 1%
TuaT BINOMIAL




IN THIS CHAPTER, WE'LL USE OUR MEAT
AND POTATOES METHODS IN SOME NEW
RECIPES THAT WILL HELP US ANSWER
THE FOLLOWING QUESTIONS:

DOES TAKING ASPIRIN RESULARLY
REDUCE THE RISK OF HEART ATTACK?

DOES A PARTICULAR PESTICIDE
INCREASE THE YIELD OF CORN PER
ACRE?

W@*ﬁ

PO MEN AND WOMEN IN THE SAME
OCCUPATION HAVE DIFFERENT SALARIES?

THE COMMON INGREPDIENT IN THESE
QUESTIONS 15 THIS: THEY CAN BE
ANSWERED BY COMPARING TWO
INDEPENDENT RANDOM SAMPLES,
ONE FROM EACH OF TWO

POPULATIONS.
a Go
® o
(%
[« Y
AR
PESTICIDE no PesTICIDE

AND, AT THE END OF THE CHAPTER,
WE'LL LOOK AT A PIFFERENT WAY TO
COMPARE TWO MEANS THAT DOESN'T
INVOLVE TAKING TWO $IMPLE
RANDOM SAMPLES.. s




Compcring SUCCESS RATES

(or failure rates) for two populations.

WE BESIN WITH AN EXPERIMENT, PART OF A HARVARD 5TUDY, THAT $OUGHT TO
DECIDE THE EFFECTIVENESS OF ASPIRIN IN REDUCING HEART ATTACKS. AS IN
MOST CLINICAL TRIALS, THE CHANCES THAT ANY ONE INDIVIDUAL 6ET% THE
DISEASE—IN THIS CASE, A HEART ATTACK—IS VERY SMALL IN ANY GIVEN YEAR.
BUT WE WANT ANSWERS QUICKLY! WHAT PO WE PO?

TAKE
20,000
BSPIRINT

THE SIMPLE, BUT EXPENSIVE, SOLUTION 15 TO TEST A LARGE NUMBER OF
INDIVIDUALS IN A SHORT TIME. IN THIS $TUDY, 22,071 SUBJECTS (ALL
VOLUNTEER DOCTORS) WERE RANDOMLY ASSIGNED TO TWO &ROUPS.

ASPIR W

78

GROUP ONE TOOK A PLACEBO—A 6ROUP TWO RELEIVED ONE
PILL IDENTICAL TO ASPIRIN, BUT ASPIRIN A DAY,
CONTAINING NO ASPIRIN.

\
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OVER 'A PERIOV AVERASING

NEARLY FIVE YEARS*, THE }g)
INVESTIGATORS RECORDED [
THE RESPONSES: HEART

ATTACK OR NO HEART ATTACK.
THE RESULT: (IN THE

NUMBERS THAT FOLLOW, WE
HAVE COMBINED FATAL AND
NONFATAL HEART ATTACKS.) -

ATTACK  NO ATTACK n ATTACK RATE
PLAGBO 2% 10,795 noM B = 2 . .27
ASPIRIN 1% 10998 nosr P, - "':;7 - .0126

THE OBSERVED DIFFERENCE
IN SUCCESS RATE 15
Py-Py=-0091. IT S0UNDS
SMALL UNTIL YOU LOOK AT
THE RELATIVE RISK,

LYY
P, " oms

MEMBER OF THE PLACEBO

6ROUP WERE 1.72 TIMES

LIKELIER TO SUFFER A HEART

ATTACK THAN THOSE IN THE
ASPIRIN 6ROUP.

*“THE STUDY WAS STOPPED EARLY BECAUSE OF ITS POSITIVE OUTCOME. IT WOULD
HAVE BEEN UNWISE AND IMPRACTICAL TO DENY THE RESULTS TO THE 6ROUP
TAKING THE PLACEBO.
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p
The Model: T PLACCBO AND ASPIRIN GROUP OBSERVATIONS

ARE INDEPENDENT SAMPLES FROM TWO BINOMIAL POPULATIONS. FOR
CONSISTENCY, WE REFER TO A HEART ATTACK AS A SUCCESS (1).

20, Q Wb@o

PLACEBO ASPIRIN
POPULATION ONE POPULATION TWO
CHANCE OF SULLESS = Py CHANCE OF SUCESS = P,

THE OBJECTIVE 15 TO ESTIMATE THE TRUE PIFFERENCE, p,-p,-
\. J/

FOR EACH POPULATION (ACTUALLY LARGE SAMPLES OF THE GENERAL POPU-
LATION), WE HAVE THE FAMILIAR RANDOM VARIABLES:

X NUMBER OF SUCCES5ES X NUMBER OF SUCLES5ES
1 IN POPULATION ONE 2 IN POPULATION TWO
~ X, PROPORTION OF ~ X,  PROPORTION OF
P, = -1 successes P. = —% sucesses N
1 7,  POPULATION ONE 2 N,  POPULATION TWO

~

AND AN GSTIMATOR OF DIFFERENCE IN RATE: P,-— P,

( AND NOW, LIKE A BROKEN )
RECORD, WE ASK OURSELVES,
How 15 P,- P, DISTRIBUTED?

G J




A A
Sampling distribution for P,-P
1=Fa

FOR LARGE SAMPLES, P - P,
15 APPROXIMATELY
NORMALLY DISTRIBUTED,
MUCH AS IN THE CASE OF
ONLY ONE SAMPLE. WE (AN
MAKE THE USUAL Z-
TRANSFORM TO 6ET A
STANDARD NORMAL RANDOM
VARIABLE (APPROXIMATELY)

_ Pt - ﬁz-(P P2
o(P-P)
BUT HOW PO WE FIND

THAT STANDARD DEVIATION
IN THE PENOMINATOR?

-
SINCE THE TWO SAMPLES ARE INDEPENDENT, 50 ARE THE RANDOM VARIABLES )

P, AND P,, AND THE TWO VARIANCES ADD.
A A A
o(B-P,)= o2(R)+ (B

s0
c(B-8)= Vo (P )+ox(P,)

AND NOW, KNOWING
THE DISTRIBUTION
OF THE TEST
STATISTICS, WE CAN
PROCEED TO
ESTIMATE
CONFIDENCE
INTERVALS AND
TEST THE
HYPOTHESIS THAT
ASPIRIN REDUCES
HEART ATTACKS.

T RECOMMEND
AN ASPIRIN To
GET THROUGH
Tulélo- -
e




Confidence
Intervals for
Pi=P2

A% USUAL, THE CONFIDENCE INTERVALS
FOR OUR ESTIMATE LOOK LIKE THIS:

Pi=pr = PrPr % 24 SE(P - ;)

rA \

;,RFUF‘ER;M‘; OBSERVED STANDARD
OF POPULATION DIFFERENCE ERROR
PROPORTIONS CRITICAL

VALVE

THE VARIANCES OF P, AND P, ADD, 50
THE STANDARD ERROR BECOMES

56(p.-p) =4[ P pd-p 'P‘ (;‘:’)

IN THE ASPIRIN $TUDY, THE STANDARD
ERROR 15

[TCozn(9789), (onn)(9874)
1,034 1,037

=.0017%5

(10 GET THE 95% CONFIDENCE |

INTERVAL FOR THE ASPIRIN
STUDY, WE JUST PLUG IN THE
OBSERVED VALUES:

Py~ P, = -0091£(196)(.00175)
=.0091t.0034

WE ARE AT LEAST 95%
CONFIDENT THAT THE
DIFFERENCE IN HEART ATTACK
RATES 15 BETWEEN .0057 AND
0125. DEFINITELY A POSITIVE
NUMBER! WE ARE NOW AT
LEAST 95% CONFIDENT THAT
ASPIRIN REALLY DOES LOWER
HEART ATTACK RATES.

UM..WOLD You
AVD SOME

MSPIRIN To- Y
KIBBLE ?




hypothesis
testing

THE FORMAL HYPOTHESIS-TESTING
QUESTION 15

IF ASPIRIN HAD
NO EFFELT, WHAT

15 THE PROBABILITY
THAT THI% RESULT
OCLURRED BY
CHANCE?

Hg. THE NULL HYPOTHESIS, 15 THAT
ASPIRIN HAD NO EFFECT: py= p,.

H,. THE ALTERNATIVE, 15 THAT
ASPIRIN' DOES REDUCE THE HEART
ATTACK RATE: p,> p,.

NOW WE NEED A TEST STATISTIC WITH
A NORMAL DISTRIBUTION WHEN H, 15

@@f@
=

NOTE THAT UNDER Ho, THE TWO
PROPORTIONS ARE THE SAME,
P1= Py = p- 50 LET'S POOL ALL THE
DATA TO 66T THE PROPORTION OF
HEART ATTACKS IN BOTH SAMPLES
TOGETHER:

A Xt 2,
T n+an,

165

‘WHEN THE NULL HYPOTHESIS 15

TRUE, THE STANDARD ERROR
PEPENDS ONLY ON THIS POOLED
ESTIMATE:

euip -t A 2C-PIEFE)

AND WE CAN WRITE A TEST
STATISTIC:
P-P,
2= - & &
SEo(P—P,)

(THE NUMERATOR WOULD
ORDINARILY 8€ P,—P,—(p-p,),
BUT Hy ASSUMES p—p, = 0.)

2\
FOR THE ASPIRIN STUDY, WE FIND

~_ _378

22,0
$Eo(P,-P,) = 00175
%0

O
Zoss® o5 = %20



ﬁzo,, 15 MORE THAN FIVE STANDARD DEVIATIONS FROM ZERO, A 5TRONG

POSITIVE EFFECT. USING A TABLE OR A COMPUTER, WE FIND THE P-VALUE:
P-VALUE = PR(Z> Zogs) = PR(Z > 52) = 0000001

BY USING A TABLE,
A COMPUTER, OR A
COMPUTER ON
A TABLE...

° S
IF THE NULL HYPOTHESIS WERE TRUE, THE PROBABILITY OF OBSERVING AN
_EFFECT THIS LARGE 15 ONE IN TEN MILLION—VERY STRONG EVIDENCE
AGAINST Ho!!!

N\

J
The THE RELEVANT P-VALUE DEPENDS ON
general THE ALTERNATE HYPOTHESIS:
[ ]
recipe: N TWO-SIDED K, : p 2P,

TO TEST THE NULL HYPOTHESIS J\W’

Ho: p = p, > |
COMPUTE THE TEST STATISTIC PVALUE = PriZl > [2og4))

ﬁl "ﬁz

ZOBS = $Ea(§) /\'
(WHERE SE, 15 COMPUTED USING ‘.

THE POOLED PROBABILITY
OBTAINED BY COMBINING BOTH P-VALUE = Pr(Z > Zpg9

OLFTH, 1 p<p,

AN

P-VALUE = Pr( Z < Zpg9)

B RIGHT H, s 9, >p,
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THE ANALYSIS OF THE ASPIRIN $TUDY DEPENDED ON CERTAIN FEATURES OF THE
EXPERIMENT DESIGNED TO ENSURE RANDOMNESS AND TO ELIMINATE BIAS:

SUBJELTS WERE RANDOMLY THE EXPERIMENT WAS BLIND:
q ASSIGNED TO TREATMENT SUBJECTS DIDN'T KNOW IF
6ROUPS. THEY WERE TAKING ASPIRIN
OR PLALERBO.

THE SAMPLE SIZE WAS LARGE
ENOUGH FOR THE NORMAL POINTS 1 AND 2 ARE ESSENTIAL

APPROXIMATION TO WORK. PARTS OF MO5T HUMAN CLINICAL
TRIAL DESIGNS, BUT POINT 3 1%

Miny NOT E55ENTIAL. 600D SMALL-
\ SAMPLE TESTS DO EXIST AND
AR AVAILABLE IN COMPUTER

/ SOFTWARE PACKAGES. THESE
NONPARAMETRIC PROCEDURES
DEPEND ON SIMPLE, BUT
QIGAT. W LENGTHY, PROBABILITY

CALCULATIONS SIMILAR TO THE

, GAMBLING COMPUTATIONS WE
> | ENCOUNTERED IN CHAPTER 4.

UM...WE ALSO
ASSUMED TUAT DOCTORS
ARE REPRESERTATWVE
OF THE GEMERAL
POPULATION..-



MEANS of two popvulations

SUPPOSE WE WANTED TO COMPARE THE
AVERASE SALARY OF MALE AND FEMALE
EMPLOYEES IN THE SAME JOB AT SOME
COMPANY.

-
POPULATION ONE 15 THE WOMEN, AND POPULATION TWO 15 THE MEN.

