
Nat. Hazards Earth Syst. Sci., 16, 2501–2510, 2016
www.nat-hazards-earth-syst-sci.net/16/2501/2016/
doi:10.5194/nhess-16-2501-2016
© Author(s) 2016. CC Attribution 3.0 License.

Landslide forecasting and factors influencing predictability
Emanuele Intrieri and Giovanni Gigli
Department of Earth Sciences, University of Studies of Firenze, via La Pira 4, 50121 Florence, Italy

Correspondence to: Emanuele Intrieri (emanuele.intrieri@unifi.it)

Received: 20 June 2016 – Published in Nat. Hazards Earth Syst. Sci. Discuss.: 28 June 2016
Revised: 22 September 2016 – Accepted: 31 October 2016 – Published: 30 November 2016

Abstract. Forecasting a catastrophic collapse is a key ele-
ment in landslide risk reduction, but it is also a very difficult
task owing to the scientific difficulties in predicting a com-
plex natural event and also to the severe social repercussions
caused by a false or missed alarm. A prediction is always af-
fected by a certain error; however, when this error can imply
evacuations or other severe consequences a high reliability in
the forecast is, at least, desirable.

In order to increase the confidence of predictions, a new
methodology is presented here. In contrast to traditional ap-
proaches, this methodology iteratively applies several fore-
casting methods based on displacement data and, thanks to
an innovative data representation, gives a valuation of the re-
liability of the prediction. This approach has been employed
to back-analyse 15 landslide collapses. By introducing a pre-
dictability index, this study also contributes to the under-
standing of how geology and other factors influence the pos-
sibility of forecasting a slope failure. The results showed how
kinematics, and all the factors influencing it, such as geome-
chanics, rainfall and other external agents, are key concern-
ing landslide predictability.

1 Introduction

Natural disaster forecasting for early warning purposes is a
field of study that drew the media attention after events such
as the 26 December 2004 tsunami of Sumatra. Predicting
landslides, with respect to other natural hazards, is a complex
task due to the influence of many factors, such as geomechan-
ical properties, rainfall, ground saturation, topography, earth-
quakes and many others. So far, few empirical landslide fore-
casting methods exist (Azimi et al., 1988; Fukuzono, 1985a;
Mufundirwa et al., 2010; Saito, 1969; Voight et al., 1988)
and none furnish a reliability degree of the prediction, mak-

ing them unsuitable for decision making. In particular, when
mentioning geomechanics, the reference is to the study of
landslide behaviour concerning its deformation in relation
to the applied stress and with special reference to its post-
rupture conditions.

In the present paper, research on an approach to perform
probabilistic forecasting of landslide collapse is presented.
This has been achieved by reiterating several predictions us-
ing more forecasting methods at the same time for multiple
time series. This approach may have important applications
for civil protection purposes since it provides the decision
makers with a level of confidence about the prediction. Fur-
thermore, this study, performed on 15 different case studies,
shows how the possibility of forecasting the time of collapse
of a landslide is affected by geomechanical or geomorpho-
logical features as much as by circumstantial conditions.

1.1 The inverse velocity forecasting method

Forecasting activity can be considered the fulcrum of early
warning systems (Intrieri et al., 2013), i.e. cost-effective
tools for mitigating risk by moving the elements at risk.
For many natural phenomena forecasting is common practice
(for example for hurricanes; Willoughby et al., 2007), while
for others it is presently impossible (earthquakes; Jordan et
al., 2011). Landslides lie in the middle of this spectrum.
Their prediction can be performed through rainfall thresholds
(Baum and Godt, 2010), but a more reliable approach should
make use of direct measures of potential instability, such as
displacements (Lacasse and Nadim, 2009; Blikra, 2008). A
first issue is that only a small percentage of landslides in
the world are appropriately monitored. Often monitoring is
carried out for short periods not encompassing the final pre-
failure stages, or monitoring may be carried out with a too-
low temporal frequency that does not permit following the
displacement trend. This also causes an insufficient knowl-
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edge of the geomechanical processes leading to failure (here
meant as the collapse following a sudden acceleration, either
a first movement or a reactivation), which is also responsible
for our deficiencies in predicting landslides.