POPULATION ONE HAS MEAN POPULATION TWO HAS MEAN
SALARY 4, AND STANDARD SALARY L4, AND STANDARD
DEVIATION 0, DEVIATION 7,

A RANDOM SAMPLE OF $IZE 71, FROM 6ROUP 1 AND 71, FROM 6ROUP 2 6IVES
SAMPLE MEANS OF Z, AND Z, AND STANDARD DEVIATIONS 4, AND %,
RESPELTIVELY. THE ESTIMATOR OF 44,-41, 19

X=X,
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( WOW 600D AN ESTIMATOR 15 X -X,?
FOR LARGE SAMPLE $12E5, IT'S
APPROXIMATELY NORMAL (BY THE
CENTRAL LIMIT THEOREM), AND IT5 S
STANDARD ERROR 15

HEY,6VYS! _
Look! SEX)!
RILUT N THE

EORMULA !

- = P 5:‘
6E(X1"Xz)s .n.‘—‘*.—'—‘—»

(THE VARIANCES ADD, SINCE
SAMPLES ARE INDEPENDENT.) NOwW
WE CAN PROCEED DIRECTLY TO:

[ ]
intervals: e
LARGE SAMPLE $IZES, THE (1-a)100% o 13'9 0 J
CONFIDENCE INTERVAL FOR THE \)OK‘ﬁ
DIFFERENCE BETWEEN MEANS 15
My = =%, zq sE(X-X,)
J

hypothesis testings . s

THE NULL HYPOTHESIS THAT THE TWO POPULATION MEANS ARE EQUAL.

\

Ho: py=p
THE TEST STATISTIC 15
2. KX
085
se(X,-X,)

AND THE P-VALUES WORK IN
THE USUAL WAY.




[ and how about comparing A

SMALL SAMPLE
MEANS?

REMEMBER CHAMELEON MOTORS? THEIR COMPETITOR, IGUANA AUTO, CLAIMS
THAT T STYROFOAM HOOD ORNAMENT 6IVES BETTER FRONT END (RASH
PROTECTION, AND THEY'VE CRASHED $6VEN IGUANAS TO PROVE IT!

CMon! cHanELEON !
By Me! uaTuRg Amiay
N R o
CLAvI' WA LIkE A REFUGEE

¥ROM A SPIDERMAN
CoMIC...

CHAMELEON I6VANA
1 $150 1 $50

2 | $400 2 | $200
3 | $720 3 | $150
4 | $500 4 | $400
5 | $930 5 | $150
m|s 6 | $400
- 7 _| $150

Zy | $540 ny| 7
’1 5199 22 m 0
5, | $238
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THE T DISTRIBUTION (AN BE USED
IF BOTH POPULATIONS ARE MOUND
SHAPED AND HAVE THE SAME
STANDARD DEVIATION 0 =0 =0,.
THE ONLY WRINKLE 15 THAT WE
HAVE TO POOL THE $UM OF
SQUARES ABOUT THE MEANS TO
FORM A SINGLE ESTIMATE OF o

5 =(n.-06'.‘+(nrl\ s,
Pol - wen,-2

THE STANDARD ERROR 15 THE SAME A%
FOR LARGE SAMPLES, EXCEPT THAT
sm REPLACES 5, AND 513

X-X)= 5:— 691000
oB(X-X,) \’ Tty e
= 6?00(—1*14’}\-&

THE (1-a)100% CONFIDENCE
INTERVAL 15

M=M= ir‘iz it% QE(-X-j' —2)

WHERE t% 15 A CRITICAL VALUE OF t
WITH 72,-n,-2 DEGREES OF FREEDOM.

00 0000000 0000000000 0 000 00000008 000

THE REPTILIAN CARMAKERS ASREE THAT THEIR STANDARD DEVIATIONS ARE,
CLOSE AND THEIR REPAIR HISTOGRAMS ARE MOUND-SHAPED. THEY COMPUTE:

4-295 + 6-326%
S0l * N 5

se(X-X,) = w\] Ted =154

THE 95% CONFIDENCE INTERVAL 15

= 264 0.X...FORGET SAFETY.
80T YoU CAN'T ARGUE

WITH BEADTIRUL STYING...

M=y = 540-300 £ C,,.(154)
= 240 + (2.23X(154)
= 240 t 340
a
SINCE THIS INCLUDES THE VALUE O,
IGUANA AUTOS HAS NOT SHOWN A

SIGNIFICANT IMPROVEMENT IN
REPAIR CO5TS.

1




(HERE'S AN EXAMPLE THAT SHOWS THE
PITFALLS OF MINDLESSLY FOLLOWING
THE COOKBOOK: A LARGE TAXI FLEET

'M A

LA&&E OXJNGR
OWNER WANTS TO COMPARE THE 6AS : \TH
MILEAGE USING 645 A AND 645 5. LARGE FLEET!

LY A1}
A=W/ T RO
v =P U S

STARTING WITH 100 CABS, HE RANDOMLY AS5I6NS 50 TO EACH GASOLINE, AND,
AFTER A DAY'S DRIVING, DETERMINES

SAMPLE  MEAN STANDARD
S1Ze MILEAGE  DEVIATION

A 50 25 5.00
B 50 26 400

4 N\
THE SAMPLE DIFFERENCE 15
Zy-Zy=25-26 = —
15 6A% B REALLY BETTER
THAN 6AS A?
\ J/




( OWING TO THE LARGE STANDARD
DEVIATIONS, THE STANDARD ERROR 15
PRETTY SUBSTANTIAL:

SECX,-X,) = 2. 5

v Ny
=4/25 16

N5
= 905
AT THE 95% CONFIDENCE LEVEL, WE HAVE
M=pg = Zy= Tyt Z,5y,(905)
= =1 + (196X.905)

- -1 1 1774

THIS INCLUDES THE VALUE O,
CORRESPONDING TO L=y

AND HYPOTYHESIS
TESTING T

\ @
THE P-VALUE FOR THE ALTERNATE
HYPOTHESIS Hy: 4ty # 14y 16

Pr(1zl 2 |zogl) = Pr(1zl > 555)

= Pr(lzlZ11) = 2(1357)

-.2714

TOTAL SHADED
i : AREA = 2714

= 8]

)
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THIS EXCEEDS THE a = .05
SI6NIFICANCE LEVEL, 50 WE
CONCLUDE THAT THE EVIDENCE
IN FAVOR OF EITHER &A% 15
VERY WEAK.



‘PAIRED COMPARISONS

a better way to compare gasolines

THE TAXI OWNER FOLLOWED THE
COOKBOOK EXALTLY. HIS SAMPLES
WERE RANDOM, AND HIS SAMPLE
S1ZE WAS LARGE ENOUGH. HE
JUST FAILED TO THINK WHEN
NECES5ARY!

ALTHOUGH 6AS B APPEARS TO BE SLIGHTLY BETTER THAN 6AS A, THE
CONFIDENCE INTERVAL WAS WIDE BECAUSE OF THE LARGE STANDARD
DEVIATIONS—LE., THE MILEAGES VARIED WIDELY FROM ONE CAB TO THE
NEXT. WHY SUCH HIGH VARIABILITY? BECAUSE CABS—AND CABBIES—HAVE
DIFFERENT PERSONALITIES!




A FAR BETTER WAY TO DO THIS STUDY 15 TO ASSI6N 6AS A AND 6A% 8 TO THE
SAME CAB ON DIFFERENT DAYS.

B

—

WE STILL RANDOMIZE THE TREATMENT BY FLIPPING A COIN TO DECIDE
WHETHER TO USE 6AS A ON TUESDAY OR WEDNESDAY. WE CAN ALSO CUT THE
EXPERIMENT DOWN TO 10 (ABS, 5AVING THE OWNER A LOT OF TIME AND
MONEY!

wg chA8 6AS A 6A5 B  DIFFERENCE
;p» CONS
o Toss! 1 2101 2695 0.06
. 2 20.00 2044 —0A44
3 2341 25.05 — 144
4 2522 2632 =110
5 301 2956 055
y 6 2555 2640 -105
7 2223 2293 -0.70
] 19.78 2023 - 045
9 3345 3395 -050
10 2522 26.01 -0.79
MEAN 25.20 2580 - 060
STANDARD DEVIATION | 427 410 0.8

NOTE THAT THE MEANS AND STANDARD DEVIATIONS OF 6AS A AND 6AS B ARE

ABOUT THE SAME. THAT'S TO BE EXPECTED, SINCE THEY HAVE THE SAME SOURCE

OF VARIABILITY A% IN THE UNPAIRED EXPERIMENT. BUT NOW THE DIFFERENCE

COLUMN HAS A VERY SMALL STANDARD DEVIATION. THE DIFFERENCE COLUMN,

BY COMPARING 6A5 PERFORMANCE WITHIN A SINGLE CAR, GLIMINATES
&VARIABILITY BETWEEN TAXIS.
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( THE DIFFERENCES o; PROVIDE A
SINGLE MEGASURE OF
DIFFERENCE FOR EACH TAXI,,
AND WE CAN USE IT TO MAKE A

d

t= S/

SMALL-SAMPLE t TEST STATISTIC:

THE 95% CONFIDENCE INTERVAL AROUND J 15

Mg = Jitms (64/‘17-)
R

SAMPLE  (RITICAL  STANDARD
MEAN VALUE ERROR

- -6 +(226)(:)
=-.60x .44 ve

-4 -0 -8 O

SO WE HAVE —1.04 < u, < -.16 WITH 95% CONFIDENCE, 600D EVIDENCE THAT

6A% B REALLY 15 BETTER.

PACKAGE:

Ha: py# O

P-VALUE = Pr(ltl>ltygl)
= Pr(ti25)
= Pr(itl2 315)
= 012 < 05

&MNN, 6AS B PASSES THE TEST.

(" THE HYPOTHESIS-TESTING P-VALUE CAN BE FOUND USING A SOFTWARE )

-V
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(WERE ARE PLOTS OF THE 6AS MILEAGE DATA: THE FIRST ONE SHOWS THE )
MILEAGES UNPAIRED:

6A5 B L) . o eeee . °
GASA oo L] ° (1) [ [} L]
20 2 k2] 2% 29 30 32 34

MILES PER GALLON

AND HERE'S THE SAME DATA PAIRED BY TAXICAB.

"L/

MLES PER GALLON

THE PREDOMINANCE OF RIGHT-
LEANING LINES 15 A STRONG
HINT THAT 6A% B 6IVES
BETTER MILEASE.




\.

rA PAIRED COMPARISON EXPERIMENT 15 ONE OF THE MOST EFFECTIVE WAYS TO

~N\

REDUCE NATURAL VARIABILITY WHILE COMPARING TREATMENTS. FOR EXAMPLE, IN
COMPARING HAND (REAMS, THE TWO BRANDS ARE RANDOMLY AS5I6NED TO
EACH SUBJECT’S RIGHT OR LEFT HANDS. THIS ELIMINATES VARIABILITY DUE TO
SKIN DIFFERENCES.

OR, IN COMPARING TWO BREAKFAST CEREALS, EACH TASTER- RATES BOTH
CEREALS (IN RANDOM ORDER). THE PAIRED COMPARISON REMOVES THE
NATURAL BIAS OF THE TASTER FOR OR AGAINST CEREAL IN GENERAL.

uAL! WUAT EVER WAPPENED
To BACON AND 6657
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IN THIS CHAPTER, WE APPLIED THE
BASIC IDEAS ABOUT CONFIDENCE
INTERVALS AND HYPOTHESIS
TESTING TO THE COMPARISON OF
TWO POPULATIONS. THERE ARE
INNUMERABLE FURTHER PO%5I-
BILITIES. WE COULD HAVE 60ONE ON
TO PESCRIBE COMPARISONS OF:

THio 16
WHY 4TATISTICS
BO0OKS ARE
%0 THICK. .-

. THE STANDARD
DEVIATIONS OF TWO
POPULATIONS WHEN
SAMPLE $IZE 15
SMALL ,

@ THE MEANS OF
MORE THAN TWO
POPULATIONS WHEN
SAMPLE 5IZE 15
LARGE,

@ THE MEANS OF
MORC THAN TWO
POPULATIONS WHEN
SAMPLE $IZE 15
SMALL,

ETC!

IN PRACTICE, STATISTICIANS DETERMINE THE 6ENERAL NATURE OF THE
L PROBLEM, AND THEN CONSULT THE RIGHT REFERENCE BOOK.

THE ONLY THING REALLY NEW
IN THE CHAPTER WAS THE IDEA
OF THE PAIRED COMPARISON
T&5T. IN THE NEXT CHAPTER,
WE'LL LOOK AT SOME OTHER
KINDS OF EXPERIMENTAL
DESIGNS.




BUY A U%ED
LHAMELEONY




+Chapter 10+

EXPERIMENTAL
DESIGN

THE DESIGN OF AN EXPERIMENT OFTEN SPELLS SUCLESS OR FAILURE.
IN THE PAIRED COMPARISONS EXAMPLE, OUR STATISTICIAN CHANGED
ROLES FROM PASSIVE NUMBER GATHERING AND ANALYSIS TO ACTIVE

PARTICIPATION IN THE DESIGN OF THE EXPERIMENT.

You ¢AN
RIDE FREE
A TmE!
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IN THIS CHAPTER, WE
INTRODUCE THE BASIC
IPEAS OF EXPERI-
MENTAL DESIGN,
WHILE LEAVING THE
PETAILED NUMERICAL
ANALYSIS TO YOUR
HANDY STATISTICAL
SOFTWARE PACK.

NO FORMUXAS IN
TS CHAPweR...

rTI-IE ELEMENTS OF A DESIGN ARE THE EXPERIMENTAL UNITS AND THE
TREATMENTS THAT ARE TO BE ASSIGNED TO THE UNITS. THE OBJECTIVE OF
ANY DESIGN 15 TO COMPARE THE TREATMENTS.

FOR MEDICAL TRIALS, THE PATIENTS
ARE THE UNITS, AND THE PRU&S ARE
THE TREATMENTS. IN THE MILEASE
EXAMPLE, THE EXPERIMENTAL UNITS
ARE TAXICABS, AND THE TREATMENTS

N TO BE COMPARED ARE GAS A
AND 6AS B.

IN AGRICULTURAL EXPERIMENTS, THE EXPERIMENTAL UNITS ARE OFTEN PLOTS
IN A FIELD, AND THE TREATMENTS MIGHT BE APPLICATION OF DIFFERENT
\WHEAT VARIETIES, PESTICIDES, FERTILIZERS, ETC.

B2




TODAY, EXPERIMENTAL DESIGN IDEAS
ARE USED EXTENSIVELY IN INDUSTRIAL
PROCESS OPTIMIZATION, MEDICING
AND 5OCIAL SCIENCE. ANY EXPERI-
MENTAL DESIGN USES THREE BASIC
PRINCIPLES, WHICH ARE CLEARLY
ILLUSTRATED IN OUR CAB EXAMPLE:

v ALWAYS
KNEW THAT

Replication: nic samc

TREATMENTS ARE ASSIGNED TO
DIFFERENT EXPERIMENTAL UNITS.
WITHOUT REPLICATION, IT'S
IMPOS5IBLE TO AS5E%% NATURAL
VARIABILITY AND MEASUREMENT
ERROR.

Local control rr:xs

TO ANY METHOD THAT ACCOUNTS FOR
AND REDUCES NATURAL VARIABILITY.
ONE WAY 15 TO 6ROUP SIMILAR
EXPERIMENTAL UNITS INTO BLOCKS.
IN THE CAB EXAMPLE, BOTH 6A50-
LINES WERE USED IN EACH CAR, AND
WE SAY THAT THE ¢AB 15 A BLOCK.

[ 1)

THE ESSENTIAL STEP IN ALL
STATISTICS! TREATMENTS MUST BE
AS5I6NED RANDOMLY TO EXPERI-
MENTAL UNITS. FOR EACH TAXI, WE
ASSIGNED 6AS A TO TUESDAY OR
WEDNESDAY BY FLIPPING A COIN. TF
WE HADN'T, THE RESULTS COULD HAVE
BEEN RUINED BY DIFFERENCES
BETWEEN TUESDAY AND WEDNESDAY!

~
7
7/

PR
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fuow SUPPO%E WE WANT TO INVESTIGATE THE EFFECT OF TWO BRANDS OF )

TIRES AS WELL AS TWO GASOLINES. WE HAVE FOUR PO%5IBLE TREATMENTS,
WHICH WE CAN LAY OUT IN A TWO-BY-TWO FACTORIAL DESIGN. THE TWO
FACTORS ARE 6AS AND TIRE MAKE.

| 645 A a5
TREA | a b
TIRE 8 c d

WE (AN ASSI6N THE FOUR TREATMENTS AT RANDOM TO FOUR DIFFERENT DAYS
FOR EACH CAB. ALL FOUR TREATMENTS (&, b, ¢, AND d) ARE REPEATED
WITHIN EACH BLOCK (CAB). THIS 1S CALLED A COMPLETE RANPOMIZED BLOCK

\_DESIGN. Y,
SO FAR, WE HAVE oY
ASSUMED THAT EVERY 1 2 3 4
DAY OF THE WEEK 15
THE SAME, BUT WE CAN we1|la b ¢ d
CONTROL FOR THIS, 2|l b ¢ 4 a
TOO, IN THE
FOLLOWING WAY: USE 3|c d a b
4|l d a b ¢

ONLY FOUR CABS, AND
A5516N THE
TREATMENT ALCORDING
TO THE TABLE AT
RIGHT:




A FOUR-BY-FOUR TABLE
WITH FOUR DIFFERENT
ELEMENTS, EACH APPEARING
ONCE IN EVERY COLUMN
AND ROW, 15 CALLED A
Latin square.
IN THIS EXPERIMENT, THE
FOUR DAYS AND FOUR CABS
6ET ALL FOUR TREATMENT%
EXACTLY ONCE.

IMAGINE
DOIG STATISTGS
Witk RoMAN

THE RANDOMIZATION $TEP
PICKS A SINGLE LATIN SQUARE
DESIGN AT RANDOM FROM A
LIST OF ALL PO55IBLE FOUR-
WAY LATIN SQUARES.

IF FOUR UNITS ISN'T ENOUGH, WE CAN INCREASE THE NUMBER OF
EXPERIMENTAL UNITS BY REPEATING THE EXPERIMENTAL DESIGN. STARTING
WITH GIGHT CABS, WE COULD DIVIDE THEM INTO TWO 6ROUPS OF FOUR AND
THEN REGPEAT THE DESIGN WITHIN GACH 6ROUP.

0¥..CAR b 60eS
WTH GAS B AND
TRe Aop orf 2.
Twnew:




(WE PROMISED NOT TO 60 INTO THE DATA ANALYSIS IN ANY DETAIL, BUT HERE )
15 ROUGHLY HOW A COMPLEX DESIGN LIKE THIS 15 HANDLED.

8y A
300- YOUND
STRTISTIAN

EXPERIMENTAL DESIGNS ARE ANALYZED BY ALLOCATING TOTAL VARIABILITY
AMONG DIFFERENT SOURCES. IN THE CAB EXAMPLE, THE SOURCES OF
VARIABILITY ARE THE CAB, THE TIRE MAKE, 6AS TYPE, PAY—AND RANDOM
ERROR. ANALYSIS OF VARIANCE, ANOVA FOR SHORT, PARTITIONS THE TOTAL
\VARIATION. ALLOCATING PORTIONS TO EACH SOURCE.

IN THE NEXT CHAPTER, WE EXPLAIN IN
DETAIL ONE MODEL FOR ANALYZING SULRY
COMPLEX DESIGNS: THE LINGAR X .

REGRESSION MODEL. IN LINEAR 0
REGRESSION, YOU'LL BE ABLE TO SEE - C
ANOVA UP (LOSE AND NUMERICAL...
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+Chapter 11+

REGRESSION

SO FAR, WE'VE PONE STATISTICS ON ONE VARIABLE AT A TIME, WHETHER IT
CAME FROM A POPULATION OF PILL TAKERS, PICKLES, OR CRASHED CARS. IN
THIS CHAPTER, WE'LL SEE HOW TO RELATE TWO VARIABLES G6IVEN THE
WEIEHTS OF THE 92 STUPENTS IN CHAPTER 2, WE AS5K HOW THEY ARE RELATED
TO THE STUDENTS' HEIGHTS.

ALL THE Bl6
QUESTIONS ARE
AsOUT
RELATIONSHIPS!

THIS 15 AN EXAMPLE OF A BROAD CLA%S OF IMPORTANT QUESTIONS: POES
PLOOD PRESSURE LEVEL PREDICT LIFE EXPECTANCY? DO $A.T. SCORES
PREVICT COLLEGE PERFORMANCE? DOES READING STATISTICS BOOKS MAKE

YOU A BETTER PERSON?



(IN MATH CLASS, YOU PROBABLY
LEARNED TO 5EE RELATIONSHIPS
DISPLAYED AS GRAPHS. GIVEN Z,
YOU CAN PREDICT 7.

BUT IN STATISTICS, THINGS

ARE NEVER $0 CLEAN! WE
KNOW (OR SUPPOSE WE

KNOW) THAT WEIGHT HAS

AN INFLUENCE ON WEIGHT—
BUT IT5 NOT THE 50LE
INFLUENCE. THERE ARE

OTHER FALTORS, TOO, LIKE

56X, AGE, BODY TYPE, AND
RANDOM VARIATION.

. J

FOR THIS CHAPTER, LET'S LABEL THE WEIGHT DATA AS Y AND THE HEIGHT DATA
AS Z. THUS (Z;, ;) 15 THE HEIGHT AND WEIGHT OF STUDENT i. WE DISPLAY
THE POINTS (%;, ;) IN A 2-DIMENSIONAL DOT PLOT CALLED A $CATTERPLOT.

x
250 1
o
200 A 004
8 08°°
£ o (890 0
E@ ° 3°§g 8 8
100 - 0?
50 = T T 1
60 65 70 75
height

(50ME OF THE DOTS ARE BIGGER, BECAUSE THEY REPRESENT TWO OR THREE
STUDENTS WITH THE SAME HEIGHT AND WEIGHT.)
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CAN WE PREDICT A STUDENT'S WEIGHT Y FROM Hi5 OR HER HEIGHT z?

Regression amllysls

FITS A STRAIGHT LINE TO
THIS MESSY SCATTERPLOT.
Z 15 CALLED THE
INDEPENDENT OR
PREDICTOR VARIABLE, AND
15 THE DEPENDENT OR

E5PONSE VARIABLE. THE
REGRESSION OR PREDICTION
LINE HAS THE FORM

y = atbz

( TO ILLUSTRATE THE FITTING PROCESS, LET'S USE A SMALLER, RIGGED DATA 5ET)
WITH ONLY NINE STUDENT HEIGHT-WEIGHT PAIRS:

HEIGHT  WEIGHT x
w 4 250 H
62 95
64 140
& 155 200 - o
% 19
7 175 P o
=
72 45 K= o)
97 g 150 + o 0 © i
76 150 ks
-]
100 N (o}
o
50 = r T T 1
60 65 70 75
height

\NOW HOW PO WE 6ET THE BEST-FITTING LINE?
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( THE I1DEA 15 TO MINIMIZE h
THE TOTAL SPREAD OF THE
y VALUES FROM THE LINE.
TUST AS WHEN WE DEFINED
THE VARIANCE, WE LOOK AT
AL THE SQUARED y
DISTANCES FROM THE LINE,
AND ADD THEM UP TO 6ET
THE SUM OF SQUARED
ERRORS:

S5E = 2%" g S5E = UM OF THESE SQUARES
i=1

IT'S AN ASGREGATE MEASURE OF HOW MUCH THE LINE'S "PREDICTED y,."
OR #;, DIFFER FROM THE ACTUAL DATA VALUES y;. J

The regression or
least squares line

15 THE LINE WITH THE SMALLEST 556.

4MpLL WE JusT
MEMSURE 1T FOR
EVERY LINE?

ANALYS15? AROUND THE TURN OF THE CENTURY, G6ENETICIST FRANCIS.
GALTON PISCOVERED A PHENOMENON (ALLED REGRESSION TOWARD
THE MEAN. SEEKING LAWS OF INHERITANCE, HE FOUND THAT SONS' S
HEIGHTS TENDED TO REGRESS TOWARD THE MEAN HEIGHT OF THE :
POPULATION, COMPARED TO THEIR FATHERS' HEIGHTS. TALL FATHERS
TENDED TO HAVE SOMEWHAT SHORTER SONS, AND VICE VERSA. 6ALTON
DEVELOPED REGRESSION ANALYSIS TO STUDY THIS BFFECT, WHICH HE -
kOI"I' IMISTICALLY RGFERRED TO AS "REGRESSION TOWARD MEPIOCRITY.

r
HISTORICAL NOTE: WHY PO WE CALL THIS PROCEDURE REGRESSION bkow UP, )
Boy!

o4



NOT TO BEAT AROUND THE BUSH, WE

6IVE WITHOUT PROOF THE REGRESSION YOU (AN ACTUALLY
LINE'S FORMULA: IT'S MESSY BUT MAKE THISO MATH
COMPUTABLE. INTUITIVE ... BUT You
HAVE T0 60 WTO
y= a+bz N-DIMENSIONAL
4PACE TO DO \T...
WHERE
Y zi-D-P
i=1
Z(Zg'i)z
AND
Q= y’-—bfi

(HERE Z AND ¥ ARE THE MEANS OF
{z} AND {3} RESPECTIVELY.)