In spite of this, few empirical methods for predicting the
time of failure based on movement monitoring data have
been developed (Azimi et al., 1988; Fukuzono, 1985a; Mu-
fundirwa et al., 2010; Saito, 1969) and further investigated
on a physical basis (Voight et al., 1988). They are all based
on the hypothesis that if a landslide follows a peculiar time-
dependant geomechanical behaviour (called creep; Dusseault
and Fordham, 1994), it will display a hyperbolic acceler-
ation of displacements before failure; by extrapolating this
trend from a displacement time series through empirical ar-
guments, it is possible to obtain the predicted time of fail-
ure. However, such methods do not always produce good re-
sults. In fact, other than the limitation of working only with
creep behaviour, sometimes the tertiary creep can evolve so
rapidly that a sufficient lead time for evacuation is simply
not possible (IEEIRP, 2015). In other cases natural or instru-
mental noise can hamper the predictions and require post-
processing to allow for effective warnings (more details on
the types and effects of noise can be found in Carlà et al.,
2016). Other authors also contributed to methodologies for
exploiting and optimizing the classic forecasting methods
(Crosta and Agliardi, 2003; Dick et al., 2015; Manconi and
Giordan, 2015).

One of the most famous methods is Fukuzono’s (1985a),
which derives from Saito’s (1969), from here on simply
called the F and S method respectively. The F method re-
quires that during the acceleration typical of the final stage
of the creep (tertiary creep), the inverse of displacement ve-
locity (v−1) decreases with time. The collapse is forecasted
to occur when the extrapolated line reaches the abscissa
axis (corresponding to a theoretical infinite velocity). Such
a line may either be convex, straight or concave (Fukuzono,
1985a). When it is straight this phenomenon is sometimes
referred to as the Saito effect (Petley et al., 2008).

The possibility of finding landslides showing the Saito ef-
fect has been related to the mechanical properties of the slid-
ing mass. However, there is no general consensus on this is-
sue.

According to some authors (Petley, 2004; Petley et al.,
2002), in order to display the Saito effect, landslides need
to display a brittle behaviour (which indicates a drop from
peak strength to residual strength value, deformation that
is concentrated along a well-defined shear surface, sudden
movements and catastrophic failure, usually associated with
crack formation in strong rocks). Furthermore, only brittle,
intact rocks evolve in catastrophic landslides and can there-
fore be predicted for others (Rose and Hungr, 2007). In con-
trast, landslides displaying the Saito effect must have ductile
failures in order to be forecasted (i.e. slower, indefinite defor-
mation along a shear zone and under constant stress, typical
of sliding on pre-existing surfaces of soft rocks) because brit-

tleness is characterized by sudden, impossible to anticipate
ruptures.

This complex subject is made even more difficult due
to the influence of external factors (rainfall, earthquakes,
excavations), structural constraints (joints, faults, contact
with different lithologies) and sometimes unknown elements
within the mass (the conditions of the shear surface, the his-
tory of the landslide, the presence of rock bridges). There-
fore, it is often hard to establish the mechanical behaviour
and even harder to find an exact correlation between the me-
chanical behaviour of a landslide and the possibility of pre-
dicting its failure.

1.2 The concept of predictability

Before assessing the influence of geomechanics on the pre-
dictability of a landslide it is first necessary to address the
concept of predictability.

In literature (Azimi et al., 1988; Hutchinson, 2001; Mu-
fundirwa et al., 2010; Rose and Hungr, 2007) there are pa-
pers that deal with “predictions” made retrospectively, that
is thorough post-event analyses showing the signs of a crit-
ical pre-collapse acceleration. However, whether such signs
would have been unambiguous or would have granted a suf-
ficient lead time is often neglected.

Conversely, in this research an operational definition of
predictability is considered (integrating that of an earlier
warning system; UNISDR, 2009) as the feature possessed by
a landslide that allows one to forecast its collapse with rea-
sonable confidence and sufficiently in advance. This permits
the dispatch of meaningful warning information to enable in-
dividuals, communities and organizations threatened by the
hazard to prepare and act appropriately to reduce the possi-
bility of harm or loss. Therefore, displaying the Saito effect is
not the only prerequisite for an operational prediction. There
is also the need for repeated time of failure forecasts fluctuat-
ing around a constant time value that are placed not too close
together in the future. This has been achieved through the re-
iterative approach and the graphical representation described
in the following paragraph. Finally, a semi-quantitative pa-
rameter called ”prediction index” is defined in order to ad-
dress the success of the predictions.