( )
BECAUSE SOME OF THESE EXPRESSIONS WILL SHOW UP AGAIN, WE ABBREVIATE
THEM:

$12 = D (Z-E)* SUM OF SQUARCS AROUND
= THE MEAN, THESE MEASURE

= THE SPREAD OF z; AND ;.
Sy = DU ¥
i=1

. = Sz -5  THE (ROSS PRODUCT DETERMINES
¥ .Z.,:( AP %) THE COBFFICIENT b.




FOR THE RIG6ED DATA, HERE'S THE WHOLE COMPUTATION:

z Y @R QP @R Pt @D
o e ¢ 56 “ 3136 448
2 95 - -45 % 2025 270
“4 Mo -4 o % 0 0
6 155 -2 15 4 225 -30
® 19 o0 -21 o 44 o
0 w5 2 % 4 1225 70
72 M5 4 5 1 25 20
4 97T 4 57 3 3249 342
% 150 @ 10 “ 100 %0

SUM=412 1260 $am U0 S m10426  Y5,51200

Z=t8 Y=140

1200
b= 5 =%

50 y= -200+5%

( WHICH 6IVES VALUES OF @ AND b:

a = §-bz = 140-5(68) = -200

250 -
NOTE:
Tue RELRESION
200 - o LINE ALWIAYS
- (]
=] 0
g 150 | o o )
(]
100 h [+
(]
50 b T T 1
z
60 65 70 75
height
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(ANOVA

(AS PROMISED, OR THREATENED!)
NOW WE ASK: IF THIS 15 THE
BEST FIT, HOW 600V 15 IT?

@,

IN TECHNICAL
TERMY, How
BAD 16 Tue
4op?

AS YOU (AN IMAGINE, THE ANSWER TO THIS QUESTION DEPENDS ON HOW
SLOPPILY THE DATA POINTS ARE $PREAD OUT, LE, HOW BI6 556 15, RELATIVE
TO THE TOTAL SPREAD OF THE DATA. SOME EXAMPLES:

600D FIT: SMALL %5E,
GVEN COMPARED WITH
SMALL TOTAL $PREAD

e o er e e rrc e - -

S5E, BUT LARGE
TOTAL SPRGAD

—— - - - - ..
L[]

BAD.FIT: BI6 55€
RELATIVG TO SMALL
TOTAL SPREAD

6000 FIT: MODGRATE

BAD FIT: LARGE S5,
GVEN COMPARED TO
LARGE TOTAL
SPREAD




LET'S QUANTIFY THIS BY oY
APPORTIONING THE VARIABILITY
IN . REFER TO THE PICTURE AT
RIGHT FOR GUIDANCE. WE LET

gi= avbz; — REGRESAION

THUS, ¥; ARE THE PREDICTED
WEIGHTS DETERMINED 8Y THE
REGRES5ION LINE.

ANOVA table

enstatan e

SOURCE OF VARIABILITY UM OF SQUARES VALUE FOR RIGGED DATA

RESRES5ION R = Y (§;- P* 4000
i=1

ERROR %E= Y-y M

TOTAL Byym D Y- P 10424
i=/

(BY THE WAY, IT 1 NOT OBVIOUS THAT 5, , = $R + S5E—BUT IT'5 TRUE
ANYWAY, HERE 16 HOW THE REGRESSION ARD ERROR SUMS OF SQUARES ARE
(ALCULATED FOR THE RIGGED DATA SET, WITH y = - 200+ 52.

REGRESSION ERROR
oy B G Gept gl e
74 o4 100 -40 1600 -16 256
62 95 1o -30 900 -15 225
o4 140 120 . 20 400 20 400
] 155 130 -10 100 25 625
& 19 140 o [4 -2 441
70 175 150 10 100 25 625
72 145 160 20 400 -15 225
74 197 170 30 900 27 729
76 150 160 40 1600 -30 900

Z=60 =140 $5R = 6000 S5E= 4426
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$5R MEASURES THE TOTAL

VARIABILITY DUE TO THE A NUMERICAL
RESRESSION, 16, THE EXPRESSION
PREDICTED VALUES OF ¥. FOR Tue "slop”/

$56 WE'VE ALREADY MET.
NOTE THAT

s5€ o8, booo!

Py

15 THE PROPORTION OF
ERROR, RELATIVE TO
THE TOTAL $PREAD.

the squared correlation

15 THE PROPORTION OF THE TOTAL %5,

ACLOUNTED FOR BY THE REGRESSION: h R:1
R%. %ﬁ =1 - ﬁ \
¥ %yy -

(BELAUSE S5R = 95,,-55€). R% 15 .
ALWAYS LESS THAN 1. THE CLOSER IT
15 TO 1, THE TIGHTER TUE FIT OF
THE CURVE. RZ = 1 CORRESPONDS

| TO PERFECT FiT.

CALCULATING R2 FOR THE
RIGGED DATA SET, WE 6ET

6000 _
R? - 10425 58

56% OF THE VARIATION IN
WEIGHT 15 EXPLAINED BY
HEIGHT. THE OTHER 42%
15 "ERROR."




rAl.‘l’ERNATEl.Y, THE

15 THE $QUARE ROOT OF RZ wiTh
THE $I6N OF b.

¥ = (516N OF b) ‘JR‘

THUS, ¥ 15 + IF THE LINE 60€%
UP TO THE RIGHT AND - IF IT
L 60E5 DOWN TO THE RIGHT.

NEGATIVE ¥
MEANS TUAT % 16
NEGATIVELY

RELKTED TO 44.'

J

¥ MEASURES THE TIGHTNESS OF FIT, AS WELL A5 SAYING WHETHER INCREASING

zMAKEﬁyéOUPORDOWN.

r=1 ®e © r=-0.9
° °
N4 ®
L4
¢,
.
P (1Y)
. .
o O
.
® [ ]
r=0 °® r’-O.'[ )
... . ° °
«® ®
[}
.
. e * .
e O
. .
* [ 3
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NOW LET'S BE

IN FACT, THIS ENTIRE

T: fd
;‘g:‘f" “0';3‘” BOOK CAN BE COM-
ALpO PRESSED INTo THE
NOBODY—DOES HEAD OF A
THESE CALCULATIONS STRTISTICIAN...
BY HAND ANYMORE.
WITH A COMPUTER,
ALL THIS WORK CAN
BE DONE IN ONE

LINE OF cobs.,..

USING THE MINITAB STATISTICAL SOFTWARE SYSTEM, DEVELOPED AT PENN
STATE, THE SINGLE COMMAND LOOKS LIKE THIS:

NTB > regress ‘weight' on 1 independent variable ‘height’

AND THE RESULTS ARE WHAT A LOAD
OFF! -

The regression equation Is

WEIGHT = - 200 + 5.00 height

Predictor Coef Stdev t-ratio p
Constant -200.0 110.7 -1.81 0.114
height 5.000 1.623 3.08 0.018

s = 25,15 R-sq = 57.5% R-sq(adj) = 51.5%

Analysis of Uariance

SOURCE OF SS ns F p
Regression 1 6000.0 6000.0 9.49 0.018
Error ? 4426.0 632.3

Total 8 10426.0

erygesd




("NOW LET'S PO IT TO THE REAL
DATA OF 92 STUDENTS:

NTB > regress ‘weight' on 1 independent variable ‘'height’
AND THE RESULTS

The regression equation |s
WEIGHT = - 205 + 5.09 HEIGHT

Predictor Coef Stdev t-ratio p
Constant -204.74 29.16 -7.02 0.000
height 5.0918 0.4237 12.02 0.000

s = 14.79 R-sq = 61.6X% R-sq(adj) = 61.2X

Analysis of Uariance

SOURCE DF SS ns F p
Regression 1 31592 31592 144.38 0.000
Error 90 19692 219
Total 91 51284

\.
HERE 15 THE
SCATTERPLOT WITH
THE FITTED °
REGRESSION LINE.

THE CORRELATION
COEFFICIENT FOR TH!S
DATA SET 15

r=+y 616 =78

60 65 70 75
height




STATISTICAL
INFERENCE

UP TO NOW, WE HAVE BEEN
POING DATA ANALYSIS,
PESCRIBING THE NEAREST LINEAR
RELATIONSHIP BETWEEN THE
OBSERVED DATA Z AND Y. NOW
LET'S SHIFT OUR POINT OF VIEW,
AND REGARD THE 92 STUDENTS
AS A SAMPLE OF THE
POPULATION OF $TUDENTS AT
LARGE. WHAT CAN WG INFER?

(A REGRESSION MODEL FOR THE WHOLE POPULATION 15 A LINEAR
RELATIONSHIP

NOTE GREEK
LET1ERS To INDICATE

Y=a+Bz+e iy

Y 15 THE DEPENDENT RANDOM VARIABLE; % 15 THE INDEPENDENT VARIABLE

(WHICH MAY OR MAY NOT BG RANDOM); a AND B ARE THE UNKNOWN

PARAMETERS WE SEEK TO ESTIMATEs AND 6 REPRESENTS RANDOM ERROR
&FLUCTUATIONQ

FOR THE HEIGHT
V5. WEIGHT MODEL, l

Y 15 WEIGHT, z 15 Y
HEIGHT, & AND

ARG UNKNOWN, AND

YOU CAN THINK OF

6 AS THE RANDOM

(

4
; oF e

COMPONENT OF PIRBUTIONS
THE WEIGHTS ¥

FOR GACH VALUG 71

OF HEIGHT %. ps
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THE DISTRIBUTION OF € 15 IN FACT PIFFERENT FOR DIFFERENT VALUES OF z:
5-FOOTERS VARY LESS IN THEIR WEIGHT THAN 6-FOOTERS. NEVERTHELESS, WE
NOW MAKE A SIMPLIFYING ASSUMPTION: LET'S SUPPOSE THAT FOR ALL VALUES

OF z, THE €'S ARE INDEPENDENT, NORMAL, AND WAVE THE SAME STANDARD
DEVIATION o = g(€) AND MEAN u = O.

REALITY
S|MPLIFHED

MAN! S0ME OF Those
LI'L TODULERS musT
WEIpH LESS TrHAN

[ 50.. MAYBE THE WEIGHT
MOVEL MIGHT BE

Y = -125+4z+¢€

€15 NORMAL WITH 4 = 0
AND o= 15 POUNDS (5AY).
THEN, ACLORDING TO THIS
MOUDEL, STUDENTS WHO ARE
64 (76 INCHES) HAVE THE
DISTRIBUTION OF

Y = -125+4(76)+ €

= 175+ ¢ / [
%0, FOR z = 76, Y 15 NORMAL

WITH MEAN 175 AND STANDARD
DEVIATION 15 POUNDS.

\.




NOW, 6IVEN THE MODEL Y = a+ BZ + €, WE WANT TO DO AS WEVE DONE |
REPEATEDLY IN THE LAST FEW CHAPTERS: TAKE A SAMPLE AND USE IT TO
ESTIMTE o AND B.

ONE CAN SHOW THAT THE
a AND b WE 60T BY THE
LEAST-5QUARES METHOD
ARE BLUG: THE BesT

LINEAR UNBIASED y 2 _—-:l.f(ODEL zu:e‘_ e
ESTIMATORS OF a AND B . D:T“f > W
(WHATEVER THAT MEANS!).

AS USUAL, DIFFERENT SAMPLES YIELD DIFFERENT COLLECTIONS OF DATA,
WHICH 6ENERATE DIFFERENT REGRESSION LINES. THESE LINES ARE
DISTRIBUTED AROUND THE LINE Y = a+ BZ + €. OUR QUESTION BECOMES:
HOW ARE @ AND b DISTRIBUTED AROUND o AND S8, RESPECTIVELY, AND HOW
DO WE CONSTRUCT CONFIDENCE INTERVALS AND TEST HYPOTHESGS?

Kok,
NJOY BE1
GRe]y--.