2 Methods

The usual way to apply landslide forecasting methods based
on displacements is to obtain a single predicted time of fail-
ure (tf) and to update such a prediction as soon as new data
are gathered (Rose and Hungr, 2007). This is a determinis-
tic approach since the real time of failure (Tf) is predicted
through a single inference. Even if sometimes more predic-
tions are made together with new data, usually only one (the
most recent) is used.
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Conversely, in order to account for the uncertainty of
the methods and complexity of the phenomena, predictions
should have a certain confidence. Confidence may be quanti-
tatively assessed by using the standard deviation of the fore-
casts tf as a proxy. In fact, the standard deviation furnishes the
dispersion (i.e. the precision) of the predictions, which may
be used to calculate a time window within which the col-
lapse is more likely to occur. Therefore, the lower the stan-
dard deviation of a set of forecasts, the higher their reliabil-
ity and confidence would be. This is especially important for
operative early warning systems. This probabilistic approach
is achieved by reiterating the equations from Saito (1969),
Fukuzono (1985a) and Mufundirwa et al. (2010) (the latter
method will be called the M method from here on) for finding
tf, using continuously new data and enabling the calculation
of the standard deviation.

The predictions are plotted against the time when they
were made (time of prediction, tp). We call these diagrams
prediction plots (Fig. 1). A prediction is considered reliable
when the inferences oscillate around the same tf. Figure 1
also shows that since reliable predictions usually display an
oscillatory trend, the most updated one is not necessarily the
most accurate, contrary to what is usually believed (Rose and
Hungr, 2007). In fact, the length of the dataset is more impor-
tant, from which Tf can be estimated through simple statisti-
cal analyses (like mean and standard deviation).

Since a single forecasting method can fail to give satis-
factory results in some cases, in order to improve the confi-
dence in the predictions even more, a multi-model approach
together with the probabilistic approach is adopted. In fact,
according to the diversity prediction theorem (Page, 2007;
Hong and Page, 2008), diversity in predictive models reduces
collective error. The highest confidence, of course, is reached
when all the employed methods independently converge to-
wards the same result.

On the other hand, confidence may also be considered as a
qualitative increase in the awareness of the decision makers
that can estimate the time of failure of a landslide by evaluat-
ing a large set of different predictions and their dispersions.

For this research the results from the S, F and M meth-
ods were confronted. The equations used for the iteration are
obtained from the respective authors and are

tr =
t2
2 − (t1 · t3)

2t2− (t1+ t3)
(1)

for S method, where t1, t2, t3 are times taken so that the dis-
placement occurring between t1 and t2 is the same as between
t2 and t3.

tr =
t2

1
v1
− t1

1
v2

1
v1
−

1
v2

(2)

Figure 1. This graph represents probabilistic predictions performed
with three different forecasting methods (Fukuzono, 1985a; Mu-
fundirwa et al., 2010; Saito, 1969) applied to the MB34–35′ dis-
placement time series of the Mount Beni landslide (Gigli et al.,
2011). The horizontal dashed line indicates the observed time of
failure (Tf) and the grey diagonal line indicates the equality be-
tween tf and tp. Therefore, the vertical distance between a point
and the dashed line indicates the prediction error. The vertical dis-
tance between the diagonal line and a prediction above it is the life
expectancy of the landslide at the time of prediction. In this case
the predictions obtained through the S and F methods give a good
estimation of Tf, while the one from Mufundirwa et al. (2010) con-
sistently forecasts the collapse a few days ahead.

for F method, where v1 and v2 are the velocities at arbitrary
times t1 and t2.

t
dD

dt
= tr

dD

dt
−B (3)

for M method, where D is the displacement and tr is the an-
gular coefficient of the line represented in a t dD

dt
= f

(
dD
dt

)
space having B as the intercept. For the purposes of this pa-
per tr expressed in all of these equations is equivalent to tf.

The proposed procedure consists of iteratively calculating
the time of failure tf by using the aforementioned methods
and repeating the calculation as soon as new monitoring data
are available. All the forecasts are recorded together with the
time when they are made in order to create a time series of
tf = f (t). This can be represented in a prediction plot having
tf and t (the time when the prediction is made) as coordinates.
Finally, from the distribution of the forecasts within time it is
possible to assess the time of failure.

3 Time of failure prediction

In order to find a relation between the predictability of a fail-
ure and the geological features of the landslide, the S, F and
M methods were applied to a number of different real case
studies. Some geological features of interest relative to such
cases, when they were known or applicable, are reported in
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Figure 2. Prediction plots of four different case studies. The dashed line indicates Tf. The crosses represent forecasts performed with the S
method, the triangles with the F method and the diamonds with the M method. Note that F forecasts for Avran Valley landslide include other
less accurate values not shown in the graph since they are out of scale.

Table 1. Concerning brittleness, since it was rarely explic-
itly stated in the referenced articles, it was assessed based
on information such as the type of material, the presence
of a reactivated landslide, the weathering and the shape of
the displacement time series. Since this lead to approxima-
tions, brittleness has been evaluated using broad and qualita-
tive definitions.

Since Tf must be known in order to assess the quality of
predictions, all the case studies are from past landslides that
have already failed. Therefore, the respective time of failures
are all known a posteriori.

A few representative examples of prediction plots are
shown in Figs. 1 and 2. The Mount Beni landslide was a
500 000 m3 topple that evolved as a rockslide (Gigli et al.,
2011). It was developed on a slope that had been subject to
quarrying activity. The predictions oscillate quite regularly
around the observed time of failure (Tf, dashed line in Fig. 2).
It is this convergence that permits the correct forecast of the
collapse a priori since at least late November, i.e. a month
before the failure; whereas, a single forecast would not be
able to give a confidence of the prediction. The three meth-
ods are similar to the point that S and F previsions can be
partially overlapped. M previsions overlap as well but only
in the final part. The M method alone would not be sufficient
for spreading a reliable alarm since the single forecasts do
not converge but move forward to a different time of failure
as the time passes by.

Similar behaviours can also be observed for the cases in
Fig. 2 that display landslides with a different array of geo-
logical features (as seen in Table 1). The best results are ob-
tained when the forecasts oscillate around Tf with sufficient
time in advance (as for Vajont and, limited to the F method,
for Liberty Pit), or when they consistently give the similar tf
(as for the artificial landslide E, where the terms “artificial
landslide” indicates a landslide recreated in laboratory with
an artificial slope). In other cases (Avran Valley and, limited
to the S and M method, for Liberty Pit) the predictions are
too scattered or simply never converge toward a single re-
sult, thus making it impossible to foresee a reliable time of
failure.

Considering only the results of the S method in the case
of the Avran Valley landslide, the forecasts had notably been
constantly furnishing a time of failure preceding the actual
Tf since the end of September. Although this may be con-
sidered a case of safe predictions (that is an error not pro-
ducing a false positive and therefore not dangerous for the
elements at risk), this also means that at every forecast made
tf is postponed. Given a series of ever-increasing values of tf,
it is impossible to assess which of them (if any) can be as-
sumed as a good estimate of the actual time of failure. How-
ever, since the time series of predictions is long enough, past
forecasts (before early September) furnish values of tf that,
if considered together with the late ones, centre the value of
Tf. Therefore, it is clear how a prediction plot might allow
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decision makers to make more aware evaluations of the time
of collapse of a landslide.

The results of the prediction plots can be roughly sum-
marized by reporting the mean and standard deviation of the
forecasts for each method (Fig. 3).

4 Predictability index

In order to evaluate the performance of the S, F and M meth-
ods and to relate it to the characteristics of the reported ex-
amples, an arbitrary scoring system has been implemented
and attributed to each prediction plot (considering that every
time series has a prediction plot for each forecasting method
and that for some case studies more than one time series was
available). This permits the quantification of the predictabil-
ity of a collapse based on the prediction plot. A score from 1
to 5 has been assigned according to the following criteria:

– 1 point: the prediction plot never converges on a single
tf (typically tf increases at every new datum available).

– 2 points: the predictions vary considerably at every new
iteration. An average time of failure (t f) can be extracted
but with high uncertainty.

– 3 points: the predictions oscillate around Tf, although
with a certain variance.

– 4 points: the predictions have a low variance, although
t f is slightly different than Tf. Note that when the vari-
ance was low, t f and Tf never differed greatly.

– 5 points: the prediction plot is clearly centred on Tf;
therefore, the reliability of t f is high.