(FOR EACH DATA POINT (%, ¥,),
WE HAVE

i

~
N
Qg

~/

y,=a+bare

WHERE €; = ;- ¥; 1%

THE Y -DISTANCE OF ¥;

FROM THE REGRESSION

LINE. THE e; ARE SAMPLE

VALUES OF €, AND THEY )
6IVE US AN ESTIMATOR $

FOR o(€):

B N

X

(WHY n—-2 IN THE DENOMINATOR? BECAUSE WE HAVE USED UP TWO DEGREES
OF FREEDOM TO COMPUTE @ AND b, LEAVING 71—2 INDEPENDENT PIECES OF
INFORMATION TO ESTIMATE o)

L | )

ALTHOUGH IT ISN'T OBVIOUS,
WE CAN AL50 WRITE % A%

.‘! G5re - b5S
=N =

A FORMULA WHICH ALLOWS {3 \
US TO COMPUTE $ |

DIRECTLY FROM THE
SAMPLE STATISTICS.

LEARN M- DIMENSONAL
GEOMETRY, | TELL You,
MD 1T epgy!

TO REPEAT, 5 15 AN ESTIMATOR OF HOW WIDELY
THE DATA POINTS WILL BE SCATTERED
AROUND THE LINE.
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confidence intervals

THE 95% CONFIDENCE INTERVALS
FOR a AND B HAVE THAT OLD,
FAMILIAR FORM:

ﬂ - b L4 t,oz;%(b)
WHERE WE USE THE T DISTRIBUTION

WITH n—2 DEGREES OF FREEDOM
(FOR THE S5AME REASON AS ABOVE).

THE STANDARD ERRORS, HOWEVER, LOOK RATHER UNFAMILIAR. THEY ARE
(WITHOUT DERIVATION):

YE5..L00KS LWE  §
THE CYMDE-LACED

(b)) = —= ALKOND ToRTE
V552 From THE MYSTERY

OF THE DEVIL'S

WHAT HAPPENED TO OUR PRECIOVS 1/7_,'7 IT WAS REPLACED BY $%5,,. LIKE n,
%5, INCREASES AS WE ADD MORE DATA POINTS, BUT IT ALSO REFLECTS THE
TOTAL SPREAP OF THE Z PATA. FOR EXAMPLE, IF ALL STUDENTS SAMPLED
HAD THE SAME HEIGHT, WE WOULD BE UNJUSTIFIED IN DRAWING ANY
CONCLUSION ABOUT THE DEPENDENCE OF WEIGHT ON HEIGHT. IN THAT CASE,
%5.2= O, 6IVING b= o AND INFINITELY WIDE CONFIDENCE INTERVALS.

ALt X
THe SAME

Wershr

L x HEIGHT




MORE QUESTIONS:

-
HOW WELL ¢AN WE PREDICT

THE MEAN RESPONSE Y AT 250 1
A FIXED VALUE Z,7? FOR
INSTANCE, WHAT 15 THE
MEAN WEIGHT OF STUDENTS
OF HEIGHT 76 INCHES? THE E
95% CONFIDENCE INTERVAL §’ 150 - ° [
FORY=a +Bxp 15

atpro= atbzot tose(y) ' 150
WHERE

~ 1 (%p-2)? 60 65 70 75
E(Y)= 5\ 57 + ——
y n ”zz

height

SUPPOSE A NEW STUDENT ENROLLS, WHO HAS HEIGHT z,p, .- HOW WELL CAN
WE PREDICT Yy WITHOUT MEASURING IT?

THE 95% PREDICTION INTERVAL 250
FOR A NEW INDIVIDUAL Yygw
WITH OBSERVED Zygy 15 200 -

150 |

Yaew =@ + bzygy £ T 5y 5B cw) .‘;é

WHERE oo -

-7)2
%(Yugw)’9d'+ﬁ’ +(""‘g—1) 50 4.

zZ

(BOTH THESE STANDARD GRRORS CONTAIN A TERM
THAT 6ROWS LARGER AS THE Z-VALUE, %, OR
Zygw» 6ET5 FARTHER FROM THE MEAN VALUE Z.
WHY DOES THE ERROR INCREASE FARTHER FROM
Z7 BELAUSE, IF YOU WIG6LE THE RESRESSION
LINE, IT MAKES MORG OF A DIFFERENCE FARTHER
FROM THE MEAN! (REMEMBER, THE LINE ALWAYS
PAS5ES THROUGH (Z,%).)




LET'S WORK IT OUT FOR THE
RIGGED DATA: FOR THE MEAN
WEIGHT WHEN % = 76 INCHES,
WE HAVE b= -200 AND a = 5.
THEN

Y = =200+ 5(76) £ (2.365X25.15)
= 180 + (2.365X25.15) { 3177
= 180 £ 36.34 POUNDS

THE ESTIMATED MEAN OF
&'4" STUDENTS 15 180
POUND%, AND WE'RE 95%
CONFIDENT THAT WE'RE
WITHIN 36 POUNDS OF
THE TRUE MEAN.

FOR A NEW STUDENT WHO'S 6'4°, WE USE OUR RIGGED SAMPLE OF NINE
POINT% TO PREPDICT THAT

2
Yuow = 200+ 5(76) + (2365X2515)\ 1+ 3+ (762:’:8)
= 180 £ (2.365X29.51)
= 180 + 70 POUNDS
WELL, WE
TRIED...
D N WE TELL THE
FOOTBALL
& COACH THAT
WE'RE PRETTY
SURE THE
NEW 6UY
WEIGHS
SOMEWHERE
BETWEEN 110
AND 250!!!



THE INTERVALS ARE PRETTY TERRIBLE! WHAT'S THE PROBLEM? THERE ARE
TWO PROBLEMS, ACTUALLY:

HEIGHT ALONE 15 NOT A VERY 600D | | NINE DATA POINTS WEREN'T ENOUSH.
PREDICTOR OF WEIGHT. IN PARTICULAR, THERE WAS ONLY ONE

NT (] .
THERE'S THE STUDENT WITH HEIGHT 76 INCHES
EFFECT OF
GENDER AND

GENETI ...

THE PENN STATE $TUDENTS G6IVE BETTER ESTIMATES.

250 A
[}
OF
200 - %",{{?“ prd
/
- o
-
.g 150 S
=
CONFIDENCE INTERVAL
. FoR THE MeMN
100
50 - r T T 1
60 65 70 75

height



(hypothesis testing

THE COMPLETE SKEPTIC MIGHT
5UG6EST THAT THERE 15 NO
RELATIONSHIP BETWEEN HEIGHT
AND WEIGHT. THIS AMOUNTS TO
SAYING THAT SB=0.

]

- I ks

p .
. .

» . . . .

T rvrryreroeo oot 6N

Z W% NO BEFECT O

FOR THE RIGGED WEIGHT DATA, WE

WE TAKE THIS AS THE NULL STRONGLY SUSPECT THE ALTERNATE

HYPOTHESIS. HYPOTHESIS SHOULD BE
Ho:B=0 H,:B8>0
IN THAT CASE, THE TEST sTATISTIC [ 0
b
t= 2= ¢ .5 5
sE(b) o Seh) " 162
HAS THE T DISTRIBUTION WITH = 3.08

n-2 DEGREES OF FREEDOM.
AS USUAL, THE SIGNIFICANCE TEST FOR 7 DEGREES OF FREEDOM,
PEPENDS ON THE ALTERNATE tos = 1895. SINCE Logs > 5 , WE
HYPOTHESIS. REJELT THE NULL HYPOTHESIS AT THE
a= .05 SIGNIFICANCE LEVEL AND
CONCLUDE THAT THERE 15 A
t>t, ForR Hy:p>0 SIGNIFICANT, POSITIVE RELATIONSHIP
t<t, FoRH, : B<0 BETWEEN HEIGHT AND WEIGHT.

161> fEg,| PO Hy: g0 AwagrARTse! ;:Q %

e
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WE (AN USE THE SAME BASIC
IPEAS TO ANALYZE
RELATIONSHIPS BETWEEN A
DEPENDENT VARIABLE AND
$6VERAL INDEPENDENT
VARIABLES:

Y=atBz Byt Pyt €

FOR EXAMPLE, WEIGHT 15
DETERMINED BY A NUMBER
OF FALTORS OTHER THAN
HEIGHT: AGE, SEX, DIET, BODY
TYPE, ETC.

Nn-1 DIMENSONAL HYPER-

POR'T You 4e€?
1T JUST AN AFFINE

PLANE 14 N-5PACE !
NOTHING TO (T!

P < asaihad

MATRIX ALGEBRA AND A COMPUTER COMBINE TO MAKE SUCH PROBLEMS EASY

TO ANALYZE.
f ° )
SOMETIMES DATA OBVIOUSLY
Non-lln.elll' FIT A NON-LINGAR CURVE.
regress.on STATISTICIANS HAVE A BAS OF
TRICKS FOR USING LINGAR
REGRESSION TECHNIQUES FOR
° NOR-LINEAR PROBLEMS. THE
1.0 o SIMPLEST OF THESE 15 TO
o WRITE Y AS A POLYNOMIAL
> 05 Y=a+pzr+p,z*+e
AND TREAT % AND 22 AS
0.0 INDEPENDENT VARIABLES IN A
’ LINEAR MOPDEL.
) 1 L}
0.0 0.5 1.0
X
g J




( ® ® ®
Regression diagnostics

FITTING A COMPLEX MODEL TO DATA CAN SOMETIMES OBSCURE MANY
DIFFICULTIES. WE USE REGRESSION PIAGNOSTIC PROCEDURES TO UNCOVER ANY
LURKING NASTY SURPRISES.

HAVE Yoy EVER
DIAGNOSED A
6m’u BEFORE,

THE SIMPLEST PROCEDURE 15 TO PLOT THE RESIDUALS e; AGAINST THE
PREDICTOR Y- REMEMBER, THE ERROR 6 15 ASSUMED TO BE INDEPENDENT
OF z.

A RANDOM SCATTERPLOT INDICATES ANY PATTERN INDICATES A

THAT THE MODEL ASSUMPTIONS PEFINITE PROBLEM WITH THE

ARE PROBABLY OK. MOPDEL ASSUMPTIONS.
¢ . -

. .
® PY oe [ X )
LIPS e A~ o 'Y o
° . « ¢ ° i
« * ° ‘e

A TYPICAL LURKING ThKE Two

NASTY SURPRISE (WHICH ' . ASPIRIN Awp
EXI5TS IN THE P REVISE
HEIGHT/WEIGHT DATA) o ey \JouR movEL...

15 THAT ERRORS ARE

HETEROSCEDASTIC: 16, oo o °,

THE SPREAD OF e R

INCREASES AS Y .

INCREASES. ,




IN THIS CHAPTER, WE
HAVE SUMMARIZED
THE BASIC IDEAS AND
TECHNIQUES OF
REGRESSION
ANALYS!15, THE $TUDY
OF STATISTICAL
RELATIONSHIPS
BETWEEN VARIABLES.
THIS CONCLUDES OUR
DETAILED DISCUS5ION
OF BASIC STATISTICAL
METHODS. IN OUR
FINAL CHAPTER, WE'LL
BRIEFLY REVIEW A
FEW REMAINING
TOPICS AND 155VES.

P ———.

YES,

IN MY PROFESSIONAL

OPINION, YOU'VE
REGRESSED

ENOUGH. -
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+Chapter 12+
CONCLUSION

THE BASIC PRINCIPLES, TOOLS, AND
CALCULATIONS COVERED IN THIS BOOK CAN
BE EXTENDED TO SOLVE MORE COMPLEX
PROBLEMS. HERE'S A BIASED $AMPLE OF
MORE ADVANCED STATISTICAL METHODS!




'DATA DISPLAY

WE SAW HOW TO DISPLAY ONE VARIABLE WITH A DPOT PLOT AND TWO
VARIABLES USING A SCATTERPLOT—BUT HOW DO WE GRAPHICALLY DISPLAY
MORE THAN TWO VARIABLES ON A FLAT PAGE? AMONG THE MANY
PO%5IBILITIES, A CARTOON GUIDE UAS TO MENTION HERMAN CHERNOFF'S
SIMPLE IDEA: USING THE HUMAN FACZE, ASSI6N EACH FEATURE TO A VARIABLE
AND DRAW THE RESULTING CHERNOFF FACES:

- o % =EYEBROW SLANT
(G S /Q @\ \ Y =EYE SIZE
| | ' Z2=NOSE LENGTH
\/ t =MOUTH LENGTH
7\ B =FALE HEIGHT
cTe..