By summing the scores obtained from the S, F and M pre-
diction for each time series, what we call the Predictability
Index (PI) is obtained (Table 2). Since PI is a means of eval-
uating the overall quality of a set of predictions (it requires
observing the time series of tf and confronting it with Tf) and
also of comparing the performance of different forecasting
methods with different case studies, naturally it can only be
estimated after the collapse.

By using three forecasting methods, PI ranges from 3 (im-
possible to predict the time of failure) to 15 (the time of fail-
ure can be predicted in advance and with a high reliability).
Though a certain degree of subjectivity is unavoidable when
assigning the scores, what matters here is the relative differ-
ence of PI between the case studies. In such a way it is possi-
ble to understand in which conditions a landslide is more or
less predictable.

5 Discussion

Table 2 shows how the most predictable events (PI > 8) can
display very different features and are quite irrespective of

the shape of the inverse velocity plot, the volume, the brit-
tleness of the material, the history of the landslide and so on
(see also Table 1).

A comparison of Fig. 3 and Table 2 illustrates how the
mean and standard deviation of the forecasts alone are not
enough to represent the quality of predictions and, conse-
quently, the predictability of a landslide. In fact, the im-
portance of a single forecast strongly depends on the time
when it is made; for example, given the same set of forecasts
(tf,i), a higher PI is obtained if the first predictions done are
the farthest from Tf, while the final ones tend to converge
to it. In this way the prediction plot assumes an oscillatory
shape (like the S and F forecasts in Fig. 1). Conversely, if
the same forecasts are made with a different order so that
they get closer and closer to Tf as time passes by (that is∣∣tf,i − Tf |<| tf,i−1− Tf

∣∣), then there is no tf,i prevailing on
the others and it is not possible to define a more probable
time of collapse (like the M forecasts in Fig. 1). However,
the average and standard deviation of tf are the same for both
cases and this explains why these two statistics alone are not
as informative as a prediction plot.

From Table 2 it is also possible to assess which method
gives the best results. The sum of the scores for the S, F and
M methods is 119, 115 and 63 respectively. Overall S and
F perform similarly, but for a specific case study their ef-
fectiveness can be very different; therefore, their results are
independent and not redundant. There is no indisputable clue
suggesting when the F method performs better than the S
method and vice versa. Nonetheless, it appears that S is neg-
atively influenced when the displacement curve is not reg-
ularly accelerating (Liberty Pit, Stromboli), whereas for F a
few aligned points in the final tract in the inverse velocity plot
are sufficient for predicting the failure. However, F forecasts
are more disturbed when displacement data are noisy since
they use their derivative (velocity) as input. Eventually M
forecasts that generally perform more poorly and rarely (i.e.
artificial landslides B and C) surpass those obtained from the
S and F methods.

Interestingly, different displacement time series belonging
to the same landslide can display different behaviours. This
is strong evidence that even though the geological features
do influence the predictability of a landslide, assuming that
they keep the same for the whole landslide, other factors
must determine the quality of the predictions. The last col-
umn of Table 2 shows what such factors could be for each
time series, for example lithology (the asymptotic trends of
the cases of Avran Valley and Giau Pass can be explained
as consequences of a lowly brittle material according to Pet-
ley’s experiments; Petley, 2004), external forces (excavation
in open pit mines, volcanic activity, rainfall), local effects
(structural constraints, displacement measured relative to in-
ternal or lateral fractures not representing the general insta-
bility of the landslide), quality of data (length of the time
series, frequency of the observations, level of noise, repre-
sentativeness of the monitored point), etc.

Nat. Hazards Earth Syst. Sci., 16, 2501–2510, 2016 www.nat-hazards-earth-syst-sci.net/16/2501/2016/
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Figure 3. This graph represents for each method the differential between the mean of the forecasts (t f) and the actual time of failure (Tf).
Negative values are safe predictions for anticipating the time of failure. The dashed line represents exact predictions (Tf− t f = 0). The
standard deviations of the forecasts are represented as error bars. For the Betze-Post and Mount Beni landslides time series from different
measuring points are reported. The rock mass failure, Asamushi landslide and the artificial landslides are not shown because they were
monitored in a different timescale (hours or minutes).

All of these case histories show that the main factor in pre-
dictability of a landslide, and therefore in the presence of the
”Saito effect”, is connected to geology. However, this rela-
tion is not simple or direct. Instead, both the predictability
and the “Saito effect” depend on the kinematics of the land-
slide, since only a landslide accelerating with a certain trend
can be forecasted using the S, F and M methods. Naturally,
the kinematics in turn depend on the geological conditions.
In the complex relationship between geology and kinematics,
the aforementioned factors may intervene. Although their in-
teraction may not be known, its effect on displacement data
can be easily measured. As a result it has been found that
asymptotic trends in the inverse velocity plot have also been
encountered for first failure ruptures (as found in some time
series of the Mount Beni landslide), contrary to what is de-
scribed by Petley (2004). This can be explained as an effect
of those interactions that may alter in an unknown way the
normal relationship between geology and kinematics, thus
making focusing on kinematics as the key more reliable than
relying on geology alone.

In fact, even though geomechanics is unquestionably a key
factor, a complete geomechanical characterization is often
difficult to accomplish, especially in emergency situations.
Hints of a particular geomechanical behaviour are often de-
rived from displacement data. Like in a black box model,
even if the real properties of a phenomenon are not known,
conclusions may be drawn from the output of those proper-
ties (i.e. the kinematics). In this case, importance has been

given to kinematics because what is generally measured by
monitoring are displacement data. Furthermore, many other
unknown factors (rainfall, ground saturation, earthquakes,
anthropic disturbance, etc.) are included in the black box
model together with the geomechanics. This makes it virtu-
ally impossible to know in advance what may be the degree
of influence of geomechanics alone with respect to other fac-
tors, thus leading to a focus on kinematics instead. More-
over, even though geomechanics is a key element in deter-
mining landslide predictability (because it is responsible for
the creep behaviour for example), the results of the present
study show that landslide prediction can be carried out with
a variety of different geomechanical settings, as can also be
observed by comparing Table 1 (which furnishes evaluations
concerning the geomechanical properties of the case studies)
with Table 2 (which states whether a collapse was predictable
or not).

The prediction plots clearly show that, contrary to what
is generally believed (Rose and Hungr, 2007), the last fore-
casts are not necessarily the most accurate and that past ones
(starting from the initiation of the tertiary creep) are essen-
tial in estimating the correct time of failure. In fact, older
forecasts can be more accurate and furnish precious infor-
mation about the general reliability of the final prediction,
as explained above. Therefore, the present study highlights
the importance of considering the whole set of predictions
made with time. The integration of more forecasting meth-
ods further increases reliability of the predictions, which is
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Table 2. Predictability index.

Name S F M PI Inverse velocity trend Notes

Liberty Pit 1 5 1 7 Asymptotic (linear Open pit mine, structural control
at the end) of two intersecting faults

Landslide in mine 5 5 5 15 Linear Open pit mine
Betze-Post 1 3 3 1 7 Linear Open pit mine
Betze-Post 2 4 5 4 13 Linear Open pit mine
Betze-Post 3 5 4 1 10 Linear Open pit mine
Vajont benchmark 63 5 5 5 15 Linear Air pressure and cementation

caused catastrophic collapse
Stromboli 1 2 2 5 Asymptotic Volcanic context
Mount Beni 12–9 4 5 1 10 Concave Back fracture
Mount Beni a′b′ 1 3 1 5 Linear Short time series
Mount Beni 15–13 5 3 1 9 Linear Internal fracture
Mount Beni 34–35′ 5 3 1 9 Linear Lateral fracture, short time series
Mount Beni 45–47 2 3 1 6 Linear Back fracture, short time series
Mount Beni 3–2 5 2 1 8 Concave Back fracture
Mount Beni 4′–6 1 4 1 6 Linear Back fracture, short time series
Mount Beni 24–23 4 2 1 7 Linear lateral fracture
Mount Beni 49–24 5 1 1 7 Linear Lateral fracture, short time series
Mount Beni 35′–36 2 5 1 8 Linear Lateral fracture, short time series
Mount Beni 33–35′ 3 3 1 7 Linear Lateral fracture, short time series
Mount Beni 36–37 4 3 1 8 Linear Lateral fracture
Mount Beni 19–16 2 2 1 5 Linear Lateral fracture
Mount Beni 19–17 1 2 1 4 Linear Lateral fracture, short time series
Mount Beni 33–34 4 2 1 7 Linear Internal fracture
Mount Beni 43–44 3 2 1 6 Asymptotic (constant Internal fracture,