Statistical analysis of

MULTIVARIATE DATA

AN ASSORTMENT OF MULTIVARIATE MODELS HELP TO ANALYZE AND DISPLAY
n-DIMENSIONAL DATA. SOME MULTIVARIATE TECHNIQUES:

Cluster analysis

SEEKS TO DIVIDE THE
POPULATION INTO
HOMOGENEOUVS SUBGROUPS.
FOR EXAMPLE, BY ANALYZING
CONGRESSIONAL VOTING
PATTERNS, WE FIND THAT
REPRESENTATIVES FROM THE
SOUTH AND WEST FORM TWO
DISTINCT CLUSTERS.
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Discriminant analysis

15 THE REVERSE PROCESS. FOR EXAMPLE, A COLLEGE ADMISSIONS OFFICE MIGHT
LIKE TO FIND DATA 6IVING ADVANCE WARNING WHETHER AN APPLICANT WILL 60
ON TO BE A SUCCESSFUL 6RADUATE (DONATES HEAVILY TO THE ALUMNI FUND)
OR AN UNSUCCESSFUL ONE (60€$ OUT TO PO 6000 IN THE WORLD AND 15
NEVER HEARD FROM AGAIN).

COULON'T WE FIND

SOME DEALISTIC
MOREY -GRUBBLRS ?

Factor analysis

SEEKS TO EXPLAIN HIGH-
DIMENSIONAL DATA WITH A
SMALLGR NUMBER OF
VARIABLES. A PSYCHOLOGIST
MAY 6IVE A TEST WITH 100
QUESTIONS, WHILE SGCRETLY
AS5UMING THAT THE
ANSWERS DEPEND ON ONLY
A FEW FACTORS:
EXTROVERSION,
AUTHORITARIANISM, ALTRUISM,
ETC. THE TEST RESULTS
WOULD THEN B SUMMARIZED
USING ONLY A FEW
COMPOSITE 5CORES IN

| THOSE DIMENSIONS.

ON A SGALE FROM ONE O TN,
You'RE 7.4 EXTROVERT®, 4.5

ATRUGTIG, AND 2.7 AUTHORTARAN.
THATS You, 1t A NUTSHELL !




PROBABILITY: H:J

Random walks sn wn

A COIN FLIP. SUPPOSE YOU MOVE AHEAD

ONE STEP FOR A HEAD AND BACK ONE STEP

FOR A TAIL. (USING TWO COINS, YOU (AN
DO THIS IN TWO DIMENSIONS.) REPEATED
FLIPS PRODUCE A STOCHASTIC PROCESS
CALLED A RANDOM WALK. RANDOM WALK
MOPDELS ARE USED IN $TOCK OPTION

TRADING AND PORTFOLIO MANAGEMENT. E

D .

[ ] [ ] (3
Time series analysis vcas wi o sers, wiicn,
LIKE THE RANDOM WALK, ACCUMULATE OVER TIME: LOCAL AND 6LOBAL
TEMPERATURES, THE PRICE OF OIL, ETC. IN TIME SERIES ANALYS!5, RANDOM
MODELS ARE USED TO FORECAST FUTURE VALUES.

... 065
M NOT LIKELY
To GET OFF THIS
PAGE ANYTIME
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WE'VE ALREADY SEEN HOW THE COMPUTER HELPS WITH ANALYSIS AND
ARITHMETIC. THERE ARE AL50 SOME STATISTICAL IDEAS THAT OWE THEIR VERY
&EXISTENCE TO THE COMPUTER:

Image analysis

A COMPUTER IMAGE MIGHT CONSIST OF 1000 BY 1000 PIXELS, WITH EACH DATA
POINT REPRESENTED FROM A RANGE OF 16.7 MILLION COLORS AT ANY PIXEL.
STATISTICAL IMAGE ANALYSIS SEEKS TO EXTRACT MEANING FROM "INFORMATION®
LIKE THI%.

We UsE PICTURES TO
HELP UNDERSTAND DATA,
BUT NoW WE HA To

UNDERSTAND PlcTuRES !

SOMETIMES, STANDARD ERRORS AND CONFIDENCE LIMITS ARE IMPOSSIBLE TO
FIND. ENTER RESAMPLING, A TECHNIQUE THAT TREATS THE SAMPLE A$ THOUGH
IT WERE THE POPULATION. THESE TECHNIQUES 60 BY SUCH NAMES AS
RANDOMIZATION, JACKKNIFE, AND BOOTSTRAPPING.

Nl sgeMs
{MPOSS\BLE,
BUT \T WORKS!
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p
resampling (cont'd)
TO DO RESAMPLING, THE COMPUTER

*RESAMPLES THE SAMPLE

*COMPUTES THE ESTIMATE
FOR THE RESAMPLE

¥REPEATS THE FIRST TWO
STEPS MANY TIMES, FINDING
THE SPREAD OF THE - s
RESAMPLED ESTIMATES. /4g473 A\ ~ 73
697 4"’3‘
. J

REMEMBER THE CORRELATION COEFFICIENT r OF THE 92 HEIGHT-WEIGHT PAIRS
OF CHAPTER 117 WHAT'S THE STANDARD ERROR OF r ? THE COMPUTER TAKES
200 BOOTSTRAP SAMPLES FROM THE 92 DATA POINTS, COMPUTES r EACH TIME,
AND PLOTS A HISTOGRAM OF THE r VALUES.

Ll v L} L 1
0.5 0.6 0.7 0.8 0.9 1.0  —amwwr—
Bootstrapped Correlations

NOTE THAT THE 5PREAD OF THE BOOTSTRAP ESTIMATES 19 RELATIVELY SMALL.

e )
AND, FINALLY,
HERE ARE 50ME A
OTHER 155UE5 TO
KEEP IN MIND:
W o ad
\. J
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DATA QUALITY

SEEMINGLY SMALL ERRORS IN
SAMPLING, MEASUREMENT, AND DATA
RECORDING CAN PLAY HAVOC WITH ANY
ANALYSIS. R. A. FISHER, GENETICIST
AND FOUNDER OF MODERN STATISTICS,
NOT ONLY DESIGNED AND ANALYZED
ANIMAL BREEDING EXPERIMENTS, HE
ALSO CLEANED THE cA6kS AND
TENDED THE ANIMALS, BECAUSE WE
KNEW THAT THE LO%5 OF AN ANIMAL
WOULD INFLUENCE HI$ RESULTS.

(MODERN STATISTICIANS, WITH THEIR COMPUTERS, DATABASES, AND 60\’El?NMEN‘I'N
6RANTS, HAVE LOST SOME OF THIS HANDS-ON ATTITUDE.

IF YOU 6RAPHED THE MEAN
MASS OF RAT DROPPINGS
UNDER STATISTICIANS'
FINGERNAILS OVER TIME, IT
WOULD PROBABLY LOOK
SOMETHING LIKE THI%:




Innovation

THE BEST SOLUTIONS ARE NOT ALWAYS IN THE BOOK! FOR EXAMPLE, A
COMPANY HIRED TO ESTIMATE THE COMPOSITION OF A 6ARBAGE DUMP WAS
FACED WITH SOME INTERESTING PROBLEMS NOT FOUND IN YOUR STANDARD
TEXT..

How Do You
A SINPLE mwoN\
SAMPLE OF THIS?

Communication

BRILLIANT ANALYSIS 15 WORTHLESS UNLESS THE RESULTS ARE CLEARLY
COMMUNICATED IN PLAIN LANGUAGE, INCLUPING THE DEGREE OF STATISTICAL
UNCERTAINTY IN THE CONCLUSIONS. FOR INSTANCE, THE MEDIA NOW MORE
REGULARLY REPORT THE MARGIN OF ERRORS IN THEIR POLLING RESULTS.

Teamwork

IN OUR COMPLEX SOCIETY, THE SOLUTION TO MANY PROBLEMS REQUIRES A
TEAM EFFORT. ENGINEERS, STATISTICIANS, AND ASSEMBLY LINE WORKERS ARE
COOPERATING TO IMPROVE THE QUALITY OF THEIR PRODUCTS. BIOSTATISTICIANS,
POCTORS, AND AIDS ALTIVISTS ARE NOW WORKING TOGETHER TO DESIGN
CLINICAL TRIALS TO MORE RAPIDLY EVALUATE THERAPIES.
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WELL, THAT'S IT! BY NOW, YOU SHOULD BE ABLE TO PO
ANYTHUING WITH STATISTICS, GRCEPT LIk, CHEAT, STEAL,
AND 6AMBLE.

WE LEFT THESE
SUBJECTS TO THE
BIBLIOGRAPHY!
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Vo You WPNE AEQUATE
STATISTICAL MAL?RMTlcE
\NSURANCE ?
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BIBLIOGRAPHY

FOR THE STUDENT:

MOORE, DAVID $., STATISTICS: CONCEPTS AND
CONTROVERSIES; 1991, NEW YORK, W. H. FREEMAN.
EMPHASIZES IDEAS, RATHER THAN MGCHANICS.

FREEDMAN, DAVID, PISANI, ROBERT, AND PURVES,
ROGER, STATISTICS, 1991, NEW YORK, W.W.
NORTON.

MOORE, DAVID 5. AND MECABE, GEORGE P.,
INTRODUCTION TO THE PRACTICE OF
STATISTICS, 1999, NEW YORK, W.H. FREEMAN.

SMITH, GARY, STATISTICAL REASONING, 1990,
BOSTON, ALLYN AND BACON, INC. MORG TECHNICAL,
GMPHASIZING GLONOMICS AND BUSINGSS, BUT HAS
GXAMPLES FROM ALL OVGR.

THESE TEXTS ARG CURRENT, CORRECT, LITGRATE, AND WITTY. BESIDES THE ONES WG (ITE,
THERG ARG HUNDREDS OF TEXTBOOKS OUT THERE, AND WE WOULD RATE MOST AS AT
LEAST ACCGPTABLE.

FOR THE STRUG6LING STUDENT:

PYRCZAK, FRED, STATISTICS WITH A $ENSE OF
HUMOR, 1989, LO%S ANGELES, FRGD PYRCZAK
PUBLISHER. AN GLEMENTARY WORKBOOK AND
6UIDE TO STATISTICAL PROBLEM SOLVING

HOW TO LIk, CHEAT, AND G6AMBLE. YOUR SAINTLY AUTHORS HAVE LITTLE EXPERIGNCE IN
THESE FIGLDS. HEREG 15 SOME ADVICE FROM THE PROS:

HUFF, DARRGLL, HOW TO LIE WITH
STATISTICS, WITH PICTURES BY IRVING 6€I15,
NEW YORK, 1954, W.W. NORTON, CHEAP AND
STILL IN PRINT!

JAFFG, AJ. AND SPIRGR, HERBERT F, MISUSED
STATISTICS: STRAIGHT TALK FOR TWISTED
NUMBERS, 1997, NeW YORK, MARCEL DGCKER.
PART OF A 600V POPULAR SGRIES ON
STATISTICS.

ORKIN, MIKG, CAN YOU WIN?, 1991, NEW YORK,
W.H. FREEMAN. ADVICE FROM AN EXPERT ON
PROBABILITY AND  6AMBLING.-

MEGERVEY, JOHN D., PROPABILITIES IN EVERY
DAY LIFE, 1999, NY., IVY BOOKS. 6AMBLING
FROM BLACKIACK TO SMOKING.
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LAW AND SOCIETY: )

GASTWIRTH, JOSEPH L., STATISTICAL REASONING IN
LAW AND POLICY, VOL. 1 & 2, 1988, SAN DIESO,
ACADEMIC PRESS. THE LEGAL NITTY GRITTY, INCLUDING
JURY SELECTION CASES LIKE THE ONE THAT BEGAN
CHAPTER 9.

STEERING COMMITTEE-OF THE PHYSICIANS' HEALTHY
STUDY RESEARCH 6ROUP, “FINAL REPORT ON THE
ASPIRIN COMPONENT OF THE ONGOING PHYSICIANS'
HEALTHY $TUDY,” THE NEW ENSLAND JOURNAL OF
MEDICINE, VOL. 321, PP. 129-135.

Z

-

IN CHAPTER 9, THE NONJUPICIAL COMMENT ON POKER FROM THE BENCH WAS FROM AN
ACTUAL CASE, WE ARE ASSURED IN A PERSONAL COMMUNICATION FROM DR. JOHN DE CANI,
UNIVERSITY OF PENNSYLVANIA.

GRAPHICAL DISPLAY OF DATA:

TUFTE, EDWARD R, THE VISUAL PISPLAY OF
QUANTITATIVE INFORMATION, 1983, CHESHIRE,
CONNECTICUT, 6RAPHICS PRESS.

TUFTE, EDWARD R., ENVISIONING INFORMATION, 1990,
CHESHIRE, CONNECTICUT, 6RAPHICS PRESS, THE
HISTORY, ART AND SCIENCE OF 6RAPHICS. BOTH
BOOKS ARG CLASSICS.

CLEVELAND, WILLIAM 5., THE ELEMENTS OF 6RAPHING
DATA, 1985, PACIFIC 6ROVE CA, WADSWORTH ADVANCED
BOOKS AND SOFTWARE. DESIGN PRINCIPLES FOR
COMPUTER 6RAPHICS.