velocity at the end) short time series
Mount Beni 40–41 3 2 1 6 Asymptotic (constant Internal fracture,

velocity at the end) short time series
Mount Beni 40–42 3 3 1 7 Linear Internal fracture, short time series
Mount Beni 45–46 3 2 2 7 Linear Back fracture, short time series
Mount Beni 1–2 4 2 1 7 Linear Back fracture
Cerzeto 5 5 1 11 Linear –
Rock mass failure Japan 2 2 1 5 Convex Open pit mine, very small landslide
Asamushi 5 3 1 9 Linear –
Avran Valley 5 1 2 1 4 Concave –
Avran Valley 6 1 1 1 3 Asymptotic –
Avran Valley 7 1 2 1 4 Concave –
Giau Pass 3 3 1 7 Asymptotic/concave –
Artificial landslide A 5 5 5 15 Convex 40◦ artificial slope
Artificial landslide B 2 2 3 7 Concave 40◦ artificial slope
Artificial landslide C 1 2 3 6 Linear (slightly convex) 40◦ artificial slope
Artificial landslide D 5 5 5 15 Linear 30◦ artificial slope

of great importance for early warning systems, in particular
when evacuations are envisaged.

Limitations of the proposed approach are those related to
the intrinsic limitations of the forecasting methods that were
integrated. In fact, since the S, F and M methods are all based
on the creep theory, the occurrence of a tertiary creep phase
slow enough to allow monitoring and taking action is neces-
sary. Voight (1988) also assumes that there must be no exter-
nal force acting on the landslide, but the examples shown in

this paper demonstrate that this may not represent a limita-
tion.

Figure 3 shows that the mean of the predictions can be
used as a proxy for the time of failure, but, as stated above
in this paragraph, it is also shown that the obtained accuracy
may not be enough since the mean does not exploit all of the
information provided by a prediction plot. Other statistical
indicators have been attempted, but none of them appeared
to better approximate the value of Tf, mainly due to the diffi-
culty of accounting for the important time factor in the fore-
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Figure 4. Flow chart that synthesizes the proposed procedure.

casts and also because not every prediction plot displays the
characteristic oscillations. Therefore, the interpretation of the
prediction plot (and in particular of the dispersion of the fore-
casts with time) represents the most valuable tool for decision
makers, who, in this way, can make judgements informed by
a large set of quantitative and redundant data and assess the
“weight” of a single prediction by comparing it with many
others.

Resuming, the proposed methodology can be summarized
as in Fig. 4.

6 Conclusions

In conclusion, the main aspect of the proposed methodology
concerns a way to produce and represent forecasting data.
Then this methodology is used to assess the influence of dif-
ferent factors in the predictability of a landslide. The main
results of the study are summarized hereafter.

Prediction plots are introduced as graphs showing the evo-
lution of collapse forecasts with time. Such plots provide
more information than simple average and standard devia-
tion of the forecasts and improve the reliability of the final
prediction.

A PI has been introduced as a scoring system based on
the description of the prediction plot in order to evaluate the
quality of a set of predictions.

The predictability of a landslide depends firstly on its kine-
matics and then on what determines it (geology, external
forces, local effects, etc.).

Landslide collapses can be forecasted whether they are in
highly or slightly brittle materials, rock or earth material of
different types, or materials with different sliding surface ge-
ometries, volumes and triggers.

Contrary to what is generally assumed (Voight, 1988; Rose
and Hungr, 2007), landslides can also be forecasted when
external forces are acting on it.

The asymptotic behaviour of the inverse velocity curve
does not imply that the landslide cannot be correctly fore-
casted, even though it can hinder the prediction.

The asymptotic behaviour may be induced by external fac-
tors, lithology and local effects, rather than only by crack
propagation. In fact, asymptotic trends were found in first
time failures and in both brittle and slightly brittle materi-
als. The crack propagation explanation is not neglected, but
it may not represent the general rule.

Most recent displacement monitoring data increase the
confidence when estimating the time of failure but do not
necessarily provide more accurate predictions than the older
ones (provided that they start from after the initiation of the
tertiary creep).

The developed approach integrates more forecasting meth-
ods to further improve the reliability of the prediction.
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