HISTORY:

DAVID, F. N., GAMES, 60DS AND GAMBLING, 1962, NeW
YORK, HAFNGR, NEW YORK.

STIGLER, STGPHEN M., THE HISTORY OF STATISTICS: THE
MEASUREMENT OF UNCERTAINTY BEFORE 1900, 1965,
CAMBRIDGE, MA, BCLKNAP PRES% OF HARVARD UNIVERSITY
PRESS.

BOX, JOAN FISHER, R. A. FISHER, THE LIFE OF A
SCIENTIST, 1978, NEW YORK, WILEY. BIOGRAPHY, BY HIS
DAUGHTER, OF THG MOST INFLUENTIAL AND CONTROVERSIAL
FIGURE OF 20TH CENTURY STATISTICS.

KRUSKAL, WILLIMA, “THE SIGNIFICANCE OF FISHER: A
REVIEW OF RA. FISHER: THE LIFE OF A SCIENTIST”
1980. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION,
VOL 75, 1030. 56T THE FISHER BIOGRAPHY IN PERSPECTIVE
kANI? HAS EXCELLENT BIBLIOGRAPHY.
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STATISTICAL SOFTWARG:

IN THIS BOOK WE USED THE AUNITAB STATISTICAL SOFTWARE SYSTEM (MINITAB INC.,
STATE COLLEGE, PA). THE PENN STATE STUDENT HEIGHT AND WEIGHT DATA 15 FROM THE
PULSE DATA SET ON THIS SYSTEM. COMPUTER 6RAPHICS WERE 6ENGRATED BY $5-PLUS
(5TATISTICAL SCIENCES INC., SGATTLE WA), ON A 496 PC CLONE. $ 15 SOPHISTICATED SOFTWARE,
DEVELOPED BY ATRT BELL LABS FOR ADVANCED ANALYSIS AND GRAPHICAL DISPLAYS.

RYAN, BARBARA, JOINER, BRIAN, AND RYAN, THOMAS,
MINITAB HANDBOOK, (PW5-KENT, BOSTON, 1985) AND
THE STUDENT EDITION OF MINITAB (ADDISON
WESLEY) ARE FAST, INEXPENSIVE INTRODUCTIONS TO
STATISTICAL COMPUTING. MINITAB RUNS ON MAIN-
FRAMES, PC COMPATIBLES, AND MACINTOSH COMPUTERS.

THERG ARG MANY HIGH QUALITY SOFTWARE PACKAGES
AVAILABLE FOR THE PGRSONAL COMPUTER, INCLUDING:

PATADESK (DATA DESCRIPTION, TTHACA, NY), FOR THE
MALINTOSH

SAS (9A5 INSTITUTE INC, CARY, NC), 5P$5 (5P%5 INC,
CHICASO, 1IL), AND BMDP (BMDP STATISTICAL SOFTWARG,
INC., LO% ANGELES, CA) WERE ORIGINALLY DESIGNED FOR
MAINFRAME SYSTEMS AND NOW HAVE MIGRATED TO THE PC,
COMPLETE WITH WINDOWS.

STATERAPHICS (STATISTICAL GRAPHICS CORP, PRINCETON,
NJ), FOR THE PC.

STATVIEW (ABAZUS CONCEPTS, OAKLAND CA) FOR THE
MALINTOSH.

SYSTAT (5YSTAT, INC, EVANSTON IL) HAS SYSTEMS THAT
RUN IN ALL GNVIRONMENTS.

THESE PACKASES DIFFER IN IMPORTANT DETAILS: YOU NEED TO BE A SMART SHOPPGR.
WE RECOMMEND CHOOSING A SYSTEM THAT YOUR COLLEAGUES HAVE ALREADY TESTED.
FGW OF U5 ARG CUT OUT TO BE STATISTICAL SOFTWARE PIONGERS. WHEN LGARNING A
NGW SYSTEM, GXPERIMENT WITH SMALL, FAMILIAR DATA SGTS. REMEMBER, THE MOST
EXPENSIVE PART OF ANY SOFTWARE 15 YOUR TIME. THE CARTOON RULE FOR
LEARNING STATISTICAL COMPUTING 15: FAMILIARITY BREEDS RESULTS.

TRYING TO LGARN STATISTICAL THEORY AND
STATISTICAL COMPUTING AT THE SAME TIMEG IS
A LITTLE LIKE TRYING TO WALK AND CHEW
SGUM AT THG SAME TIME. DIFFGRGNT SKILLS AND
THOUGHT PROCES56S ARG INVOLVED IN GACH.
SCT ASIDE SEPARATE TIMES TO LEARN THESE
SUBIELTS, THEN BRING THEM TOGETHER. IN
THIS WAY, YOU CAN BGLOME A CHEWING,
WALKING, COMPUTING, RENAISSANCE
STATISTICIAN!
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Acceptance sampling, 150
Addition rule for events, 38-39, 42, 44
Alternate hypothesis (H,), 140-141, 147-149,

Binomial approximation, 79-81, 86-88
Binomial coefficient, 76
multiplication rule and, 76

152-153, 165-166. See also Hypothesis
testing

left-handed, 144-145

relevant, 144-145

right-handed, 144-145

two-handed, 144-145

Pascal’s triangle and, 77

Binomial distribution, 77, 81, 83, 86, 88
asymmetrical, 82
calculating, for large values, 79-80
continuous density function and, 79-80
mean of, 78

Analysis of variance. See ANOVA
ANOVA (analysis of variance), 186, 193-195,

standard normals and, 82
variance of, 78

table, 194 Binomial distribution table, 78
Approximate probability, 60 Binomial probability distribution, 77-78
Approximation Binomial random variables, 74-76, 139-140
binomial, 79-81, 86-88 Blocks
continuous, 87-88 complete randomized, 184-185
normal, 87-88 in experimental design, 183-184

Archery lessons, confidence intervals and, 116-124
Area under the curve, 64-66

BLUE (best linear unbiased estimators), in
regression analysis, 201-202

Arrays, 14-15 Bootstrapping, 215-216
Aspirin clinical trials, 160-167. See also Two Box and whiskers plot, 21

populations compareg Brass tacks, 98-103
Astralagi, 28

Average salary comparison, 168-169.
See also Two populations compared
Average squared distance, 22
Average value, 15-17
standard deviations from, 22, 24-25, 168, 171

Categorical statements, 2

Central limit theorem, 106, 128, 169
fuzzy, 83-88
problems with, 107

Central value, 14. See also Spread
mean, 15-16
median, 17-18

Challenger (space shuttle), 3

Chameleon Motors
comparing small sample means, 170-171
confidence intervals, 134-135
hypothesis testing for, 149-150

Chemoff, Herman, 212

Classical probability, 35

Claudius I, 28

Cluster analysis, 212

Cluster sampling design, 95

Bar graphs, 11
Bayes, Joe, 46-50
Bayes, Rev. Thomas, 46-50
Bayesian, 35
Bayes Theorem, 46-50
Bemnoulli, James, 79
Bemoulli wial, 74-75, 78
sampling size and, 98-100
Best linear unbiased estimators (BLUE), in
regression analysis, 201-202
Beta (probability of type II error), 151-155

Bias Coin toss, 32, 54-55, 58, 60-62, 68-70
in polls, 126-127 Communication, 218
reducing rfatural, with paired comparison, 178 Comparing failure rates, 160=163

in simple random sampling, steps to eliminate, Comparing small sample means, 170-171
167 Comparing success rates, 160-163
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Comparing two populations. See Two
populations compared
Comparison of average salaries, 168—169
Comparisons, paired, 174-178
Complete randomized block, 184-185
Computer image analysis, 215
Computer resampling, 215-216
Conditional probability, 4041
false positive paradox and, 46-50
multiplication nile and, 4244
Confidence interval levels
decision theory and, 152-153
measuring, 122-123
Confidence intervals, 112-136
computer simulation of, for samples, 120
error levels and, 124-127
estimating, 114-127
increasing levels of, 121-125
margin of error and, 119, 121
in paired comparisons, 176
population means and, 128-130, 169
population proportion and, 128-130
probability calculation and, 117-119
random sampling used for, 114-115, 119
in regression analysis, 203-206
sample means and, 130,171
standard deviation in, 117, 128-130
standard error in, 118, 128-130
Student’s r based, 131-136
for success rates, 164
table for levels, 122-123
Continuity comrection, 87-88
Continuous densities, properties of, 66-67
Continuous density function, binomial distribu-
tion and, 79-80
Continuous probabilities, 64
Continuous random variables, 63
mean of, 67
probability density of, 65
vanance of, 67
Correl quared, in regr analysis, 195
Correlation coefficient, in regression analysis,
196

Cumnlanve probability, 84
‘Curve, area under the, 6466

Data
multivariate, statistical analysis of, 212-213
order of, 17
paired and unpaired compared, 177-178
properties of, 59
rigged, in regression analysis, 189, 192,
194-195, 205-207
spread of, in regression analysis, 190-195
Data analysis, 4
Data description, 8-26
Data display, 212

Data points, 11-12, 14-15
average, 17
middle, }7
Data quality, 217
Data summary, 12
Death rate, 13
Decision table, two-by-two, 152
Decision theory, hypot.hes1s testing, 151-155
Deductive reasoning, 113
Degrees of freedom, 131-135
in comparing small sample means, 171
hypothesis testing and, 149-150
de Mere, Chevalier, 28-29, 75, 78
de Moivre, Abraham, 79-83, 86-88, 101
Dependent random variable, in regression
analysis, 199-209
Dependent variable, in regression analysis, 189
Dice, 2845
loaded, 33
Discrete probabilities, 64, 66
Discrete random variables, 63
Discriminate analysis, 213
Dot plots, 9
two-dimensional, 188

Election polls, 114-127
hypothesis testing in, 143-145
Elementary outcomes, 30, 32-38
Error levels, confidence intervals and, 124-127
Errors
heteroscedastic, 209
margin of, confi dence intervals and, 119, 121
experi | design and, 183
‘random error fluctuations, 199-209
standard. See Stardard error (SE)
sum of squared (SSE), in regression analysis,
190-195
typel, 151-154
type II, 151-154
Estimates, 102-103, 107 *
Estimating confidence intervals, 114-127
Estimators, 102-103
best linear unbiased (BLUE), in
analysis, 201-202
in comparing the means of two populations,
168-169
Events
addition rule for, 38-39, 42, 44
mutually exclusive, 39, 42, 44
probability of, 35-37
repeatable, 35
“rules for outcomes of, 38-39
subtraction rule for, 39, 44
Expected value, 61
Experiment
random, 30, 32, 34, 36
sampling and, 98-100, 104-105
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Experiment (continued)
weight, 9-12, 16, 18-26
regression, 188-209. See also Regression
Experimental design
basic principles, 183
blocks in, 183-184
elements of, 182-183
four-by-four table in, 184-185
Latin square in, 184-185
local control in, 183
measurement error and, 183
natural variability and, 183-185
randomization in, 183, 185
replication in, 183, 185
total variability and, 186
Experimental treatments, 182-183
Experimental units, 182-183

Factor analysis, 213

Failure rates, comparing, for two populations,
160-163

False positive paradox, 46-50

Fermat, Pierre de, 2845

Fisher,R. A,, 217

Fitting process, in regression analysis, 189-196

Fixed significance level, in hypothesis testing,
141-142, 145

Four-by-four table, in experimental design,
184-185

Frequency, relative, 10-11, 35, 57-58, 60

Frequency histograms, 11, 57-58

Frequency tables, intervals in, 10-11

Gallup Poll, 127
Gambling, 2745
Gasoline comparisons, 172-173
experiment design and, 182-186
paired comparisons of, 174-178
Gosset, William, 108-109, 131-132
Graphic display, 13
Graphs
bar, 11
histograms. See Histograms
probability distribution, 56-58

(H,). See Alternate hypothesis
Heteroscedastic errors, 209
Histograms, 13
frequency, 57
probability, 56-58
relative frequency, 11, 57-58
spread measured in, 19
symmetrical, 24-25, 77
Hite, Shere, 97
Holmes, Sherlock, 113-130
Hy, (null hypotheses), 140-141, 144-145,
147-150, 152-153, 165-166. See also

Hypothesis testing
Hypotheses. See also Hypothesis testing
alternate (H,), 140-141, 147-149, 152153,
165-166
left-handed, 144-145
relevant, 144-145
right-handed, 144-145
two-handed, 144-145
null (H), 140-141, 144-145, 147-150,
152-153, 165-166
Hypothesis testing, 138-139
decision theory, 151-155
degrees of freedom and, 149-150
fixed significance level in, 141-142, 145
large sample
for population mean, 146-148
significance test for proportions, 143-145
in paired comparisons, 176
population mean and, 146-148, 169
probability statement in, 141-142
in regression analysis, 207
statistical, 140-142

Iguana autos, 170-171
Increments, 9
Independence, 71, 74
simple random sampling and, 92-94, 96
special multiplication rule and, 4344
Independent mechanisms, 71
Independent variable, in regression analysis,
189, 199-209
Inductive reasoning, 113
Innovation, 218
Inspection sampling, significance test used in,
146-148
Integral, 66-67
Interquartile range (IQR), spread measured in,
20-21

Intervals
confidence. See Confidence intervals in a
frequency table, 10-11
IQR (interquartile range), spread measured in,
20-21

Jackknife, 215-216
Jury selection, racial bias in, 138-141

Large sample hypothesis testing
for population mean, 146-148
significance test for proportions, 143-145
Large values, calculating binomial distribution
for, 79-80
Latin square, in experimental design, 184-185
Least squares line, 189-190, 208
Left-handed alternate hypothesis, 144-145
Linear regression, in regression analysis,
189-190, 208



Local control, in experimental design, 183
Logical operations, 37

Margin of error, confidence intervals and, 119, 121
Mean, 15-16, 18
of binomial distribution, 78
central, 15-16
comparing small sample, 170-171
confidence intervals and, 128-130, 169, 171
large sample test for, 146-148
in paired comparisons, 175-176
population, 59, 62, 80
confidence intervals and, 128-130, 169
hypothesis testing and, 146148
of probability distribution, 60-61
of random variables, 61, 67-69
sample
comparing small, 170-171
confidence intervals and, 130, 171
distribution of, 104-106, 171
hypothesis testing for, 146-148
standard deviation from, 22, 24-25, 62, 168,
171
Mean response, predicting, in regression
analysis, 204-206
error, experi
Measures of spread, 19-25
Median, 17-18, 20-21
Midpoints, 10-11
Model properties, 59
Models
regression, 199-202
stochastic random, 116-118
for two populations, 162
Monitoring programs
power analysis in, 154-155
probability of type II errors in, 151-155
Mortality statistics, 13
Multiple linear regression, in regression
analysis, 208
Multiplication rule, 45
binomial coefficient and, 76
conditional probability and, 4244
Multivariate data, statistical analysis of
cluster, 212
discriminate, 213
factor, 213
mu. See Populatiort mean
Mutually exclusive events, 39, 42, 44

M,

1 design and, 183

Natural bias, reducing, with paired comparison,
178

Natural variability

experimental design and, 183185

reducing, with paired comparison, 178
Nightingale, Florence, 13
Non-linear regression, in regression analysis, 208

Normal approximation, 87-88
Normal distribution, standard, 79-85
rule for computing, 85
table to find, 84-85
Null hypothesis (H), 140-141, 144-145,
147-150, 152-153, 165-166. See also
Hypothesis testing
Numerical outcome, sampling and, 98-100,
104-105
Numerical weight, 32

Objectivist, 35
Observed value of 1, 149-150
Observed value of z, hypothesis testing and,
144-145, 165-166, 169
Opportunity sampling, 97
Opportunity sampling design, 97
Order of data, 17
Outcomes
elementary, 30, 32-38, 41
of events, rules for, 38-39
numerical, sampling and, 98-100, 104-105
Outliers, 18, 21-23

Paired comparisons
of gasolines, 174-178
means in, 175-176
pajred and unpaired data compared, 177-178
small-sample  test statistic for, 176
standard deviation in, 175-176
Pascal, Blaise, 29
Pascal’s triangle, 77
Personal probability, 35
Polls
bias in, 126-127
election, 114-127
error levels in, 124-127
Gallup, 127
hypothesis testing in, 143-145
as opposed to actual elections, 126-127
Pollution monitoring, probability of type II
errors in, 151-155
Pool the sum of squares
in comparing small sample means, 171
Population. See also Two populations compared
properties, 59
proportion, 128-130
standard deviation, 59, 62, 80
Population mean, 59, 62, 80. See also Two
populations compared
confidence intervals and, 128-130, 169
hypothesis testing and, 146-148
Power analysis in monitoring programs, 154-155
Prediction line, 189
Predictor variable, in regression analysis, 189
Probabilities, 4, 27-51
approximate, 60



Probabilities (continued)
characteristic properties of, 34
classical, 35
conditional
false positive paradox and, 46-50
multiplication rule and, 4244
continuous, 64
cumulative, 84
discrete, 64, 66
formulas for manipulating, 37-39
non-negative, 34
normal, 83-85
personal, 35
repeatable events and, 35
sample, 100
spread of, 67
Probability calculation, confidence intervals
and, 117-119
Probability density, 66
of continuous random variable, 65
Probability distribution
binomial, 77-78
graphs, 56-58
mean of, 60-61
properties of, 59
random variable, 55-58
table to find normal, 84-85
Probability graphs, 56-58
Probability of type II errors, 151-155
Probability statement, in hypothesis testing,
141-142
Probability zero, 6364
Proportion of successes. See Success rates
Pseudo-random numbers, 65
P-value, in hypothesis testing, 141-142, 148

Random error fluctuations, in regression
analysis, 199-209

Random experiment, 30, 32, 34, 36

sampling and, 98-100, 104-105
Randomization, 215-216

in experimental design, 183, 185
Random models, stochastic, 116-118
Random number generator, 65, 94
Random sampling

independence and, 92-94, 96

simple, 92-96, 167

steps to eliminate bias in, 167

used for confidence intervals, 114-115, 119
Random sampling design, 92-94
Random selection of jurors, 138-141
Random variables, 53-72

adding, 68-71

binomial, 74-76, 139-140

discrete, 63

mean of, 61, 67-69

probability distribution, 55-58

sampling and, 98-100, 104-105
t,107-109
variance of, 62, 67-71
Random variable ¢, 107-109
Random walk, 214
Regression, 187-209
Regression analysis
best linear unbiased estimators (BLUE) in,
201-202
confidence intervals in, 203-206
correlation coefficient in, 196
dependent random variable in, 199-209
dependent variable in, 189
fitting process in, 189-196
hypothesis testing in, 207
independent variable in, 189, 199-209
linear regression in, 189-190, 208
predicting mean response in, 204-206
predictor variable in, 189
random error fluctuations in, 199-209
regression diagnostics in, 209
response variable in, 189
rigged data in, 189, 192, 194-195, 205-207
spread of data in, 190-195
squared correlation in, 195
standard error (SE) without derivation in, 203
statistical inference in, 199-209
student weight experiment and, 188-209
sum of squared errors (SSE) in, 190-195
sum of squared regression (SSR) in, 194-196
Regression coefficient sample, 191-192
Regression line, 189-190, 208
Regression model, 199-202
Relative frequency, 10, 35, 60
Relative frequency histograms, 11, 57-58
Repeatable events, probability and, 35
Replication in experimental design, 183, 185
Resampling, 215-216
Response variable in regression analysis, 189
Right-handed altemnate hypothesis, 144-145
Rounding off, 9
Round numbers, 10

Salk polio vaccine, 3

Sample means
comparing small, 170-171
confidence intervals and, 130, 171
distribution of, 104-106
hypothesis testing for the population mean,

146-148

Sample probability, 100

Sample properties, 59

Sample regression coefficient, 191-192

Sample size, 91
comparing small, 170-171
confidence levels and, 124-125
increasing, 124-125



Sample size (continued)
standard error and, 98-103
testing large, 143-148
Sample space, 30-31, 33, 41
Sample variance, 22
Sampling, 89-109
acceptance, 150
random, 95
independence and, 92-94, 96
steps to eliminate bias in, 167
used for confidence intervals, 114-115, 119
random experiment and, 98-100, 104-105
random variables and, 98-100, 104-105
standard deviation and, 101-103
Sampling design
cluster, 95
opportunity, 97
random, 92-94
simple random, 92-94
stratified, 95
systematic, 96-97
Sampling distribution
of the mean, 104-106
for proportion of successes, 163
Scatterplots, 188-189
random, 209
SD. See Standard deviation
SE. See Standard error
Senator Astute. See Election polls
Sigma, 16. See also Summary statistics
Significance level
fixed, 141-142, 145
in hypothesis testing, 141-142, 145, 147-148
in scientific work, 141-142
Significance test
for proportions, 143-145
used in inspection sampling, 146-148
Simple random sampling, 92-96, 167. See also
Random sampling
Smoke-detectors, as a decision theory example,
151-154
Special addition rule, for mutually exclusive
events, 39, 42, 44
Special multiplication rule
conditional probability and, 4244
independence and, 43-44
Spinning pointer, 63-64
Spread, 14
of data in regression analysis, 190-192
sum of squared errors relative to, 193-195
measures of, 19-25
of probabilities, 67
variance in, 22-23
Spread distance, squares of, 22
Squared correlation, in regression analysis, 195
Squared distance, 22, 61-62
Squared errors, sum of (SSE) in regression

analysis, 190-195
Squared regression, sum of (SSR), in regression
analysis, 194-196
Square root, standard deviation defined by, 23
Squares, pool the sum of, 171
SSE (sum of squared errors)
in regression analysis, 190-195
relative to spread of data, 193-195
SSR (sum of squared regression), in regression
analysis,194-196
Standard deviation (SD)
in comparing small sample means, 171
in comparing the means of two populations,
168
in confidence intervals, 117, 128-130
defined by square root, 23
from mean values, 22, 24-25, 168, 171
in paired comparisons, 175-176
population, 59, 62, 80
sampling and, 101-103, 107
spread measures and, 22
z-scores and, 24-25
Standard error (SE)
in comparing small sample means, 171
in comparing the means of two populations,
168
Standard error (SE)
in confidence intervals, 118, 128-130
sample size and, 98-103
without derivation, in regression analysis, 203
Standard normal distribution, 79-82
table for, 84-85
Statistical analysis of multivariate data,
212-213
Statistical hypothesis testing, 140-142, 144-145,
147-148, 165-166, 169
Statistical inference, 4
in regression analysis, 199-209
Statistical situations, 158159
Statistics
mortality, 13
summary, 14-26, 148
Stem-and-leaf diagram, 12, 18
Stochastic random models, 116-118
Stratified sampling design, 95
Student’s 1. See ¢-distribution
Subjectivist, 35
Subtraction rule for events, 39, 44
Successes, number of, 75
Success rates, 99
comparing, for two populations, 160-163
confidence intervals for, 164
in hypothesis testing, 143-145
sampling distribution for, 163
Summary statistics, 14-26
in hypothesis testing, 148
Summation, 16. See also Summary statistics




Sum of squared errors (SSE)
in regression analysis, 190-195
relative to spread of data, 193-195
Sum of squared regression (SSR), in regression
analysis,194-196
Sum of squares, pool the, 171
Systematic sampling design, 96-97

t-distribution, 107-109
in comparing small sample means, 171
confidence intervals based on, 131-136
critical values for, 132-136, 150
hypothesis testing and,. 149-150
Teamwork, 218
Test statistic
in hypothesis testing, 140-141, 144-145,
147-148, 165-166, 169
small-sample ¢, for paired comparisons, 176
Time series analysis, 214-215
t-observed value, 149-150
Total variability
due to the regression, 194-195
experimental design and, 186
Tukey, John, 12, 21
t-values. See t-distribution
Two-by-two decision table, 152
Two-handed alternate hypothesis, 144-145
Two populations compared, 158-179. See also
Population
confidence intervals for, 164, 169
hypothesis testing, 160-163, 169
mean of, 168-169
model for, 162
sampling distribution for proportion of
successes, 163
success rates, 160-164
Type I errors, 151-154
Type Il errors, 151-155
Typical value, 14-18. See also Spread

Uncertainty, 2

Variability
natural
experimental design and, 183-185
reducing, with paired comparison, 178
total
due to the regression, 194-195
experimental design and, 186
Variables
binomial random, 74-76, 139-140
continuous random, 63, 65, 67
dependent, 189
dependent random, 199-209
discrete random, 63
random. See Random variables
in regression analysis, 189, 199-209
Variance
analysis of. See ANOVA
of binomial distribution, 78
of continuous random variables, 67
of random variables, 62, 67-71
sample, 22
in spread, 22-23
Vertical scale, 11

Weight expériment, Penn State student, 9-12,
16, 18-26, 188-209. See also Regres-
sion; Regression analysis

x-axis, 80

y-axis, 80

z-observed value, hypothesis testing and,
144-145, 165-166,.169

z-scores, standard deviation and, 24-25
2z transformation, 84-88, 117-118
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